JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 35, 447-469 (2019)
DOI: 10.6688/JISE.201903_35(2).0012

DSM: A Low-Overhead, High-Performance, Dynamic
Stream Mapping Approach for MongoDB

TRONG-DAT NGUYEN AND SANG-WON LEE’
College of Information and Communication Engineering
Sungkyunkwan University
Suwon, 16419 Korea
E-mail: {datnguyen; swlee}@skku.edu

For write-intensive workloads, reclaiming free blocks in flash SSDs is expensive
due to data fragmentation problem that leads to performance degradation. This paper ad-
dresses that problem in MongoDB, a popular document store in the current market, by
introducing a novel stream mapping scheme that exploits unique characteristics of Mon-
goDB and multi-streamed technology. It dynamically assigns streams for corresponding
writes according to their hotness values and distinguishes writes on primary index files
from writes on secondary index files. The proposed method is high-performance, low-
overhead, and independent of data models or workloads. Empirical results in Linkbench
benchmark show that compared to the original WiredTiger our approach improves the
throughput and reduces the 99th-percentile latency by up to 65% and 46.2% respectively.
Compared to the best-performance in the prior research, our approach improves the
throughput and reduces the 99th-percentile latency by up to 23% and 28.5% respectively.
Distinguishing writes on primary index files from writes on secondary index files en-
hances the throughput and the 99th-percentile latency by up to 11.7% and 15.7% respec-
tively. Moreover, by tuning the leaf page size in B+Tree of MongoDB, we can signifi-
cantly improve the throughput by 1.6x—2.1x in Linkbench.

Keywords: data fragmentation, hot/cold data identification, multi-streamed SSD, NoSQL
database, MongoDB

1. INTRODUCTION

NAND flash Solid state drives (SSDs) perform erase-before-write such that they
erase a non-empty data block before writing new pages on that block [1, 2]. Because
erase operations are orders of magnitude slower than read operations and write opera-
tions [3], flash SSDs write updated data in empty blocks and mark the old data pages as
invalid instead of erasing the current data blocks. Garbage Collection (GC), a component
of Flash Translation Layer (FTL) inside flash SSD, is responsible for reclaiming free
blocks when the number of empty blocks is lower than a threshold. During this process,
if a non-empty data block is selected as a victim for reclaiming, valid pages from that
block need to be copied back to another empty block before the actual erase operation is
done. That leads to increasing the overhead of the reclaiming process. Moreover, NAND
flash blocks have a limited number of erase cycles; Flash FTLs use wear-leveling, a
technique that ensures writes are distributed evenly among flash blocks, to enhance the
lifespan of flash SSD.

The locality of data access has a significant impact on the performance of flash

Received October 10, 2017; revised March 26, 2018; accepted July 10, 2018.
Communicated by Chang-Tien Lu.
* Corresponding author.

447

448 TRONG-DAT NGUYEN AND SANG-WON LEE

memory and its lifetime due to the high-overhead of reclaiming free blocks and wear-
leveling. In practice, IO workloads from clients exist skewness, i.e., a small proportion of
data has frequently accessed [4-6]. That forms the hot logical block addresses (LBAs)
(LBAs have frequently accessed) and the cold LBAs (remain LBAs have less frequently
accessed) which are called in short as hot data and cold data respectively. Data frag-
mentation in flash SSD happens when one physical block includes hot data and cold data
which in turn increase the overhead of reclaiming blocks significantly.

Data fragmentation problem can be solved by identifying hot/cold data either based
on update frequency [7-9] or based on history address information [10]. However, those
approaches need to keep track of metadata in DRAM and high-cost of CPU for identify-
ing hot/cold blocks thus increase the overhead of the system. Min ez al. [11] design a
Flash-oriented file system that groups hot and cold segments according to write frequen-
cies. Park ef al. [12] use a write buffer in the SSD’s controller to improve the perfor-
mance of the system by separating sequential writes from random writes.

With the high volumes and varieties of generated data, not-only SOL (NoSQL) solu-
tions have become the alternatives for traditional RDBMSs [13-17]. Data fragmentation
in DBMSs is a common problem not only in RDBMS but also in NoSQL solutions. For
instance, Cassandra and RocksDB take the log-structured merge (LSM) tree [18] ap-
proach that has different update lifetime for files in each level of the LSM tree. Multi-
streamed SSD (MSSD) technique [4, 5] assign different streams to different file types in
Cassandra, RocksDB, so that writes on the similar update lifetimes can issue on the same
physical data blocks.

In the virtualization environment, data fragmentation exists in flash SSDs when vir-
tual machines have different IO workloads but share the same physical storage devices.
One solution to that problem is that writes from one virtual machine are mapped to the
same stream so that the scheduler can provide the corresponding resource [19].

To the best of our knowledge, there are few works address the data fragmentation
problem in MongoDB [20] — one of the common document stores with WiredTiger [21]
as the default storage engine. Most of the researchers compare RDBMSs with NoSQLs
[22-25], address data modeling transformation [15, 26-29] or improve load-balanced
sharding [30, 31]. Murugesan et al. [32] argue different logging techniques in MongoDB
and propose a simple log management model that is useful for profiling the system.
Based on the unique characteristics of space management in WiredTiger, TRIM com-
mands are used to reduce the overhead of MongoDB [33]. However, TRIM commands
do not entirely solve the data fragmentation [4]. In another research, file-based approach
and boundary-based approach are proposed to address the data fragmentation in Mon-
goDB [34]. However, those methods still have a level of data fragmentation such that
writes from regions with different lifetimes are mapped to the same stream. Also, writes
on primary indexes have different patterns and lifetimes compare to writes on secondary
indexes. The boundary-based method is inadequate to distinguish writes on those two
index types.

To solve those problems, we propose a novel dynamic stream mapping (DSM) that
is an online high-effective stream mapping based on hot/cold values of each data block.
We summarize our contributions as below:

o First, by investigating WiredTiger’s block management in detail and revisiting bound-

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 449

ary-based approach with a complex data model, i.e., Linkbench benchmark [35], we
point out two flaws existing in the approach: (1) writes from regions with different life-
time update are mapped to the same stream, and (2) writes from primary indexes mixed
with writes from secondary indexes.

e Based on this observation, we propose a novel mapping scheme named Dynamic-
Stream Mapping (DSM) that groups writes on corresponding streams based on their
hotness values and separates writes on primary indexes from writes on secondary in-
dexes. In Linkbench, compared to the original WiredTiger, DSM improves the through-
put and the 99th-percentile latency by up to 65% and 46.2% respectively. Compared to
the best-performance method in the prior work, our proposed method enhances the
throughput and the 99th-percentile latency by up to 23% and 28.5% respectively.
Moreover, index filtering gains additional 11.7% and 15.7% improvement in terms of
throughput and 99th-percentile latency respectively.

o Lastly, we combine the leaf page size tuning with DSM. The final results improve the
throughput by 1.6x—2.1x for Linkbench benchmark.

The rest of this paper is organized as follow. Section 2 explains the background of
multi-streamed SSD and MongoDB in detail. We revisit the prior works in Section 3.
Proposed methods and related algorithms are described in Section 4. Section 5 discusses
the evaluation results and analysis. Lastly, the conclusion is given in Section 6.

2. BACKGROUND

This section provides a background of Multi-streamed SSD technique that originally
used in Cassandra and exploited in our proposed method. Also, we briefly introduce the
relationship between the data model in RDBMSs and MongoDB and discuss the block
management mechanism of WiredTiger in detail.

2.1 Multi-Streamed SSD

Multi-streamed SSD is a technique allows applications from the user space or the
kernel space explicitly assign a stream along with a write or pwrite system call. In the
device layer, the FTL writes pages that have the same stream on the same physical SSD
block [5]. Multi-streamed technique requires modifications of both OS’s kernel and the
SSD’s firmware that are available in commercial products [36].

Fig. 1 compares the differences between the regular SSD and the multi-streamed
SSD. Suppose that LBA2, LBA4, LBA6, and LBAS are hot data; LBA1, LBA3, LBAS,
and LBA7 are cold data. There are two write sequences occur on both SSDs. The first
one continuously writes from LBA1 to LBAS and the second one writes only hot data in
the following order: LBA6, LBA2, LBA4, and LBAS. In the normal SSD, after the first
sequence, the LBAs are appended in an empty block in order regardless of hot/cold data
as shown in Fig. 1 (b). After the second write sequence, new LBAs are appended in
block 2 according to their order. The old LBAs are marked as invalid in block 0 and
block 1 as illustrated in Fig. 1 (c). In such case, if block 1 is a candidate for discarding in
the GC processing, there are overheads of FTL for searching a new empty block and
copying two valid LBAs (i.e., LBAS and LBA7) back to the empty block before erasing

450 TRONG-DAT NGUYEN AND SANG-WON LEE

the block 1.

Conversely, in multi-streamed SSD, writes are assigned to corresponding streams
based on their frequency, i.e., hotness value. After the first write sequence, all hot LBAs
are located in block 1, and all cold LBAs are located in block 0 as shown in Fig. 1 (e).
The second sequence appends data in block 2 and marks invalid LBAs as in regular SSD,
but all invalid pages locate in block 1 as illustrated in Fig. 1 (f). Erasing block 1 is fast
because the FTL updates the mapping table without extra cost for searching new empty
block and copying back valid LBAs.

| WriteLBALI~1BA8 |} Write LBAG, LBAZ, LBA4, LBA8
block0 block1l block 2 block0 block1 block2 block0 block1 block 2
LBA1 | | LBAS 1BA1 | | LBAS || LBAG
Normal
palvl * 1BAZ | | 1BAG * a2 | eas QITTE
wns | [“ons | | ens | [imns
LBA4 | | LBAS eas i eas QETY
(@) (b) ©
| Write LBA1, LBA3, LBAS, LBA7 with stream1 Write LBAG, LBA2, LEA4, LBAS
! Write LBAZ2, LBA4, LBA6, LBAS with stream2 with stream2
block0 block1l block2 block0 block1 block 2 block0 block1l block2
LBA1 | | LBAZ a1 | [LIV | 1BAG
MSSD BA3 | | 1BAG * 18A3 | MLV | 1Ba2
LBAS | | LBAG eas | [L0VA | wBAa
LBA7 | | LBASB A7 | | LIVH | BAB
<streaml> <stream2> lestream1> <stream2><stream2>!
(d) (e) ®

[Jvalid [invalid [empty

Fig. 1. Comparison between normal SSD and multi-streamed SSD.

2.2 MongoDB and WiredTiger

MongoDB is a popular document store in NoSQL solutions that shares many char-
acteristics with RDBMS such as secondary index support, transaction processing, and
concurrency control. The data model in MongoDB can be mapped to the one in RDBMS.
Database concepts of both models are similar. Collections, documents, and key-value
pairs in MongoDB are mapped to tables, rows, and columns in RDBMS respectively.

We research the internal block management of WiredTiger in detail to identify the
causes of data fragmentation. WiredTiger keeps the metadata of free pages, allocated
pages, and invalid pages in a special page called checkpoint page. There is only one
checkpoint page is maintained in DRAM (i.e., live checkpoint), the other checkpoint
pages located in non-volatile devices such as disks. WiredTiger flushes dirty pages from
DRAM to disks through either eviction processes of the buffer pool or checkpoint pro-
cesses. WiredTiger neither adopts in-place updates as in traditional RDBMS nor ap-
pend-only approach as in LSM-based DBMS. Upon a write request, the space manage-
ment first searches for a free page to write on. Then after the data page is successfully
written, WiredTiger marks the written page and the old page as valid and invalid respec-
tively. During the checkpoint time, invalid pages are reclaimed and reused in the next
checkpoint.

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 451

(live ckpt)
s oy
Cache loot] (w[e[oe [om]
[y esemapgespapmprppees
@fetch
(a)
(AN cTofe]s[T T T T]
Disk
e oo llive ckpt)
]
Cache E_ A © D’ E | ckpt !
flush
LT T T [Telafefo]e Jon]
Disk

|:| Free l:lAIIocated -lnvalid Checkpoint

page page page
Fig. 2. Reusing data at checkpoint time in WiredTiger.

Fig. 2 illustrates how WiredTiger reuses invalid data at the checkpoint time. When
an updated version of page B (i.e., B) is flushed to disk by an eviction process, the cor-
responding old version of page B is marked as invalid. Other updated pages (i.e., A, C/,
D', and E’) are kept in the live checkpoint in DRAM. Before flushing those pages to disk,
WiredTiger fetches the previous checkpoint page from disk to DRAM (step 1) and
merges its metadata with the metadata of the live checkpoint (step 2) as shown in Fig. 2
(a). Consequently, invalid data of the same pages exist in the current version are re-
claimed and can be reused again after the checkpoint process finished. After the merging
phase, all dirty pages along with the live checkpoint are flushed to disk (step 3) as illus-
trated in Fig. 2 (b).

This approach has two advantages: (1) Avoiding expensive compaction operations
that are popular in LSM-based approaches, and (2) old versions can serve as the backups
used in the recovery process. However, the approach has one drawback such that the
valid data and invalid data of the same page are switched after each checkpoint, which
forms an internal fragmentation in the SSD.

3. FILE-BASED STREAM MAPPING AND BOUNDARY-BASED
STREAM MAPPING

We revisit the prior MSSD-based techniques in this section and argue the flaws in
those methods by researching the IO patterns achieved from blktrace'. Moreover, we
define the requirements that an optimized MSSD method should satisfy.

3.1 File-based Stream Mapping

Typically, different file types in DBMS have different data accessed frequencies and
write patterns. As shown in Table 1, we use workloads with different operations such as
create, read, update, delete (CRUD) from YCSB [37] and Linkbench [35] as in the pre-
vious research [34]. For simple data model in YCSB, workload A (Y-Update-Heavy),
and only update workload (Y-Update-Only) are carried out. For complex data model in
Linkbench, we use original Linkbench workload (LB-Original), mixed operations work-

"Blktrace is a block layer IO tracing tool in Linux that generates traces of the IO traffic on block devices.

452 TRONG-DAT NGUYEN AND SANG-WON LEE

Table 1. The proportions of data written to file types with several of workloads [34].

Operation ratio . Primary 2nd
Benchmark C-R-U-D Collections Indexes Indexes Journal
Y-Update-Heavy 0:50:50:0 93.60 n/a n/a 6.40
Y-Update-Only 0:0:100:0 89.60 n/a n/a 10.40
LB-Original 12:69:15:4 58.60 3.10 37.22 1.08
LB-Mixed 12:0:84:4 66.10 0.50 31.13 2.27
LB-Update-Only 0:0:100:0 67.60 0.02 30.20 2.18

load (LB-Mixed), and only update Linkbench workload (LB-Update-Only). Note that the
table only includes information of most updated file types, the other minor updated file
types, e.g., metadata files, system files, lock files are excluded.

Almost updates from workloads are carried on the collection files and secondary in-
dex files. Because the data model in YCSB has only one collection and one primary in-
dex Y-Update-Heavy and Y-Update-Only do not write on the primary index. For Mon-
goDB systems use SSDs as the storage devices, this asymmetric write in file types forms
the data fragmentation such that frequently written file types (i.e., collection and second-
ary index) are considered as hot data, and the others file types are considered as cold data.
File-based MSSD approach sclves this problem by mapping each file type to a distin-
guish stream. This simple optimization gains moderate improvement of performance;
however, there is another kind of data fragmentation called internal data fragmentation
that is discussed in the next subsection.

3.2 Boundary-based Stream Mapping

To illustrate the internal data fragmentation, we use blktrace while running the LB-
Update-Only workload in two hours to keep track of information of each write command
on the underlying storage device. Fig. 3 shows written patterns of different file types in
the system. The x-axis is the elapsed time in seconds, and the y-axis is the file offset. To
avoid the effect of Operating System’s cache, we enable Direct/O. There are two types of
written patterns: (1) heavy randomly writes that occur on the collection file and second-
ary index file as shown in Figs. 3 (a) and (b) respectively, and (2) sequential writes that
occur in the primary index file and journal file as illustrated in Figs. 3 (c) and (d) respec-
tively. Checkpoint window is the period between a checkpoint and its very next check-
point. Write region (region in short) is the area limited by two logical file offsets (on the
y-axis) and two time-points (on the x-axis), usually is a checkpoint window.

boundary top region checkpoint window bottom region

range1

range2

0

Time

1500 30004500 6000 7500 9000
S

(a) Collection (b) Secondary index
Fig. 3. Write patterns of various file types in WiredTiger with Linkbench benchmark.

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 453

s 60 12000

S 55 éoooow}‘:‘ I

= 50 %8000 || ‘\"‘ “\‘ N “\

% 45 8 6000 ‘H‘ il J‘ u““““““”\ (!

5 5 4000 ||| \f;‘\‘ i “H‘ “‘H‘H\‘
§4o. £ 2000 H\ H‘/“‘\“i ‘ \‘ ““ ‘J“ui“ ‘

3501500 3000_4500 6000 7500 9000 051500 30004500 - 6000 7500 000
Time (s) Time (s)
(c) Primary index (d) Journal

Fig. 3. (Cont’d) Write patterns of various file types in WiredTiger with Linkbench benchmark.

At a given checkpoint window, the amount of data written to the fop region and the
bottom region are asymmetric and switches in the next checkpoint window. For instance,
in Fig. 3 (a), after the first checkpoint, the bottom region has high frequency written than
the top region. Then after the second checkpoint, the trend is reversed such that the top
region receives more writes compared to the bottom.

1: Require: boundary of each collection file and index file has computed
2: Input: file, and offset to write on

3: Qutput: sid — stream assign for this write
4: boundary < getboundary(file)

5: if file is collection then

6 if offset < boundary then

7 sid < COLL_SID1

8 else

9: sid « COLL_SID2

10: else if file is index then

11: if offset < boundary then

12: sid «— IDX SID1
13: else
14: sid < IDX SID2

15: else P Other files i.e., metadata
16: sid < OTHER_SID

Fig. 4. Boundary-based stream mapping algorithm.

We revisit the boundary-based stream mapping approach in Fig. 4 [34]. The input is
a file and file offset to write on. The output is the mapped stream sid. The first step is to
retrieve the boundary of each collection file or index file which is the last file offset at
the end of loading phase (line 4). Then from the rest of the algorithm, the corresponding
stream is assigned to sid based on the input file type. The input file offset is compared
with the boundary to determine whether the write is on the top region or the bottom re-
gion. After stream id is mapped, the write command to the underlying file is given as
posix_fadvise(fid, offset, sid, advice), where fid is file identify, offset is the offset to write
on, sid is stream id mapped and advice is passed as a predefined constant.

Unfortunately, empirical results show that boundary-based approach remains some
flaws in a complicated data model, i.e., Linkbench rather than the simple one as in Y CSB.
Fig. 5 illustrates 1O patterns of different file types using LB-Update-Only workload with
y-axis is the file offset and x-axis is the elapsed time by second. We map writes on col-

454 TRONG-DAT NGUYEN AND SANG-WON LEE

lections to stream] and stream?2, writes on indexes to stream3 and stream4 then represent
four streams by four different colors as shown in Fig. 5 (a). The single-stream view of
streaml (i.e., the bottom regions of collections) and the single-stream view of stream?2
(i.e., the top regions of collections) are shown in Figs. 5 (b) and (c) respectively. Inside
one stream, however, regions of particular files have different written-lifetimes that lead
to another unexpected overlapped writes as shown in Figs. 5 (d) and (e). We named that
phenomenon as cross-region fragmentation.

= _/ﬂ =T — [l stream1 B collectiont
ot ' I { B stream2 B collection2
£1000 | B stream3 I collection3
stream4

1500 3000__4500 6000 7500 9000
Time (s)

(s
(a) Combined-all view.

15 g2

Tl A

= = |

£1000 I

& 800

5 600 ‘

o 400 2 500/

i._: 200 e s _l_
061500 3000_4500 6000 7500 9000 00 1500 3000_4500 6000 7500 9000

Time (s) Time (s)

(b) Bottom regions of collections — by stream view. (c¢) Top regions of collections by — stream view.

g o

1600 | §25°°- (T 1
| = pu' [B
1000 | £1500)

& 800 &

'3 288 c’1000 1
o [@ 500/

e 208- T 0 e

0 1500 3000_4500 6000 7500 9000
Time (s)

0 1500 3000_4500 6000 7500 9000
(s Time (s)

(s
(d) Bottom regions of collections — by collection (e) Bottom regions of collections — by collec-
view. tion view.

Fig. 5. WiredTiger’s write patterns with different views of file types in Linkbench.

Also, as shown in Fig. 3 and Table 1, collection files and secondary index files have
heavy random write patterns while primary indexes have scattered sequential write pat-
terns. Therefore, the sequential writes should map to different streams from randomly
writes. In summary, an optimal stream mapping scheme should satisfy below require-
ments:

. Solve the internal fragmentation of collection files and index files.

. Map writes on primary indexes to different streams from those of secondary indexes,
and collections.

. Solve the cross-region fragmentation.

4. Work independently of various data models (number of collections, primary indexes,

and secondary indexes) and the limitation of the number of streams supported by SSDs.

o -

W

Boundary-based approach satisfies the first and the last requirement, however, suf-
fers from the requirements (2) and (3). The file-based approach maps each file types to

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 455

different streams that solve only the second requirement. There is an extended solution
from the file-based method that maps each physical collection file or index file to a
stream. This approach solves requirements (2) and (3) but becomes impossible when the
number of files is larger than the maximum number of streams that the underlying SSDs
support.

Due to those limitations of current approaches, we introduce a novel stream map-
ping scheme that satisfies all the requirements that discussed in detail in the next section.

4. DYNAMIC STREAM MAPPING

To solve the cross-region fragmentation problem in boundary-based approach, we
propose a novel online stream mapping scheme that classifies all regions of collection
files into K groups based on their hotness values, then assign each group to a distinguish
stream. We adopt the similar stream mapping scheme for all regions of index files.
Moreover, we separate writes on primary indexes from writes on secondary indexes by
using statistical information. Note that it requires the underlying SSDs support at least
2K streams. The hotness value of one region changed after each checkpoint based on
many aspects, e.g., current workload, data model, and cache size. Regardless of those
aspects, our proposed approach dynamically classifies writes on regions into groups ac-
cording to their hotness values and maps groups to corresponding streams. Therefore we
named our proposed method as Dynamic Stream Mapping (DSM). Note that, the bound-
ary-based approach is a particular case of DSM where K is equal to two.

normal Assign streamid based
thread on boundary;
collection information

checkpoint

@l Computehotnéss ‘
&

checkpoint @ ’ Compute pivot points
thread .4

@[Stream mapping
o
@’ Stream prediction

Fig. 6. Overall process of DSM approach.

Fig. 6 illustrates the proposed idea in sequential steps. During normal operations of
an eviction thread (i.e., normal thread), before writing data from the buffer pool to the
storage system, we assign predicted streams to regions based on the boundary of each file.
We then collect statistical information for each collection or index file. When issuing
checkpoints, the system blocks normal threads until the checkpoint process finished. At
the checkpoint time, our proposed method follows the below steps:

Step 1: Computes hotness values for two regions of each file based on statistical infor-

456 TRONG-DAT NGUYEN AND SANG-WON LEE

mation collected previously in the normal thread.

Step 2: For each collection file or index file, computes pivot points that aid to grouping
regions according to their hotness values computed in step 1.

Step 3: Maps streams to regions using hotness values and pivot points computed in steps
1 and 2.

Step 4: For each region, predicts corresponding stream for the next checkpoint based on
current mapped stream in step 3 and predicted-stream in the previous checkpoint.

After remain works of checkpoint process finished, the system resumes the normal
threads. We discuss the detail of each step in the below subsections.

4.1 Stream Assignment at the Normal Thread

We assign streams during the normal thread as in boundary-based method. The al-
gorithm in Fig. 4 is rewritten in Fig. 7. The main differences are in lines 7 and 12 where
the streams file.sid1 and file.sid2 assigned to the top region and the bottom region of each
file are no longer constants but recomputed after each checkpoint. For the first check-
point, the assigned streams are set by initial values. From the second checkpoint, assign-
ment for file.sidl and file.sid2 are done at the checkpoint time that discussed in subsec-
tion 4.4. Statistical information per each region (the number of writes, the lower-bound
offset, and the upper-bound offset of written files) are saved as illustrated at lines 7-9 and
13-15 in DSM algorithm in Fig. 7.

1: Require:
+ boundary of each collection file and index file has computed
+ Predicted-streams for two regions of each file i.e., file.sid1 and file.sid2 are computed
2: Input: file, and offset to write on
3: Qutput: sid - stream assign for this write
4: boundary «— getboundary(file)
5: if file is collection OR file is index then

6: if offset < boundary then

7: sid « file.sidl

8: file.numw] <« file. numwl + 1

9: file.off minl < min(file.off minl, offset)
10: file.off max1 < max(file.off max1, offser)
11: else

12: sid — file.sid2

13: file.numw?2 « file.numw?2 + 1

14: file.off min2 < min(file.off min2, offset)
15: file.off max2 < max(file.off max2, offset)

16: else » Other files i.e., metadata
17: sid < OTHER_SID

Fig. 7. Dynamic stream mapping algorithm (at a normal thread).

4.2 Hotness Computing

In the DSM approach, hotness value of a region is defined as the average number of
writes occur per 4KB data page on that region. Notice that hotness value of writing data

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 457

in one region changed after each checkpoint, so the stream assignment should base on
relative values rather than absolute values. To illustrate the idea, we use Fig. 3 (a) which
is the IO pattern of a collection file as discussed from the previous experiment. For a
given collection file or index file, there is a boundary partition the file into two regions
(i.e., top and bottom) that located by file offsets named rangel and range2 respectively.
For a given region, the writing density is computed as in Eq. (1). numw; is the number of
writes on that region within a checkpoint window, PAGESIZE is set as 4KB.

density; = (numw;/range;) x PAGESIZE)
hotness; = Ig(density/t; — t)) 2)

where i = 1, 2 if writing on top region or bottom region respectively.

Then, we compute the hotness value as in Eq. (2). Note that the checkpoint window
is depended on: (1) type of workload, (2) ratio between cache size and database size, and
(3) data model. Therefore, to eliminate those constraints, we divide the density by the
interval time to get the writing density in a unit of time. Moreover, we adopt logarithmic
scaling to solve the common sub-optimize problem that inspired from the proportional
selection phase in Genetic Algorithm [38]. Fig. A.2 in the Appendix describes the detail
implementation of hotness computing.

4.3 Compute Pivot Points and Stream Mapping

After hotness values of all regions are computed, the next step is to classify all re-
gions of one file type, e.g., collection into K groups. We partition a min-max range into K
— 1 evenly disjoint sections using K — 1 pivot points p;such that: min < p;< max, where 1
<i<K -1, min and max are minimum hotness value and maximum hotness value of all
regions respectively.

The pivot points are computed using Eq. (3). To increase the flexibility of the ap-
proach for various workloads, we use positive-integer weight parameter « by treating the
first group and the last group (the “coldest” group and the “hottest” group) separately
with the remains groups (the “warm” groups). Note that in a particular case when o
equals to K, all groups have equal weight.

p, = min+ (max—min) x (1/ &)
Py = min+(max—min)x ((a —1)/ a) 3)
p; =D +((pe—p)/(k=2))x(j—1), where2<j<K

Next, for a given region, we assign it to a corresponding group according to its Aot-
ness value as described in Eq. (4). Each group, in turn, mapped to a stream id.

group,, min < hotness < p,
group =1 group,, Py < hotness < max . “4)

group,.,, p, <hotness<p, ,1<g<K-2

458 TRONG-DAT NGUYEN AND SANG-WON LEE

The detail implementation for pivot points computing and stream mapping are de-
scribed in Figs. A.3 and A.4 in the Appendix section respectively.

4.4 Stream Prediction

Before writing to a region, we assign a stream id (sid) using posix_fadvise(fid, offset,
sid, advice) command. In order words, we must predict the hot-cold trends for each re-
gion before the writes come. One region is hot in the current checkpoint may remain hot
or reversely become cold in the next checkpoint. For example, Fig. 8 plots write patterns
of link collection and count collection for four hours with LB-Update-Only workload.
The boundaries between two regions are marked as dash lines. In Fig. 8 (a), the hot-cold
trend switches between regions in some first checkpoints then keep on the same trend
after around two hours of executing time. On the other hand, in Fig. 8 (b), the hotness
levels between two regions are almost similar during the execution time except for the
first checkpoint.

400 —— 2500 .
= 350!) — = | 4
—— R RTITITIII
% 250 ! x 1500 {
¥ 20 & {_ 5 THEEE
& 1507 " & 100 | 1
o 100 ¢ i | S 500+ |
L2 50 £ o i i
L o B SR : (i 0 [ITARSEH 1 :
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Time (s) Time (s)
(a) link collection file (b) count collection file

Fig. 8. The difference between hot-cold trends.

We propose a low overhead hot-cold data prediction as described in Eq. (5). cursidl,
cursid2 are current streams assigned to corresponding groups in the previous step. sid; is
the stream finally maps to each region that used for the next checkpoint. The detail of
stream prediction is described in Fig. A.5 in the Appendix section.

d cursidl, sid, == cursidl
sid, =
cursid?2, otherwise %)

where i =1,2

Finally, we summarize all steps of DSM algorithm discussed so far in Fig. 9. Firstly,
we use function ProcessStat(F) (see Fig. A.1 in the Appendix for detail) to extract sup-
ported information from the number of writes on each region and other statistical data
(computed in the normal thread as described in the previous section). Then we compute
hotness values and pivot points in lines 8, 9, and 10 respectively. The for loop from line
11 to line 20 classifies two regions in each collection file or index file into corresponding
groups. Due to primary indexes have different write patterns compare with the secondary
indexes, we handle them separately by using the globalpctl and globalpct2 of each file
that are the percentage of writes on the bottom regions and the top regions respectively
over total writes on all files during a checkpoint. Function ProcessStat(F) describes the
detail of how to compute globalpctl and globalpct2. For a given index file, if there is a

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 459

low-frequency write region (percentage of writes less than the THRESHOLD2) or low-
frequency write on the whole file (total number of writes on two regions less than the
THRESHOLD1) then that index file is considered as a primary index file. The last step
predicts stream for each region of the underlying file at line 21.

1: Require: number of writes on bottom region numw]1 and bottom region numw?2 are com-
puted for each file within the checkpoint

2: Input: F — List of collection files and index files, K — number of groups

3: Output: Stream ids of each collection or index file are mapped

4:CP« » Collection pivot points
5:IP < O » Index pivot points
6: cursidl < cursid2 < nul P streams in current checkpoint
7: ProcessStat(F)

8

: ComputeHotness(F, coll_min, coll_max, idx_min, idx_max)
9: ComputePivots(CP, K — 1, coll_min, coll_max)
10: ComputePivots(IP, K — 1, idx_min, idx_max)

11: for each file f'in F do » phasel: Compute the total writes in a stream id
12: if fis collection then
13: cursidl < MapSIDByHotness(hotnessl, CP, COLL_INIT SID)
14: cursid2 <— MapSIDByHotness(hotness2, CP, COLL_INIT_SID)
15: else » Index files
16: if (globalpctl;+ globalpct2,< THRESHOLD1) OR
(globalpctl ;< THRESHOLD2) OR

(globalpct2,< THRESHOLD?2) then » Primary index
17: cursid2 < cursidl < PRIMARY IDX SID
18: else
19: cursidl < MapSIDByHotness(hotness1y IP, IDX_INIT SID)
20: cursid2 < MapSIDByHotness(hotness2, IP, IDX_INIT SID)

21: PredictStream(f, cursidl, cursid2)
Fig. 9. Dynamic stream mapping algorithm (at a checkpoint thread).

Our proposed DSM approach is low overhead and dynamically adapts to any work-
load, any data model. Firstly, for each collection file or index file, we use a data structure
named mssd-object to capture the statistical information (i.e., number of writes, mini-
mum and maximum write offset) for each region. Because the data model in NoSQL
DBMS is flexibly changed rather than fixed as in RDBMS, we allocate those mssd-ob-
jects dynamically based on the current number of files (i.e., number of collections or
number of indexes). Moreover, during the normal thread, instead of updating statistical
information for each data block as in previous studies, we update on region-based mssd-
objects that have small memory footprint (i.e., lower than 100B). Also, hotness values
and stream mapping are based on relative values (i.e., proportions) rather than absolute
values. Thus our proposed method works independently of the workloads.

5. EVALUATION AND ANALYSIS

This section describes experiment settings, evaluation results of our proposed method

460 TRONG-DAT NGUYEN AND SANG-WON LEE

compared to the original WiredTiger (as the base line) and prior methods. We also ana-
lyze the effectiveness of distinguishing writes on primary index files from writes on sec-
ondary index files as well as the effectiveness of reducing the maximum leaf page size of
collection file as done in the prior research.

5.1 Experimental Settings

To fairly compare our proposed method with file-based approach and boundary-
based approach, we adopt the same experimental setup with the previous research [34].
To enable multi-streamed SSD technique, we use both modified Linux kernel 3.13.11
and customized-firmware Samsung 840 Pro SSD as in [4]. For eliminating network la-
tency, we set up both the client and the server in the same commodity computer with 48
cores Intel Xeon 2.2GHz processor, 32GB DRAM. In the client layer, we use YCSB
0.5.0% and LinbenchX 0.1° (an extended version of Linkbench that support MongoDB)
with diversity workloads as shown in Table 1. The number of documents in YCSB is set
to 23 million, and maxid]l in Linkbench is set to 80 million. All benchmarks are executed
during two hours with 40 client threads. In the server layer, we use a stand-alone Mon-
goDB 3.2.1% server with DirectlO and various cache sizes from 5GB to 30GB. Wired-
Tiger is used as the storage engine with all default settings.

5.2 Multi-Streamed SSD Optimization Evaluation

Table 2 summarizes mapping schemes of all methods. There is no stream mapping
in the original WiredTiger, so all writes are mapped to the default stream O (reserved for
files in the Linux kernel). In the file-based approach, each file type is mapped to a dis-
tinguish stream. In the case of boundary-based approach, all collection files are mapped
to two streams: one for top regions and another for bottom regions. The same mapping
scheme is adopted for index files. In the DSM approach, we use there-group mapping
DSM (i.e., set K equal to 3) with three streams for collection files and three streams for
secondary index files. Writes on primary index files are mapped to a distinguish stream
to writes on secondary index files. There are some important notes:

o Except for the DSM method, the remains map writes on primary index files and writes
on secondary index files to the same stream.

o Writes on metadata files and writes on journal files are mapped to the same stream for
all methods.

e The Samsung 840 Pro SSD support maximum only eight streams from 0 to 7. In the
DSM approach, six streams are used for collection files and secondary index files.
Therefore, writes on journal files and writes on primary index files share the same
stream (i.e., streaml). It is adequate because writes on those files follow lightly se-
quential patterns, hence can be considered as cold data and can be mapped in the same
stream.

2 https://github.com/brianfrankcooper/Y CSB/releases/tag/0.5.0
® https://github.com/Percona-Lab/linkbenchX
* https://github.com/mongodb/mongo/archive/r3.2.1 tar.gz

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB

461

Table 2. Stream mapping schemes in multi-streamed approaches included the original

WiredTiger.
Method Kernel | Metadata | Journal | Primary Index | Collection | 2nd Index
Original 0 0 0 0 0 0
File-based 0 0 1 3 2 3
Boundary-based 0 0 1 4.5 23 4.5
DSM 0 0 1 1 2,3,4 5,6,7
14000 14000 3888 4000 3500
12000 12000 1 4400 3500 3000
L | 4200 3000
10000 10000 4800 - 2500
8000 8000 | 1 3800 25 2000
6000 .| KB 6000 | J 3600 § 2000
i | K 3400 % 1500 1500 r
4000 4000 | 1 3200 i 1] | o i |H
3000 P 3 : 1000 14 b (3
20 25 30 5 15 30
Cache size (GB) Cache size (GB) Cache size (GB) Cache size (GB) Cache size (GB)

(a) Y-Update-Heavy (b) Y-Update-Only (c) LB-Original

(d) LB-Mixed (e) LB-Update-Only

Fig. 10. Throughput of optimized methods compare with the original.

Figs. 10 and 11 show the performance results in terms of throughput and the 99th-
percentile latency improvement respectively. In LB-Original workload, because the ratio
of read operations are high (i.e., 69%) and the data size is approximate 32GB, pages are
frequently fetched in (flush out) to (from) the buffer pool. We set the buffer pool sizes
large enough (i.e., 20GB, 25GB, and 30GB) to keep secondary indexes in DRAM as long
as possible and avoid the performance degradation due to the excessively overhead of
reclaiming free space in the buffer pool. Note that the DSM approach is not carried out in
YCSB benchmark due to its simple data model such that there are a collection file and a
primary index file. DSM in this benchmark is almost similar to the boundary-based

method.
25 T T T T
g 20 Bt & i
3 15 { 3 B
& g H
E 10 1 E i
g 5 1 % %
- |
5 15 30 5 15 30
Cache size (GB) Cache size (GB)
(a) Y-Update-Heavy (b) Y-Update-Only
30 T T T 35 T T
g 25 14 S
g 2r 3
a 15 - a
E 10} E
8 5S¢ s
O K 3
20 25 30 5 15 30
Cache size (GB) Cache size (GB)
(c) LB-Original (d) LB-Mixed
O Original X3 File-based

B Boundary-based

Lat. improv. (%)

5

15 30
Cache size (GB)

(e) LB-Update-Only
m DSM

Fig. 11. Latency of optimized methods compare with the original.

462 TRONG-DAT NGUYEN AND SANG-WON LEE

Empirical results have shown boundary-based approach lost its effectiveness in
solving internal fragmentation problem when the data model becomes complex. In YCSB,
the boundary-based has additional 2.8%—13.1% and 9.73%-20.4% of throughput im-
proved rate compared to the file-based method. However, those gaps become smaller in
Linkbench that are 2.2%-5.8%, 6.5%-9.4% and 5.6%—15% for LB-Original, LB-Mixed,
and LB-Update-Only respectively. There is the same trend with 99th-percentile latency.
Compared to the file-based approach, the boundary-based has additional 3.6%—4.6% and
12.7%—-20.9% improvement rate for Y-Update-Heavy and Y-Update-Only respectively.
With heavily-read workload (i.e., LB-Original), the additional improved rate is similar or
even better than the Y-Update-Heavy with 3.5%-9.8%. However, with heavier write
workloads (i.e., LB-Mixed and LB-Update-Only), the additional rates are 2.1%-3.9%,
and 2.5%—-10% respectively, that are significantly lower than the Y-Update-Only. The
reason is with the complex data model in Linkbench, cross-region phenomenon is domi-
nant thus the boundary-based approach becomes less effective.

Conversely, the DSM approach effectively solves the internal fragmentation and
cross-region fragmentation. Compared to the best-performing method in prior work (i.e.,
boundary-based), DSM improves the throughput by up to 10.8%, 19.2%, and 23%; en-
hances the 99th-percentile latency by up to 8.9%, 21.2%, and 28.5% for LB-Original,
LB-Mixed, and LB-Update-Only respectively. Overall, DSM is the best method, com-
pared to the original WiredTiger, DSM improves the throughput by up to 36.5%, 50.7%,
and 65%; enhances the 99th-percentile latency by up to 27.6%, 31.8%, and 46.2% for
LB-Original, LB-Mixed, and LB-Update-Only respectively.

5.3 Effects of Primary Index Filtering

DSM not only solves cross-region fragmentation but also distinguish writes on pri-
mary index files from secondary index files. Fig. 12 shows the effects of primary index
filtering by using typical DSM and the DSM without primary index filtering, i.e., DSM-
SkipPrildx. The y-axis shows the degradation rate of throughput and latency of a method
compared with the base line method (i.e., DSM). The boundary-based results are include-

100 100

100

° 90 ° 90 P 90 k1
S 8t T 80 S 8}
g 1t g g mnf
P 60 0 QP 60 ; Q 60
[e] 50 o 50 % (] 50
20 25 30 5 15 30 5 15 30
Cache size (GB) Cache size (GB) Cache size (GB)
(a) LB-Original OPS (b) LB-Mixed OPS (c) LB-Update-Only OPS
100 . 100 100
g g £ g € g]
2 2 2
s 80 © 80 © 80 1
=] o o 4
8 70 8 70 2 70
% 60 b] 60 € 60 g g 1
= g i - 5 - g5
20 25 30 5 15 30 5 15 30
Cache size (GB) Cache size (GB) Cache size (GB)
(d) LB-Original 99th latency (e) LB-Mixed 99th latency (f) LB-Update-Only 99th latency
O DSM =3 DSM-SkipPrildx = Boundary-Based

Fig. 12. Effects of primary index filtering in term of throughput and 99th latency.

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 463

ed as the reference. Typically, heavier write workloads have more effective in primary
index filtering. Without primary indexing filtering, the throughput benefit decreases by
up to 5.9%, 9%, 11.7%, and the 99th-percentile latency benefit lost by up to 4.6%, 14.2%,
15.7% for LB-Original, LB-Mixed, and LB-Update-Only respectively. Even though
without primary index filtering, DSM still shows better performance than boundary-
based both on throughput and $9th-percentile latency.

5.4 Leaf Page Size Optimization Evaluation

In this subsection, we further optimize MongoDB by reducing the maximum leaf
page size of collection files (the leaf page sizes of index files are unchanged). To evalu-
ate the impact of leaf page size on the performance of our proposed method, we adopt the
same experiment with the prior research. We setup YCSB benchmark and Linkbench
benchmark using various workloads and cache sizes for 32KB leaf page size (default)
and 4KB leaf page size. For the space limitation in the paper, we only show the through-
put results of the most write-intensive workloads, i.e., Y-Update-Only and LB-Update-
Only as in Fig. 13. Overall, DSM-4KB still is the best method that improves throughput
1.6x-2.1x, and 1.8%48.6% compared to the Original-32KB, and DSM-32KB respec-
tively.

18000 - - - 5000
16000 | . 1 4500 v ?
14000 | 17\ 4000 - \ %
6000 [\ /R ?
4000 | § 2000 é \ ?
2000 - (E N 1500 |- o] i vy
0 N B 1000 e W \ 4
15 30 5 15 30
Cache size (GB) Cache size (GB)
(a) Y-Only-Update (b) LB-Only-Update
3 Original-32KB m DSM-32KB Boundary-based-4KB
x3 File-based-32KB =3 Original-4KB DSM-4KB

e Boundary-based-32KB 3 File-based-4KB
Fig. 13. Leaf page size optimization evaluation of methods with LB-Update-Only.

Small leaf page size optimization is effective in the simple data model in YCSB,;
however, lost its effectiveness in the complex data model in Linkbench. For instance, in
YOnly-Update, the boundary-based method shows significantly improving the through-
put performance by up to 2x—3.3x, but only improves 1.4x—2.1x in LB-Only-Update.

5.5 Discussion

The proposed method is based on the statistic information (i.e., write regions, and
write frequencies) collected during a checkpoint period. Besides, distinguishing data
types (primary index and secondary indexes) from one large data file also aids to im-
prove the performance. Thus, any storage engine which has various data objects contain
inside one large data file and those data objects have different access lifetimes can gain

464 TRONG-DAT NGUYEN AND SANG-WON LEE

benefits from DSM. For instance, DSM can be adopted in InnoDB storage engine in
MySQL that uses one large per-table user tablespace for both primary index and second-
ary indexes and one large system tablespace file for metadata, double write buffer, and
rollback segments.

There is a trade-off between the performance improvement and storage footprint
when reducing the leaf page size of collection files. The database system must fetch a
whole page (usually some KBs) from the storage device to the buffer pool to read a
somebytes record. With the same buffer pool size, the 4KB page system could keep more
cache pages than the 32KB page system, thus reducing more IO accesses and achieving
better performance. However, with the same number of records (i.e., documents), reduc-
ing the leaf page size from 32KB to 4KB lead to increasing number of leaf pages and
internal pages in the B+Tree. Consequently, collection files and index files become larger.
For instance, reducing the leaf page size of collection files from 32KB to 4KB leads to
the database size increases from 51.7GB to 58.4GB (+12.8%) in YCSB, and increases
from 55GB to 108.5GB (approximate double) in Linkbench.

6. CONCLUSION

In this paper, we have discussed data fragmentation in MongoDB as well as the
proposed methods in detail. The file-based method is the simplest one that solves the data
fragmentation due to the different lifetime of writes on file types but remains internal
fragmentation caused by asymmetric regions writing. For the simple data model in
YCSB, the boundary-based approach is adequate to solve the internal fragmentation that
shows good performance improvement. However, it retains cross-region fragmentation
with complex data model in Linkbench. To address that challenge, we extended the
boundary-based method by introducing DSM, a novel low-overhead stream mapping
scheme that dynamically grouping writes on corresponding streams based on hotness
values in each checkpoint period. DSM works independently of data models, workloads,
and the limitation of the number of streams that the physical SSD supported. The number
of groups and other parameters are configurable to gain the best performance. Stream
mapping using primary index filtering in DSM has considerable performance improve-
ment. Moreover, simple data model in YCSB gains more benefits from decreasing B+
tree leaf page size than complex data model in Linkbench. In practical applications, the
data models are complex with many collection files, index files rather than simply as in
YCSB. Our proposed method is adequate for such applications thus it works effectively
regardless of data models or workloads.

In the next research, we plan to evaluate the performance of our proposed method
with emerging multi-streamed SSD devices (i.e., NVMe SSD). We also optimize the
algorithms for distributed environment regard to replica sets and shards.

ACKNOWLEDGMENT

This research was supported by the MSIP (Ministry of Science, ICT and Future
Planning), Korea, under the “SW Starlab” (IITP-2015-0-00314) supervised by the IITP
(Institute for Information & communications Technology Promotion).

10.

11.

12.

13.

14.

15.

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 465

REFERENCES

Y. Deng and J. Zhou, “Architectures and optimization methods of flash memory bas-
ed storage systems,” Journal of Systems Architecture, Vol. 57,2011, pp. 214-227.
J.-U. Kang, J.-S. Kim, C. Park, H. Park, and J. Lee, “A multi-channel architecture
for high-performance NAND flash-based storage system,” Journal of Systems Ar-
chitecture, Vol. 53, 2007, pp. 644-658.

S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim, “A case for flash memory
ssd in enterprise database applications,” in Proceedings of ACM International Con-
ference on Management of Data, 2008, pp. 1075-1086.

F. Yang, K. Dou, S. Chen, M. Hou, J.-U. Kang, and S. Cho, “Optimizing nosql db on
flash: A case study of rocksdb,” in Proceedings of IEEE 12th International Confer-
ence on Ubiquitous Intelligence and Computing, 2015, pp. 1062-1069.

J. Bhimani, J. Yang, Z. Yang, N. Mi, N. K. Giri, R. Pandurangan, C. Choi, and V.
Balakrishnan, “Enhancing ssds with multi-stream: What? why? how?” in Proceed-
ings of IEEE 36th International Conference on Performance Computing and Com-
munications Conference, 2017, pp. 1-2.

. S.-W. Lee and B. Moon, “Design of flash-based dbms: an in-page logging approach,”

in Proceedings of ACM International Conference on Management of Data, 2007, pp.
55-66.

. J. Kim, D. H. Kang, B. Ha, H. Cho, and Y. I. Eom, “Mast: Multi-level associated

sector translation for NAND flash memory-based storage system,” Computer Sci-
ence and its Applications, LNEE Vol. 330, 2015, pp. 817-822.

. T. Jung, Y. Lee, J. Woo, and I. Shin, “Double hot/cold clustering for solid state

drives,” Advances in Computer Science and its Applications, LNEE Vol. 279, 2014,
pp. 141-146.

. D. Park and D. H. Du, “Hot data identification for flash-based storage systems using

multiple bloom filters,” in Proceedings of IEEE 27th Symposium on Mass Storage
Systems and Technologies, 2011, pp. 1-11.

J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang, “Efficient identification of hot data for
flash memory storage systems,” ACM Transactions on Storage, Vol. 2, 2006, pp. 22-
40.

C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom, “Sfs: random write considered
harmful in solid state drives,” in Proceedings of the 10th USENIX Conference on
File and Storage Technologies, 2012, p. 12.

S.-H. Park, J.-W. Park, S.-D. Kim, and C. C. Weems, “A pattern adaptive NAND
flash memory storage structure,” [EEE Transactions on Computers, Vol. 61, 2012,
pp. 134-138.

T. I. Damaiyanti, A. Imawan, F. I. Indikawati, Y.-H. Choi, and J. Kwon, “A similar-
ity query system for road traffic data based on a nosql document store,” Journal of
Systems and Software, Vol. 127,2017, pp. 28-51.

H. Shim, “Phash: A memory-efficient, high-performance key-value store for large-
scale data-intensive applications,” Journal of Systems and Software, Vol. 123, 2017,
pp. 33-44.

Y.-T. Liao, J. Zhou, C.-H. Lu, S.-C. Chen, C.-H. Hsu, W. Chen, M.-F. Jiang, and
Y.-C. Chung, “Data adapter for querying and transformation between sql and nosql

466 TRONG-DAT NGUYEN AND SANG-WON LEE

database,” Future Generation Computer Systems, Vol. 65,2016, pp. 111-121.

16. D. G. Chandra, “Base analysis of nosql database,” Future Generation Computer Sys-
tems, Vol. 52,2015, pp. 13-21.

17. R. Dharavath and C. Kumar, “A scalable generic transaction model scenario for dis-
tributed nosql databases,” Journal of Systems and Sofiware, Vol. 101, 2015, pp. 43-58.

18. P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured merge-tree
(Ismtree),” Acta Informatica, Vol. 33, 1996, pp. 351-385.

19. B. Jun and D. Shin, “Workload-aware budget compensation scheduling for nvme
solid state drives,” in Proceedings of IEEE Non-Volatile Memory System and Appli-
cations Symposium, 2015, pp. 1-6.

20. MongoDB, “Mongodb architecture,” https://www.mongodb.com/mongodbarchitec-
ture, 2017.

21. WiredTiger, “Wiredtiger, making big data roar,” http://www.wiredtiger.com/, 2017.

22. C. Gyorodi, R. Gy6rddi, G. Pecherle, and A. Olah, “A comparative study: Mongodb”
vs. mysql,” in Proceedings of the 13th IEEE International Conference on Engineer-
ing of Modern Electric Systems, 2015, pp. 1-6.

23. S. H. Aboutorabi, M. Rezapour, M. Moradi, and N. Ghadiri, “Performance evalua-
tion of sql and mongodb databases for big e-commerce data,” in Proceedings of
IEEE International Symposium on Computer Science and Software Engineering,
2015, pp. 1-7.

24. C. Bazar, C. S. losif, et al., “The transition from RDBMS to NOSQL. a comparative
analysis of three popular non-relational solutions: Cassandra, mongodb and couch-
base,” Database Systems Journal, Vol. 5, 2014, pp. 49-59.

25. B. Alexandru, R. Florin, and I. A. Laura, “Mongodb vs. oracle-database comparison,’
in Proceedings of the 3rd IEEE International Conference on Emerging Intelligent
Data and Web Technologies, 2012, pp. 330-335.

26. C.-H. Lee and Y.-L. Zheng, “SQL-to-NOSQL schema denormalization and migra-
tion: A study on content management systems,” in Proceedings of IEEE Internation-
al Conference on Systems, Man, and Cybernetics, 2015, pp. 2022-2026.

27. G. Zhao, Q. Lin, L. Li, and Z. Li, “Schema conversion model of SQL database to
NOSQL,” in Proceedings of the 9th IEEE International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing, 2014, pp. 355-362.

28. A. Kanade, A. Gopal, and S. Kanade, “A study of normalization and embedding in
mongodb,” in Proceedings of IEEE International Advance Computing Conference,
2014, pp. 416-421.

29. G. Zhao, W. Huang, S. Liang, and Y. Tang, “Modeling mongodb with relational
model,” in Proceedings of the 4th IEEE International Conference on Emerging In-
telligent Data and Web Technologies, 2013, pp. 115-121.

30. X. Wang, H. Chen, and Z. Wang, “Research on improvement of dynamic load bal-
ancing in mongodb,” in Proceedings of the 11th IEEE International Conference on
Dependable, Autonomic and Secure Computing, 2013, pp. 124-130.

31. Y. Liu, Y. Wang, and Y. Jin, “Research on the improvement of mongodb autoshar-
ding in cloud environment,” in Proceedings of the 7th IEEE International Confer-
ence on Computer Science and Education, 2012, pp. 851-854.

32. P. Murugesan and I. Ray, “Audit log management in mongodb,” in Proceedings of
IEEE World Congress on Services, 2014, pp. 53-57.

i

33.

34.

35.

36.

37.

38.

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 467

T.-D. Nguyen and S.-W. Lee, “I/o characteristics of mongodb and trim-based opti-
mization in flash ssds,” in Proceedings of the 6th ACM International Conference on
Emerging Databases: Technologies, Applications, and Theory, 2016, pp. 139-144.
T.-D. Nguyen and S.-W. Lee, “Optimizing mongodb using multi-streamed ssd,” in
Proceedings of the 7th International Conference on Emerging Databases: Techrolo-
gies, Applications, and Theory, 2017, pp. 1-13.

T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan, “Linkbench: a
database benchmark based on the facebook social graph,” in Proceedings of ACM
International Conference on Management of Data, 2013, pp. 1185-1196.

Samsung, “Multi-stream technology,” http://www.samsung.com/semiconductor/in-
sights/article/25465/multistream, 2016.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmark-
ing cloud serving systems with ycsb,” in Proceedings of the 1st ACM symposium on
Cloud computing, 2010, pp. 143-154.

D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes used in
genetic algorithms,” Foundations of Genetic Algorithms, Vol. 1, 1991, pp. 69-93.

Trong-Dat Nguyen received the M.S. degree from the School
of Computer Science and Engineering, Kyungpook National Univer-
sity, Korea, in 2014. He is currently working toward the Ph.D. deg-
ree at Sungkyunkwan University, Suwon, Korea. His research in-
terests include NoSQL DBMSs, and flashbased database technology.

Sang-Won Lee received the Ph.D. degree from the Computer
Science Department, Seoul National University, Korea, in 1999. He
is a Professor with the College of Information and Communication
Engineering, Sungkyunkwan University, Suwon, Korea. He was a
Research Professor at Ewha Womans University and a technical staff
at Oracle, Korea. His research interest includes flash-based database
technology.

APPENDIX

Fig. A.1 describes the algorithm of processing the statistical information. The total

number of writes for each region is computed as in the first for loop in line 4 — 10. For a
given file, numwl, and numw2; are numbers of writes in regionl and region2 of that file
respectively. In the second for loop, the global percentage of each region (globaipct], or
globalpct2) is computed which is used for distinguishing primary index from secondary
index.

468 TRONG-DAT NGUYEN AND SANG-WON LEE

Fig. A.2 is the detailed implementation of computing density value and hotness
value as described in Egs. (1) and (2) respectively.

1: function PROCESSSTAT(F) W Processing statistical data for each file i.e., hotness
value, global percentage of write

2: coll_count2 < coll_countl < 0

3: idx_count2 < idx_countl < 0

4: for each file f'in F do » phasel: Compute the total writes
5 if f'is collection then

6: coll_countl < coll_count] + numwl,

7 coll_count2 < coll_count2 + numw2;

8 else

9: idx_countl < idx_countl+numwl,

10: idx_count2 < idx_count2+numw2;

11: for each file f'in F do » phase2: Compute the hotness
12: if fis collection then

13: globalpctly < numwlg/coll_countl * 100

14: globalpct2y < numw2g/coll_count2 = 100

15: else

16: globalpctl; <~ numwl/idx_countl * 100

17: globalpct2; < numw2,/idx_count2 * 100

Fig. A.1. Algorithm of processing statistical information.

1: function COMPUTEHOTNESS (F, coll_min, coll_max, idx_min, idx_max)

» Processing statistical data for each file i.e., hotness value, global percentage of write
2: for each file fin F do » phase2: Compute the hotness
3: //Number of 4KB page writes on each range in a unit of time
4: densityl <— (numwly; * 4096)/rangel /(12—t1)
5: density2 < (numw2, *4096)/range2,/(t2—t1)
6 hotnessl; <« lg(densityl/t)
7 hotness2; <« Ig(density2/t)
8 if fis collection then

9: coll_min < min(coll_min, hotness1, hotness2y)
10: coll_max < max(coll_max, hotness1;, hotness2;)
11: else

12: idx_min < min(idx_min, hotness1,, hotness2,)
13: idx_max < max(idx_max, hotnessly, hotness2;)

Fig. A.2. Algorithm of computing hotness.

Fig. A.3 is the detailed implementation of Eq. (3). Remind that alpha is the positive
integer. The first and the last pivot point are computed as in line 2 and line 3 respectively.
Then other pivot points are computed in the for loop in lines 5-6.

We describe the detailed implementation of Eq. (4) in Fig. A.4. For a given region,
we find the pair of pivot points such that pivots; < hotness < pivots;;,, then assign the
corresponding stream sid to that region in line 3, 5, and 9.

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 469

Fig. A.5 describes the detailed implementation of Eq. (5). For a given file, if the
current computed stream e.g., cursidl is same with the predicted stream in the previous
checkpoint (sid1g.), it means the hot-cold trends is unchanged then the predicted stream
for next checkpoint is kept same as before. Otherwise, we map that region to the other
stream (cursid2).

1: function COMPUTEPIVOTS (pivots, n, min, max)
2: pivots[0] <« min + (max—min)/a

3: pivots[n—1] < mint(max—min)*(a—1)/a

4: step < (pivots[n—1]— pivots[0])/(n—1)

S:for i<« 1to(n—2)do

6: pivots[i] < pivots[0]+ step * i

Fig. A.3. Algorithm of computing pivot points.

1: function MAPSIDBYHOTNESS(hotness, pivots, n, initsid)

2: if hotness < pivots[0] then » the most left
3: sid <« initsid

4: else if pivots[n—1] < hotness then » the most right
5: sid < initsid + n

6: else

7: Find the pivot point; in array pivots such that:
8: pivots(j] < hotness < pivots[j + 1]

9: sid < initsid + (j + 1)

10: return sid

Fig. A.4. Algorithm of mapping SID by hotness.

1: function PREDICTSTREAM(file, cursidl, cursid2)

2: if sidl;, == cursidl then » the hot-cold trend is same, do not swap
3 sid 1y, < cursidl

4: else

5: sid 1, < cursid2

6: if sid2, == cursid2 then » the hot-cold trend is same, do not swap
7 Sid2 47, < cursid2

8: else

9

sid2p, < cursidl

Fig. A.5. Algorithm of stream prediction.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

