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Clustering is an important tool in data mining and knowledge discovery. Fuzzy 

Adaptive Resonance Theory, a member of unsupervised neural networks, clusters data 
effectively because of applying operator AND of Fuzzy Logic. In previous studies, lear- 
ning from data was ineffective when the surface of data is higher than the surface of 
weight vector of categories. In this paper, we propose an improved learning rule to learn 
from data better. In the proposed rule, the weights of wining category are decreased to 
adapt to each input. Each input shows the effect for categories by a learning parameter. 
The learning parameter is adjusted until the best stable state and performance of cluster-
ing results are achieved. We have conducted experiments on 10 benchmark datasets to 
prove the effectiveness of the proposed rule. The experiment results showed that Fuzzy 
ART learned with the improved rule (IFART-Improved Fuzzy Adaptive Resonance The-
ory) performs better than existing models in complex small datasets.     
 
Keywords: fuzzy ART, adaptive resonance theory, clustering, unsupervised neural net-
work, learning rule  
 
 

1. INTRODUCTION 
 

Clustering is useful for comprehending a large amount of data based on the similar-
ity between data. In studies on clustering, Adaptive Resonance Theory (ART) is shown 
to be an unsupervised neural network that clustered data effectively. Fuzzy Adaptive 
Resonance Theory (Fuzzy ART), a member of ART, possesses three advantages. First, 
Fuzzy ART tests the similarity and learns from data by applying operator AND of Fuzzy 
Logic. Second, designs of Fuzzy ART are optimized based on many mathematical stud-
ies for choosing parameters based on properties of fuzzy set. Then, the category prolifer-
ation of Fuzzy ART is solved by normalizing data. Therefore, Fuzzy ART has applied 
for hundreds of applications such as document clustering [1], classification of multivari-
ate chemical data [2], analyzing gene expression [3], quality control of manufacturing 
process [4], and classifying with missing data in a wireless sensor network [5].    

Models of Fuzzy ART and ART have developed to improve the ability of clustering. 
Kenaya and Cheok [6] proposed Euclidean ART that employed the Euclidean distance to 
measure the similarity and the mean of patterns for the weights of categories. Carpenter 
et al. [7] proposed the first Fuzzy ART showing the stable learning’s capability of 
recognition categories. Isawa et al. [8] proposed an additional step, “Group Learning”, to 
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present connections between similar categories. Then, an improved Fuzzy ART combin-
ing overlapped categories was designed based on connections [9]. Yousuf and Murphey 
[10] provided an algorithm comparing all categories to the input simultaneously and al-
lowing multiple matching categories to be updated. In above studies, learning from data 
is ineffective when elements of category’s weight vector are smaller than elements of the 
input. It means that categories do not learn from data although data satisfy the given 
conditions on the similarity.  

In this paper, we propose an improved learning rule of Fuzzy ART that learns from 
data more effectively. In the learning step, each input causes the weight’s decrease of the 
winning category. We use the learning parameter to show the effect of each input to cat-
egories. Initially, the learning parameter is set up approximately based on the size of data. 
Then, the learning parameter is adjusted until clustering results become stable and reach 
the highest values. Experiments have conducted with 10 benchmark datasets for classi-
fying to prove the effectiveness of the proposed rule. Fuzzy ART learned by our im-
proved rule is consequently compared to existing models including Fuzzy ART, K-mean 
algorithm, Euclidean ART. The results show that IFART clusters more effectively than 
existing models in complex small datasets. 

The rest of the paper is organized as follows. In Section 2, the background is shown. 
Related works are reviewed in Section 3. In section 4, we present our learning rule and 
the procedure for finding an optimized value of the learning parameter. Section 5 shows 
experiments with 10 standard datasets. 

2. BACKGROUND 

2.1 ART Network 
 

Adaptive Resonance Theory (ART) neural networks [11, 12] are developed to ad-
dress the problem of stability-plasticity dilemma. The general structure of an ART net-
work is shown in the Fig. 1. 

 
Fig. 1. Architecture of an ART network. 

 

A typical ART network consists of two layers: an input layer (F1) and an output 
layer (F2). The input layer contains n nodes, where n is the number of input patterns. The 
number of nodes in the output layer is decided dynamically. Every node in the output 
layer has a corresponding weight vector.  

The network dynamics are governed by two sub-systems: an attention subsystem and 
an orienting subsystem. The attention subsystem proposes a winning neuron (or category) 
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and the orienting subsystem decides whether to accept the winning neuron or not. This 
network is in a resonant state when the orienting subsystem accepts a winning category. 

 
2.2 Fuzzy ART Algorithm 

 
Carpenter et al. summarize Fuzzy ART algorithm in [7]. 

 
Input vector: Each input I is an M-dimensional vector I1, …, IM, where each component 
Ii is in the interval [0, 1]. 
 
Parameters: Fuzzy ART dynamics are determined by a choice parameter  > 0, a 
learning rate parameter   [0, 1], and a vigilance parameter   [0, 1]. 

 
Fuzzy ART algorithm consists of five following steps: 

Step 1: Setup weight vector. 
Each category j corresponds to a vector Wj = Wj1, …, WjM of adaptive weights, or 

Long Term Memory (LTM) traces. The number of potential categories N (j = 1, ..., N) is 
arbitrary. Initially 

Wj1 = … = WjM = 1    (1) 

and each category is said to be uncommitted. After a category is selected to code, it be-
comes committed. As shown below, each LTM trace Wji is monotone non-increasing 
through time and hence converges to a limit.  
 
Step 2: Choose a wining category. 

For each input I and category j, the choice function Tj is defined by 

( )
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
    (2) 

where the fuzzy AND operator  of Fuzzy Logic is defined by 

(x  y)i = min{xi, yi}    (3) 

and where the norm ||·|| is defined by 

1

.
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i
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x x


     (4) 

or notational simplicity, for notational simplicity, Tj(I) in Eq. (2) is often written as Tj 
when the input I is fixed. The category choice is indexed by j, where  

Tj = max{Tj, j = 1, …, N}.     (5) 

If more than one Tj is maximal, the category j with the smallest index is chosen.  
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Step 3: Check state of Fuzzy ART. 
Resonance occurs if the match function of the chosen category meets the vigilance 

criterion; that is, if 
 

jI W

I



   (6) 

then learning is performed in Step 4.  
Mismatch reset occurs if 
 

jI W

I



  (7) 

then the value of the choice function Tj is reset to 1 for the duration of the input presen-
tation. A new index j is chosen, by Eq. (5). The search process continues until the chosen 
j satisfies Eq. (6) or actives a new category.  
 
Step 4: Perform learning process. 

The weight vector of jth category, Wj is updated according to the following equa-
tion: 

 
Wj

new
 = (I  Wj

old
) + (1  ) Wj

old
. (8) 

Step 5: Active a new category. 
For each input I, if no existing category satisfies Eq. (6) then a new category j be-

comes active. Then, Wj
new = I. 

 
2.3 Fuzzy ART with Complement Coding 

 
Proliferation of categories is avoided in Fuzzy ART if inputs are normalized; that is, 

for some  > 0 
 
||I|| =   (9) 

for all inputs I. Normalization can be achieved by complement coding each input vector 
a. 

Complement coding represents both a and the complement of a. The complement of 
a is denoted by ac, where 

 
ai

c = 1  ai. (10) 

The complement coded input I to the recognition system is the 2M-dimensional 
vector 

 
I = (ai, ai

c) = (a1, …, aM, a1
c, …, ac

M ). (11) 
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After normalization, ||I|| = M so inputs preprocessed into complement coding form 
are automatically normalized. Where complement coding is used, the initial condition in 
Eq. (1) is replaced by 

 
Wj1 = … = Wj2M = 1. (12) 

3. RELATED WORK 

Many traditional clustering methods proposed to apply for applications. Three tradi-
tional clustering methods are Self Organizing Map (SOM), K-mean, and hierarchical 
clustering. Teuvo Kohonen [13] proposed a model of a new self-organizing process 
called SOM. SOM is an artificial neural network that performs the unsupervised learning 
to produce a low-dimensional representation of input space. M. Queen [14] proposed 
K-mean algorithm that classifies a given dataset through a certain number of categories 
by minimizing the squared error function. Then, the category weight is updated by mean 
of patterns in each category. Johnson [15] proposed a hierarchical clustering algorithm 
based on the union between the two nearest categories. The beginning condition is real-
ized by setting each input as a category. After a few iterations, it reaches the final cate-
gories. In above studies, the complex of calculating is large because of recalculating the 
weight vector of every category.  

Studies on ART have developed to improve the ability of clustering. A. H. Tan 
showed a neural architecture termed Adaptive Resonance Associative Map (ARAM) 
[16]. ARAM extended unsupervised ART systems for rapid, stable, and hetero-associa- 
tive learning. With maximal vigilance settings, ARAM encoded pattern pairs explicitly 
and guaranteed perfect storage. Kenaya and Cheok [6] applied the Euclidean neighbor-
hood for the similarity. Then, update weights of a chosen category by the mean of pat-
terns in each category. Lin et al. [17] proposed the learning algorithm based on ART for 
parting online input-output spaces of a traditional fuzzy logic controller. This model es-
tablished membership functions and found proper fuzzy logic rules based on the distri-
bution of data. The learning process of ART performs ineffectively when the surface of 
data is higher than the surface of the weight vector of categories.   

Studies on theory of Fuzzy ART can be divided into three categories including de-
veloping new models, studying properties, and optimizing the performance. In the first 
category, new models of Fuzzy ART used a general learning rule. Capenter et al. [18] 
proposed Fuzzy ARTMAP for incremental supervised learning of recognition categories 
and multidimensional maps from arbitrary sequences of input set. This model minimized 
predictive error and maximized code generalization by increasing the ART vigilance pa-
rameter to correct the predictive error. Prediction was improved by training system several 
times with different sequences of input set, then voting. This vote assigns probability es-
timations to competing predictions for small, noisy, and incomplete data. Isawa et al. [8] 
proposed an additional step that was called “Group Learning”. An important feature of the 
learning process was that creating connections between similar categories. It means that 
this model learned not only weight vectors of categories but also relations among catego-
ries in a group. Then, Isawa [9] designed an improved Fuzzy ART combining overlapped 
categories base on connections. This study arranged the vigilance parameters for catego-
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ries and varied them in learning process. Moreover, this model voided the category prolif-
erating. Yousuf and Murphey [10] proposed an algorithm that compared the weights of 
every category with the current input pattern simultaneously and allowed updating multi-
ple matching categories. This model monitored the effects of updating wrong clusters. 
Weight scaling of categories depended on the “closeness” of the weight vectors to the 
current input pattern.  

In the second category, important properties of Fuzzy ART were studied to choose 
suitable parameters for each Fuzzy ART. Huang et al. [19] presented some vital properties 
that were distinguished into a number of categories. The vital properties included template, 
access, reset, and other properties for weight stabilization. Moreover, the effects of the 
choice parameter and the vigilance parameter on the functionality of Fuzzy ART were 
presented clearly. Geogiopoulos et al. [20] provided a geometrical and clearer under-
standing of why, and in which order that categories were chosen for various ranges of the 
choice parameter. This study came in useful when developing properties of learning that 
pertained to the architecture of neural networks. Anagnostopoulos and Georgiopoulos [21] 
introduced geometric concepts, namely category regions, in the original framework of 
Fuzzy ART and Fuzzy ARTMAP. These regions had the same geometrical shape and 
shared many common and interesting properties. They proved properties of the learning 
and showed that training and performance phases did not depend on particular choices of 
the vigilance parameter in one special state of the vigilance-choice parameter space. 

In the third category, studies focused on ways to improve the performance of Fuzzy 
ART. Burwick and Joublin [22] discussed implementations of ART on a non-recursive 
algorithm to decrease algorithmic complexity of Fuzzy ART. Therefore, the complexity 
dropped from O(N*N+M*N) down to O(NM) where N was the number of categories and 
M was the input dimension. Dagher et al. [23] introduced an ordering algorithm for Fuzzy 
ARTMAP that identified a fixed order of training pattern presentation based on the 
max-min clustering method. The combination of this algorithm with fuzzy ARTMAP es-
tablished an ordered Fuzzy ARTMAP that exhibited a generalization performance better. 
Cano et al. [24] generated accurate function identifiers for noisy data. This study was 
supported by theorems that guaranteed the possibility of representing an arbitrary function 
by fuzzy systems. They proposed two neuron-fuzzy identifiers that offered a dual inter-
pretation as fuzzy logic system or neural network. Moreover, these identifiers can be 
trained on noisy data without changing the structure of neural networks or data prepro-
cessing. Kobayashi et al. [25] proposed a reinforcement learning system that used Fuzzy 
ART to classify observed information and construct an effective state space. Then, profit 
sharing was employed as a reinforcement learning method. Furthermore, this system was 
used to effectively solve partially observed Markov decision process. 

4. OUR APPROACH 

4.1 Our Improved Learning Rule 
 
The difference between ART and Fuzzy ART, compared by Carpenter et al. [7], is 

that Fuzzy ART uses fuzzy AND operator of Fuzzy Logic for most important steps in-
cluding choosing a winning category choice, matching the given criteria, and learning. 
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Reason of applying Fuzzy Logic for ART is that using mathematical studies for optimiz-
ing both the design and the performance. Therefore, Fuzzy ART possesses three ad-
vantages. First, Fuzzy ART is optimized in the ability of clustering when Fuzzy ART 
only learns training data that satisfy a given condition. Second, optimized value of pa-
rameters is determined based on the geometrical features of data. Then, Fuzzy ART 
voids the category proliferating. As a result, Fuzzy ART is applied for many applications 
more and more. 

As we discuss in Section 3, ART and Fuzzy ART are ineffective in the learning step. 
Therefore, we propose an improved learning rule of Fuzzy ART to learn better. In the 
learning step, the weight vector of categories is dropped for every input. The effect of the 
input to categories is shown by the learning parameter. We proposed a procedure to find 
an optimized value of the learning parameter for each dataset. In this procedure, after the 
learning parameter is setup approximately based on the size of data, it is increased or 
decreased until clustering results is stable and highest. As a result, IFART can improve 
the ability of clustering. 

Our learning rule updating the weight of the winning category j is presented as follow: 
 
Wji

new
 = Wji

old
    |Ii  Wji

old
|, i = 1, …, M   (13) 

 
where  be the learning parameter.  

After updating the weight vector of the winning category, Wji can be modified ac-
cording to the following rule: If Wji < 0 then set Wji = 0.  

In previous studies, learning rules usually consist of two terms including percents of 
the old weight vector and remaining percents of the fuzzy AND operator between the 
input and the old weight vector. For example, Eq. (8) is a typical learning rule of Fuzzy 
ART. In the proposed learning rule, weights of the winning category also include two 
terms. The first term is the old weight vector and the second term is the decrease of cat-
egory’s weights. The decrease of category’s weights depends on the learning parameter, 
and the difference between the input and the old weight vector. Therefore, the improved 
learning rule is different from previous rules of ART and Fuzzy ART. 
 
4.2 Procedure for Finding an Optimized Value of the Learning Parameter 

 
We select a random subset of dataset (about 1/5 records of dataset) which try to 

possess uniform distribution for categories. Then, IFART uses this subset to test the abil-
ity of clustering for each value of the learning parameter.   
 
Step 1: Set up the learning parameter based on the size of dataset based on the following 

rule: Is bigger the size of dataset, is smaller the learning parameter. Then, calcu-
late clustering results. 

Step 2: Do until the clustering result is stable and highest. 
2.1: Increase or decrease the value of the learning parameter according to a small 

step such as 5% of the learning parameter’s value. 
2.2: Calculate the clustering result.  
2.3: Check clustering result:  
IF the ability of clustering changes THEN do Step 2 
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IF the clustering result is stable and highest THEN exit Step 2. 
Step 3: Return the optimized value of the learning parameter.  

5. EXPERIMENTAL RESULT 

We select 10 benchmark datasets from UCI database1 and Shape database2 for ex-
periments, namely, Iris, Wine, Jain, Flame, R15, Glass, Pathbased, Aggregation, Blance- 
Scale, and Spiral. These datasets are different from each other by the number of attrib-
utes, categories, patterns, and distribution of categories. Table 1 shows characteristics of 
selected datasets. 

Table 1. Characteristics of datasets. 
Index Name #Categories #Attributes #Patterns 

1 Iris 3 4 150 
2 Glass 7 9 214 
3 Wine 3 13 178 
4 Jain 2 2 373 
5 Pathbased 3 2 300 
6 Spiral 3 2 312 
7 R15 15 2 600 
8 Flame 2 2 240 
9 Aggregation 7 2 788 

10 Blance-Scale 3 4 625 
 

Fuzzy ART of Carpenter [7] is implemented into two models including first model 
(Original Fuzzy ART) and the second model with normalized inputs (Complement Fuzzy 
ART). Similarly, IFART consists of two models including Original IFART and Com-
plement IFART. We use following models in experiments, namely, Original IFART 
(OriIFART), Complement IFART (ComIFART), Original Fuzzy ART (OriFART) [7], 
Complement Fuzzy ART (ComFART) [7], K-mean [14], and Euclidean ART (EucART) 
[6] to prove the effectiveness of IFART.  

Data of each datasets are normalized to values in [0, 1]. Initially, we choose a ran-
dom pattern of each category to be the weight vector. We determine parameters for 
compared models to reach the highest ability of clustering. For each dataset, we conduct 
sub-tests with the different number of patterns in each dataset. The percents of successful 
clustering patterns are presented in a corresponding table. Bold numbers in each table 
show results of the best model among compared models. 
 
5.1 Experiment 1: Testing with Iris Dataset 

 
Distribution of three categories consists of 1(50), 2(50), and 3(50). Table 2 presents 

the experimental result with the Iris dataset. Results from Table 2 shows that Comple-
ment IFART performs best in all sub-tests.  

1 “UCI database,” http://archive.ics.uci.edu/ml/datasetss 
2 “Shape database,” http://cs.joensuu.fi/sipu/dataset 
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Table 2. The percents of successful clustering patterns with Iris dataset. 
#Record OriIFART ComIFART OriFART ComFART EucART K-mean 

30 100 100 100 100 100 100 
60 98.3 100 91.7 100 96.7 100 
90 93.3 96.7 72.2 92.2 90.0 94.4 
120 95.0 95.8 73.3 92.5 90.0 93.3 
150 96.0 95.3 78.7 92.7 90.0 93.3 
 

5.2 Experiment 2: Testing with Spiral Dataset 
 
Distribution of three categories consists of 1(101), 2(105), and 3(106). Data of Ta-

ble 3 show that Original IFART is the best in all sub-tests, excepting the last sub-test 
(smaller 4.1% than the best model  Euclidean ART). 

 

Table 3. The percents of successful clustering patterns with Spiral dataset. 
#Record OriIFART ComIFART OriFART ComFART EucART K-mean 

50 88.0 4.0 4.0 22.0 2.0 44.0 
100 71.0 49.0 37.0 25.0 48.0 22.0 
150 48.0 33.3 25.3 21.3 32.7 16.7 
200 42.5 42.0 29.5 39.0 41.0 32.0 
250 40.4 33.6 27.6 35.2 39.6 32.0 
312 38.5 37.8 33.0 28.2 42.6 32.7 

 

5.3 Testing with Flame Dataset 
 
Distribution of two categories consist of 1(87) and 2(153). Table 4 shows that 

Original IFART is the best in all sub-tests, excepting the last sub-test (smaller 3.3% than 
the best model  Original Fuzzy ART). 

 

Table 4. The percents of successful clustering patterns with Flame dataset. 
#Record OriIFART ComIFART OriFART ComFART EucART K-mean 

50 100 100 100 76.0 88.0 78.0 
100 98.0 87.0 87.0 83.0 94.0 54.0 
150 98.7 87.3 80.7 84.7 94.7 69.3 
200 95.0 76.5 85.5 63.5 74.0 77.0 
240 84.6 66.3 87.9 55.4 63.3 78.3 

 
5.4 Testing with Blance-Scale Dataset 

 
Distribution of three categories consists of 1(49), 2(288), and 3(288). Results from 

Table 5 show that Original IFART is greatly better than other models in all sub-tests (5%, 
24.5%, 30.33%, 22.25%, and 3.2%), excepting the last sub-test (smaller 5.9% than the 
second best model  Original Fuzzy ART). 
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Table 5. The percents of successful clustering patterns with Blance-Scale dataset. 
#Records OriIFART ComIFART OriFART ComFART EucART K-mean 

100 41 37 36 30 10 24 
200 69 44.5 46 42 7.5 25 
300 79.33 49 46.67 43.33 5 27.67 
400 80 57.75 49.75 46.25 17 31.25 
500 67 63.8 57.2 51.2 32.2 28.2 
625 53.6 63.68 59.52 55.52 45.76 33.6 

 
5.5 Testing with R15 Dataset 

 
Distribution of 15 categories is 40 for each category. Data of Table 6 show that 

Complement IFART is equal to the best model (Euclidean ART) in four last subtests and 
lower a bit in two first sub-tests.  

Table 6. The percents of successful clustering patterns with R15 dataset. 
#Record OriIFART ComIFART OriFART ComFART EucART K-mean 

100 96.0 98.0 95.0 98.0 100 100 
200 95.5 95.5 93.5 95.5 96.0 73.0 
300 95.3 95.7 88.3 95.7 95.7 53.7 
400 96.0 96.8 86.8 96.8 96.8 64.0 
500 96.8 97.4 89.4 97.4 97.4 71.2 
600 97.3 97.8 91.2 97.8 97.8 76.0 
 

5.6 Testing with Glass Dataset 
 
Distribution of seven categories consists of 1(70), 2(76), 3(17), 4(0), 5(13), 6(9), 

and 7(29), especially the distribution of the fourth category is 0. Table 7 shows that 
Original IFART is significantly greater than the best model in three last sub-tests (15.3%, 
13.5%, and 12.6%), and sharply lower in two first sub-tests.  

Table 7. The percents of successful clustering patterns with Glass dataset. 
#Record OriIFART ComIFART OriFART ComFART EucART K-mean 

50 16.0 2.0 12.0 12.0 8.0 82.0 
100 49.0 26.0 42.0 25.0 25.0 53.0 
150 56.0 35.3 36.0 40.7 30.7 35.3 
200 53.0 43.5 39.5 33.5 36.5 36.5 
214 55.6 46.3 43.0 37.4 36.9 40.7 

 
5.7 Testing with Wine Dataset 

 
Distribution of three categories consists of 1(59), 2(71), and 3(48). Results from 

Table 8 show that Complement IFART is approximately equal to the best model (K- 
mean).  
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Table 8. The percents of successful clustering patterns with Wine dataset. 
#Record  OriIFART  ComIFART OriFART ComFART EucART  K-mean 

30 100 100 100 73.3 100 100 
60 98.3 98.3 98.3 68.3 98.3 100 
90 83.3 88.9 85.6 64.4 66.7 90.0 

120 76.7 84.2 82.5 60.8 50.0 86.7 
150 77.3 85.3 82.7 64.7 40.7 85.3 
178 77.5 87.6 83.7 69.7 34.3 87.6 
  

5.8 Testing with Jain Dataset 
 
Distribution of two categories consists of 1(276) and 2(97). Data of Table 9 shows 

that Complement IFART is approximately equal to the best model (Complement Fuzzy 
ART). 

Table 9. The percents of successful clustering patterns with Jain dataset. 
#Record OriIFART ComIFART OriFART ComFART EucART K-mean 

100 99.0 100 99.0 100 100 100 
200 99.5 100 99.5 100 57.0 100 
300 96.3 97.7 69.7 100 43.0 100 
373 94.6 94.4 69.2 99.7 47.5 97.9 

 
5.9 Testing with Aggregation Dataset 

 
Distribution of seven categories consists of 1(45), 2(170), 3(102), 4(273), 5(34), 

6(130) and 7(34). Table 10 shows that Complement IFART is lower a bit than the best 
model (Euclidean ART) in previous sub-tests but higher (4.8%) than the best model in 
the last sub-test. 

Table 10. The percents of successful clustering patterns with Aggregation dataset. 
#Record OriIFART ComIFART OriFART ComFART EucART K-mean 

200 98.0 96.5 83.5 83.5 100 81.5 
 400 88.8 91.8 68.3 82.0 98.0 66.3 
 600 83.7 93.0 59.5 84.8 95.5 65.2 
 788 69.2 78.0 51.3 68.3 73.2 52.9 

 

5.10 Testing with Pathbased Dataset 
 
Distribution of three categories consists of 1(110), 2(97), and 3(93). Results from 

Table 11 show that Complement IFART is lower than the best model (K-mean). 
We sum up results from sub-tests of 10 experiments. Table 12 shows the clustering 

improvement of IFART compared to the second best model. 
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Table 11. The percents of successful clustering patterns with Pathbased dataset. 
#Record OriIFART ComIFART OriFART ComFART EucART K-mean 

50 60.0 66.0 54.0 80.0 58.0 78.0 
100 30.0 33.0 27.0 40.0 29.0 50.0 
150 36.7 38.0 28.0 34.0 34.0 60.7 
200 48.0 49.0 21.0 25.5 44.5 64.0 
250 56.8 59.2 34.0 30.8 55.6 71.2 
300 64.0 66.0 45.0 42.3 63.0 76.0 

 

Table 12. Clustering improvement of IFART compared to the second best model. 
Dataset 
Type 

Distribution #Pattern #Category #Attribute
Improvement 

(%) 
1 non-uniform with high level 200-400 2 & 3 2 21-32.6 
2 non-uniform with medium level 150 3 9 15.3 
3 non-uniform with medium level 200-214 7 9 12.6-13.5 
4 non-uniform with high level 500 3 2 9.8 
5 non-uniform with high level 788 7 7 4.8 
6 non-uniform with low level 120-200 2 & 3 2 & 4 2.5-5.3 
7 uniform 90-201 2 3 & 4 1.5-5 
8 non-uniform with medium level 250 3 2 0.8 

 

Five first rows of Table 12 show that IFART improves significantly the ability of 
clustering for complex small datasets. Typically, datasets have features that are non-uni- 
form distribution with high level, small/medium number of categories, small/medium 
number of attributes, and small/medium number of patterns. However, K-mean and Eu-
clid ART sometimes cluster better than IFART for datasets whose density of data is high 
and boundary of categories is clear.    

6. CONCLUSION AND FUTURE WORKS 

In this paper, we propose an improved learning rule that learns from data better. In 
the proposed rule, weights of categories are decreased for each input. The decrease of 
category’s weights depends on the learning parameter. The learning parameter is deter-
mined to reach the highest ability of clustering. We have conducted experiments with 10 
benchmark datasets to prove the effective of the proposed rule. Experimental results 
show that IFART is suitable for complex small datasets. However, IFART clusters lower 
than K-mean or Euclidean ART with some datasets. We will improve important steps of 
IFART to cluster better with all types of dataset in the future. 
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