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It is a challenging problem to preserve friendly-correlations between individuals 

when publishing social network data. To alleviate this problem, uncertain graph has been 
presented recently. The main idea of uncertain graph is converting an original graph into 
an uncertain form, where the friendly-correlations of the graph are associated with proba-
bilities. However, the existing methods of uncertain graph lack rigorous guarantees of pri-
vacy and rely on the assumption of adversary’s knowledge. In this paper, we introduced a 
general model for constructing uncertain graphs. Then, we proposed an Uncertain Graph 
based on Differential Privacy algorithm (UGDP algorithm) under the general model 
which provides a rigorous privacy guarantee against powerful adversaries, and we define 
a new metric to measure privacy for different algorithms. Finally, we evaluate some un-
certain algorithms in privacy and utility, the result shows that UGDP algorithm satisfies 
edge-differential privacy and the data utility is acceptable. The conclusions are that the 
UGDP algorithm has better privacy preserving than the (k, )-obfuscation algorithm, and 
better data utility than the RandWalk algorithm.  
 
Keywords: social network data, data-correlations, privacy preserving, uncertain graph, 
differential privacy 
 
 

1. INTRODUCTION 

With the fast development of social networks, people can make friends and share 
their mood state whenever and wherever to enhance their friendship on social software, 
and their activities on social software accumulated large amounts of personal privacy 
data. However, when people are enjoying the convenience of social network, people’s 
sensitive information was exposed, such as personal account, password and social corre-
lations. LinkedIn, a well-known users’ friendly-correlations network, which suffered a 
massive data breach accident in 2012. Almost after four years, a hacker under the nick-
name “Peace” is offering for sale what he/she claims to be the database of 167 million 
emails and hashed passwords, which included 117 million already cracked passwords, 
belonging to LinkedIn users [1], the correlations about users’ were leaked. Therefore, 
how to provide the convenience to users while protecting their privacy is a challenging 
problem of social networks. 

The process of privacy preserving in social networks has three steps which can be 
seen in Fig. 1. The first step is data processing, the data collector stores user behavior 
data in a dataset then they convert those data into network graph data. There exists dif-
ferent kinds of privacy preserving approaches in second step, researchers use different 
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methods to manipulation data, for example, uncertain graphs is a method that injects 
probability to every edge of graph. The third step is publishing protected data, the re-
leased data are perturbation values after privacy preserving approaches, for example, 
each edge in uncertain graph is a probability value rather than an exact value. 

 

Fig. 1. The process of privacy preserving. 
 

In order to better study the privacy of social network, researchers abstract the social 
network as a graph where nodes represent individuals and edges between nodes repre-
sent the correlations between individuals. And to preserve privacy in social network, 
several methods have been proposed, which can be summarized into five main categories: 
(1) Methods that remove the identities of the nodes before publishing the actual graph or 
replace the identities of the nodes with synthetic identities; (2) Methods that modify(add, 
delete or switch edges/nodes) the graph; (3) Methods that generalize vertices and edges 
into partitions as super-vertices and super-edges; (4) Methods that inject uncertainty into 
the graph; (5) Methods that provide privacy-aware computation [2] like differential pri-
vacy. In this paper, we discuss uncertain graph methods. 

The uncertain graph methods have exploited the semantics of graphs to preserve 
privacy. The main idea is to convert a deterministic graph into an uncertain form. For a 
more intuitive understanding of the uncertain graph, we give an example, as illustrated in 
Fig. 2. Fig. 2 (a) is an original graph, Fig. 2 (b) is an uncertain graph obtained by the trans- 
formation and modification of the original graph, and each edge of the graph is accom-
panied by a corresponding probability. We assume that the probabilities of edges are 
independent. When the uncertain graph (b) is released, due to the uncertainty of the edg-
es, the probability of the attacker getting the original structure is equal to p, where p = 
0.9*0.8* 0.8*0.6*(10.7)*(10.1) = 0.09. Therefore, the released uncertain graph can 
achieve privacy preserving for the original graph. 

 

  
(a)                         (b) 

Fig. 2. An example of an uncertain graph. 
 

According to different ways of injecting uncertainty into the original graph, uncer-
tain graph methods can be summarized as (k, )-obfuscation algorithm [3], Rand-Walk 
algorithm [4], Maximum Variance algorithm [5], Maximum Variance algorithm based on 
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uncertain adjacency matrices [6]. However, those methods lack rigorous guarantees of 
privacy and rely on the assumption of adversary’s knowledge adversaries can attack it by 
malicious background knowledge.  

Differential privacy is proposed in [7] to solve the problem of privacy leaked on 
database by Dwork, which provides a rigorous privacy guarantee against powerful ad-
versaries. It provides a quantifiable way for the privacy level and makes the privacy pro-
tection comparable with different privacy budgets. Soon afterwards, researchers applied 
differential privacy to preserve privacy of graph data. 

In this paper, we extend our work [8] and introduce a model to explain the main 
idea of uncertain graph. Under the model, an algorithm based on edge-differential priva-
cy is proposed, which provides an efficient, rigorous and quantifiable way for the priva-
cy level of uncertain graphs. The algorithm is proved to satisfy edge-differential privacy. 
Meanwhile, in order to compare privacy directly between different algorithms, we define 
edge-entropy to measure algorithm’s privacy. 

1.1 Our Contribution 

In this paper, the main contributions are as follows: 
 
(1) We abstract the process of converting an original graph into an uncertain form as a 

model and give a brief overview of the model. 
(2) We present a UGDP algorithm under the model, and we analyze the privacy and util-

ity of the algorithm. The algorithm is proved to satisfy edge-differential privacy and 
the data utility of UGDP algorithm is acceptable. 

(3) We define edge-entropy to compare privacy between different algorithms. 

1.2 Paper Outline 

The structure of this paper is organized as follows. Section 2 described related work 
about privacy preserving methods in social networks. The preliminaries were introduced 
in Section 3. Section 4 discusses the model and algorithm we proposed. Section 5 out-
lines algorithm analysis in two aspects, privacy analysis and utility analysis. Finally, we 
summarized the paper in Section 6. 

2. RELATED WORK 

As we already mentioned above, methods for preserving privacy in social networks 
can be broadly classified into five categories: simple anonymization, edge and node 
modification, generalization approaches, uncertain graph, differential privacy. 

In the simple anonymization, the method attempts to break the correlation between 
the real-world identity and sensitive data. In 2007, Backstrom [9] pointed out that the 
simple anonymization by removing the identities of the nodes before publishing the ac-
tual graph or replace the identities of the nodes with synthetic identities does not always 
guarantee privacy. 

In the edge and node modification methods, there are two kinds of implementation 
ways including random perturbation and constraints perturbation. In the random pertur-
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bation way, Hay [10] proposed a random perturbation technique by distorting structural 
features which is easy to operate, however the central nodes can also be re-identified 
easily. Casas-Roma in [11] proposed an algorithm for randomization on graphs with 
considering the edge’s relevance. This method achieves a better trade-off between data 
utility and privacy level. In the constrained perturbation way, the notion of k-degree an-
onymity was proposed in [12] and Liu devised an edge swap algorithm to construct a k- 
degree anonymous network. On the basis work of Liu, several enhanced approaches 
have been proposed. A greedy algorithm was proposed in [13] which is more effective 
than the algorithm proposed by Liu on large real graphs. 

In the generalization approaches, Hay [14] applied structural generalization ap-
proaches using the size of a partition to ensure node anonymity. Stokes and Torra [15] 
proposed two methods for graph partitioning using the Manhattan distance and the 2- 
path similarity as measures to create the clusters which group vertices into partitions of k 
or more elements. 

In the uncertain graph methods, Boldi in [3] introduced the concept of (k, )-obfus- 
cation where k is the desired obfuscation level and  is a tolerance parameter, and pro-
posed an anonymization approach based on injecting uncertainty. This approach has high 
impact on node privacy by pursuing minimum standard deviation , whereas, a re-identi- 
fication attack like rounding techniques can easily reveal the true graph. A RandWalk 
algorithm was introduced by Mittal in [4] to construct the uncertain graph. This method 
suffers from high lower bounds for utility error despite its excellent privacy-utility trade- 
off. An approach that not only provides better tradeoff between privacy and utility, but 
also describes a quantifying framework for graph anonymization based on Maximum 
Variance was introduced by Nguyen in [5]. The same authors proposed a second ap-
proach [6] that adopted a generalized obfuscation model based on uncertain adjacency 
matrices and kept expected node degrees equal to those in the original graph. 

In differential privacy, when researchers applied differential privacy to graph data, 
two variants of differential privacy were introduced: edge-differential privacy and node- 
differential privacy [16]. Hay [16] presented an efficient algorithm based on differential 
privacy for releasing the degree distribution of a network, which provides extremely ro-
bust protection, even against powerful adversaries. In node-differential privacy, some 
algorithms independently about releasing one real-valued statistic in realistic graphs 
were first presented by Blocki [17], Kasiviswanathan [18] and Chen and Zhou [19]. Day 
[20] proposed two approaches based on aggregation and cumulative histogram to publish 
the degree distribution under node-differential privacy. In edge-differential privacy, 
Karwa [21] presented an efficient algorithm which satisfied edge differential privacy for 
releasing useful statistical value about graph data while providing rigorous privacy 
guarantees. Li [22] presented the MB-CI strategy to protect weighted social graphs. The 
results showed that the MB-CI strategy improved the accuracy and utility of the released 
data. 

3. PRELIMINARIES 

Let G = (V, E) be an undirected graph, where V is the set of vertices and E is the set 
of edges. VP denote the set of all Cn

2 unordered pairs of nodes from V, that is, VP = {(vi, vj) 

| 1  i < j  n}. 
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Definition 1 (Uncertain graph [3]): Given a graph G = (V, E), an uncertain graph on 
the vertices of G is a pair G = (V, P), where P: VP  [0, 1] is a function that assigns 
probabilities to unordered pairs of vertices. 

The uncertain graph G have the same vertices V of the original graph G. For deter-
ministic graphs, we can assume that the probabilities of all edges are equal to 1. 
 
Definition 2 (Neighboring graph [16]): Given two graphs G1 = (V1, E1) and G2 = (V2, 
E2), G1 and G2 are neighbors if |V1V2|+|E1E2| = 1, where  is Exclusive  OR 
operation. 

In this paper, we use Hamming distance to define neighboring graphs. Supposing 
V1 = V2, Definition 2 can be described as that G1 and G2 are neighbors if |E1E2| = 1, 
that is, the Hamming distance between G1 and G2 is 1. 

 

 
(a)              (b) 

Fig. 3. An example of the neighboring graphs. 
 

An example of neighboring graphs is shown in Fig. 3. Fig. 3 (a) is the original graph; 
according to the definition of the neighboring graphs we can say that Figs. 3 (a) and (b) 
are neighboring graphs. 
 
Definition 3 (Sensitivity): For any identity mapping f: G  G the sensitivity of f is 

 
f = maxG1,G2||f(G1)  f(G2)||1, 

 
where G1 and G2 are neighbors. 

In this paper, f is used to query the changes of edges in graph. So, in Fig. 3, the val-
ue of f is 2. 

Due to there is a symbol conflict between the parameters in (k, )-obfuscation algo-
rithm and privacy budget  of differential privacy, we use 1 to denote the privacy budget 
of differential privacy that appears in the following content. 
 
Definition 4 (Differential Privacy): A randomized algorithm A satisfies 1-differential 
privacy if for all S  Range(A), the following holds: 
 

Pr[A(G1)S]  exp(1)  Pr[A(G2)S]  
 
where G1, G2 are neighbors and 1 is a parameter for privacy level. 

The way to satisfy differential privacy is to add noise to the output of a query. The 
laplace mechanism provides a solution to handle numeric queries and the exponential 
mechanism can be applied whether a functions output is numeric or not. In our paper, we 
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use laplace mechanism to achieve differential privacy. The definition of laplace mecha-
nism is as follows. 

Laplace distribution is shown in Eq. (1), 

1 | |
( ) exp( ).

2

x
g x

b b


   (1) 

where  denotes mean parameter, b is a scale parameter and x is a random variable. The 
cumulative distribution of laplace distribution can be seen in Eq. (2). 

( ) ( )
iy

iF y g x dx


   (2) 

Definition 5 (Laplace Mechanism): Given any identity mapping f: G  G, algorithm A 
satisfies 1-differential privacy if the following holds: 
 

A(G) = f(G)+Lap(f/1).  
 
where Lap(f/1) can be seen in Eq. (2) and  = 0, b = Δf/1. The way by adding laplace 
noise to achieve differential privacy is known as the laplace mechanism. 
 
Definition 6 (Post-Processing): Let A: G  G be a randomized algorithm that satisfies 
1-differential privacy. Let K: G  G be an arbitrary randomized mapping. Then K◦A is 
1-differential privacy. 

In Definition 6, G is a noise graph which satisfies 1-differential privacy. 

4. MODEL AND ALGORITHM 

In this section, we first introduce the model of constructing uncertain graphs in de-
tail. Second, we propose an algorithm under the model, meanwhile, we outline our algo-
rithm and give an example to understand our algorithm. Finally, we define edge-entropy 
to compare privacy between different algorithms. 

4.1 A Process Model of Uncertain Graphs 

First of all, we abstract a model (see Fig. 4) to explain the main idea of uncertain 
graph, that is, the process of converting a determinate graph into an uncertain form. 

 

 
Fig. 4. The model of constructing uncertain graphs. 



UNCERTAIN GRAPH BASED ON EDGE-DIFFERENTIAL PRIVACY 827

The model contains three parts. The first part is an original graph. The last part is an 
uncertain graph. The middle part is some kind of transformations, which are the main 
part of this model. Different kinds of algorithms can be proposed to construct uncertain 
graphs, such as (k, )-obfuscation algorithm and RandWalk algorithm. In order to sup-
port our model, we propose an Uncertain Graph based on Differential Privacy (UGDP) 
algorithm. 

4.2 UGDP Algorithm 

In order to better understand the UGDP algorithm we proposed, we refine the model 
of section 4.1 which can be seen in Fig. 5. 

 
Fig. 5. The UGDP algorithm. 

 

Algorithm 1: UGDP algorithm 
Input: G = (V, E), sensitivity f and privacy budget 1 
Output: G = (V, P) 
UGDP(G, 1, f) 
1:  bf/1 
2:  for ei in E: 
3:     yiLap(b) 
4:     while yi < 0: 
5:        yiLap(b) 
6:     Pr[yi]F(yi) 
7:     piPr[yi] 
8:     adding pi in P 
9:  end 
10: Return G = (V, P) 

In Fig. 5, we can see that the model of UGDP algorithm has two parts. Firstly, we 
use laplace mechanism to generate a noise graph from an original graph which satisfies 
differential privacy. Then we obtain an uncertain graph via cumulative distribution (Eq. 
(2)) of noise values yi in noise graph.  

We describe the UGDP algorithm in four steps; (1) We achieve differential privacy 
using laplace mechanism and use Y = (y1, y2, ..., yi, ..., yN) to denote the noise value 
which generated through laplace mechanism where N denotes the number of edges in a 
graph; (2) A noise yi corresponds to probability pi where pi  P, and pi = Pr[yi] = F(yi) 
(see Eq. (2)); (3) We add probability pi to the edges of G; (4) We get G = (V, P) as a 
output of the algorithm where G is an uncertain graph. 

The UGDP algorithm can be seen in Algorithm 1. The inputs of UGDP algorithm 
are an original graph, sensitivity f and privacy budget 1. The scale parameter b in la-
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place distribution is f/1 which is outlined in line 1. Lines 3-5 generate the noise value 
by laplace distribution, which satisfy edge-differential privacy. Lines 6-8 calculate the 
probability value corresponding to the noise value according to Eq. (2), and gets a set of 
probability values for each edge of the graph. Finally, UGDP algorithm returns an un-
certain graph in line 10, whose edges are assigned with the probability values. 

In order to understand our algorithm intuitively, we give an example of the con-
struction process for uncertain graphs. For example, we suppose that Fig. 6 is a real per-
sonal relationship network. From Fig. 6, we can know that v1 has three friends v2, v4 and 
v5. But in some time, v1 doesn’t want others to know his or her personal relationship, 
therefore, in order to protect the personal relationship of v1, we can use UGDP algorithm. 
The algorithm applied to Fig. 6 including the two steps. First, we add noise to Fig. 6 and 
we request that this step is to satisfy differential privacy. Second, we use the post pro-
cessing of differential privacy and transform noise personal relationships into an uncer-
tain form. 

So, Fig. 7 is the first step which shows the process of adding noise to the original 
graph by differential privacy. Fig. 8 is the second step which shows the process of cal-
culates the probability value corresponding to the noise value by using Eq. (2), and con-
verts a noise graph to an uncertain graph. 

 
Fig. 6. An example of personal relationship network. 

 

 
Fig. 7. The process of converting an input graph to a noise graph. 

 

 
Fig. 8. The process of converting a noise graph to an uncertain graph. 

4.3 Edge-entropy 

Information entropy is used to measure the amount of information in the infor-
mation theory. The more ordered a system is, the lower the information entropy is, on the 
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contrary, the more unordered a system is, the higher the entropy of information is. Due to 
the probabilities of edges in uncertain graphs are stochastic, edge-entropy is introduced 
to measure the privacy of an algorithm. We use edge-entropy to measure the uncertainty 
of uncertain graphs, that is to say, the privacy level of uncertain graphs. The definition of 
edge-entropy is as follows: 

' ii
e ee G

Ent I


    (3) 

where Iei can be seen in Eq. (4). 

2( ) log ( )
ie i iI p e p e     (4) 

where eiG and p(ei) is the probability of the edge ei. 
The greater Ente value, the better privacy level of uncertain graphs, at the same time, 

it means a better privacy algorithm. 

5. ALGORITHM ANALYSIS 

In this section, we outline the dataset firstly. Then, we analyze our algorithm in pri-
vacy. Finally, we analyze our algorithm in utility. 

5.1 Dataset 

The experiment data contains two parts, one is the real data sets; the other is the 
synthetic data sets. The real data sets contain Face-book data with 4039 nodes and 63731 
nodes, Enron email network with 36692 nodes and DBLP with 317080 nodes. DBLP is a 
network of co-authors, and if two authors publish at least one paper together, they will be 
connected. The synthetic data sets are ER graphs with the number of nodes 200 and 500. 
The UGDP algorithm, (k, )-obfuscation algorithm and RandWalk algorithm are imple-
mented in Python and run on a lenovo computer with the Microsoft Windows 7 operat-
ing system, Intel Core i5-4590@ 3.30GHz and 12GB memory. 

5.2 Privacy Analysis 

There are two parts in this section. Firstly, we prove UGDP algorithm satisfied 
edge-differential privacy. Then, we use edge-entropy to evaluate the privacy in UGDP 
algorithm graph , (k, )-obfuscation algorithm graph and Rand-walk algorithm graph. 

5.2.1 Differential privacy analysis 

We give a theorem to illustrate that UGDP algorithm satisfies edge-differential pri-
vacy (see Theorem 1). 
 
Theorem 1: UGDP algorithm satisfies 1-edge-differential privacy. 
 
Proof: Let f() be some identity mapping f: GG. G1, G2 are neighbors and the Ham-
ming distance between G1 and G2 is 1. Let PG1 denote the probability density function 



JING HU, JUN YAN, ZHEN-QIANG WU, HAI LIU AND YI-HUI ZHOU 

 

830

 

of UGDP (G1, f, 1), and PG2 denote the probability density function of UGDP (G2, f, 1). 
G3 is the noise graph obtained during the UGDP algorithm. 

We use pi ~ yi to denote the correlation of the probability and noise. Due to the post- 
processing (see Definition 6) technique of differential privacy, we can know that the 
process of converting a noise graph into an uncertain graph satisfies 1-edge-differential 
privacy. So, in order to prove that UGDP algorithm satisfies 1-edge-differential privacy, 
we only need to prove that the process of converting an original graph into a noise graph 
satisfies 1-edge-differential privacy. The proof process is as follows. 

Therefore, UGDP algorithm satisfies 1-edge-differential privacy. The smaller pri-
vacy budget 1, the wider range of the noise value, therefore, we can get better privacy 
preserving for data. 
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5.2.2 Privacy comparisons 

In order to evaluate the different algorithms in the privacy preserving, we use edge- 
entropy to measure the algorithm’s privacy. The greater edge-entropy value Ente, the 
better privacy algorithm. The experimental data were obtained after averaging many 
times. 

 
Table 1. The edge-entropy values in different algorithms. 

       n 
1 or k or t 

n = 200 n = 500 n = 4039 n = 36692 n = 63731 n = 317080 

1 = 0.01 1157.59 7209.02 25672.40 53477.33 237742.05 305509.78 

1 = 0.1 1137.84 7207.07 25664.06 53510.07 237789.76 305497.12 

1 = 1 1184.55 7212.45 25685.42 53499.91 293354.40 376956.78 

k = 10 35.35 221.36 698.99 1395.07 6252.51 7804.91 

k = 20 33.42 225.57 697.56 1413.62 6202.99 7871.24 

t = 5 1959.27 12303.99 42459.23 79936.99 385147.79 398336.13 

t = 10 1932.32 12285.31 42347.47 79670.20 385047.41 398308.81 
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For those three uncertain algorithms, due to the combinations of different parame-
ters, there may be exist many possible uncertain graphs. In (k, )-obfuscation algorithm, 
we consider two obfuscation levels where k belongs to {10, 20}, and we give other pa-
rameters as follows, tolerance parameter  = 0.1, multiplier factor c = 1, white noise q = 
0.01. In Rand-Walk algorithm, the parameter t indicates the size of noise. The parameter 
1 is the privacy budget in UGDP algorithm. 

The comparisons can be seen in Table 1. In Table 1, the first to the third row shows 
the edge-entropy values of UGDP algorithm graph, the fourth line to the fifth row shows 
the edge-entropy values of (k, )-obfuscation algorithm graph and the sixth line to the 
seventh row shows the edge-entropy values of Rand-walk algorithm. As the number of 
nodes increase, we can see that the edge-entropy values also increase, which indicates 
that the uncertainty of the graph is increasing, that is, the more uncertainty are injected in 
graph. In UGDP algorithm, owing to the randomness of the laplace distribution, the pro- 
babilities injected to the edges are also randomness. Therefore, the privacy preserving of 
the original graph measured between edge-entropy and differential privacy does not 
necessarily go all the way. What we can see in Table 1 is that the value of edge-entropy 
in UGDP algorithm graph is bigger than (k, )-obfuscation algorithm graph in same da-
tasets, and in addition, the edge-entropy of Rand-Walk algorithm is the largest in three 
algorithms. 

According to the definition of edge-entropy, we can conclude that UGDP algorithm 
has better privacy preserving than (k, )-obfuscation algorithm, but is weaker than Rand- 
Walk algorithm. 

5.3 Utility Analysis 

There are two parts in this subsection. Firstly, we define some utility metrics to 
measure the data utility of the original graphs and uncertain graphs. Then, we use those 
metrics to evaluate the data utility in UGDP algorithm, (k, )-obfuscation algorithm and 
Rand-walk algorithm. 

5.3.1 Utility metrics 

Following [3] and [6], we use NE, AD and DV to measure the utility of our algo-
rithm where NE denotes the number of edges in graph, AD denotes the average degree of 
graph and DV denotes the degree variance of graph. Firstly, let d1, d2, ..., dn denote the 
degree sequence in a graph G. When G is an uncertain graph, d1, d2, ..., dn are random 
variables. Hence, the expected degree of a vertex vV is equal to the sum of probabilities 
of its adjacent edges (see Eq. (5)). 

( , )vd p i j  (5) 

where i = v or i  j. 
Then, we define NE, AD and DV as follows: 

 1
2 vv V

NE d


   

 1
vv V

AD dn 
   
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 21 ( )vv V
DV d ADn 

   

The NE, AD and DV as we defined cannot be directly applied in uncertain graphs. 
Thus, we use expected statistic to compute them, the definitions are as follows: 


2\

1 ( , ) ( )2 v V u V v e V
NE p u v p e

  
     


2\

1 2( , ) ( )
v V u V v e V

AD p u v p en n  
     

 21 ( )vv V
DV d ADn 

   

Next, we use Utility to denote data utility achieved by the algorithm. The greater the 
value is the better the data utility. The definition is as follows: 

PVU
Utility

RVU
  (6) 

where PVU denotes the perturbation statistics in uncertain graphs, RVU is the real statis-
tics in original graphs. 

Finally, we define a new metric Ii to denote the importance of node i in the network 
(see Eq. (7)). 

1

i
i n

ii

d
I

d





 (7) 

where di denotes the degree of node i. 

5.3.2 Utility comparisons 

Firstly, we compare UGDP algorithm with (k, )-obfuscation algorithm and Rand- 
Walk algorithm by NE, AD, DV. The experimental data were obtained after averaging 
many times. 

Table 2 shows the utility metrics in original graph and UGDP algorithm graph. Ta-
ble 3 shows the utility metrics in original graph and (k, )-obfuscation algorithm graph 
and Rand-walk algorithm. Comparing to original graph, no matter UGDP algorithm, (k, 
)-obfuscation algorithm and Rand-Walk algorithm, they all have an impact on the data 
utility of NE, AD, DV. And the conclusion we made is that (k, )-obfuscation algorithm 
has better data utility than UGDP algorithm by NE, AD and DV, and UGDP algorithm 
has better data utility than Rand-Walk algorithm, too. 

Next, in order to illustrate the data utility of our algorithm is available we use Utility 
to measure the extent of our data utility achieved. Fig. 9 outlines NE’s and AD’s Utility. 

In Fig. 9 (a), we can see most of data utility NE by UGDP algorithm can reach 
75.0%, the highest is 75.1%. In Fig. 9 (b), we can see most of data utility AD by UGDP 
algorithm can reach 75.0%, the lowest is 75.0% and the highest is 75.2%. The UGDP 
algorithm maintains a high utility of degree in uncertain graphs. So, the conclusion we 
made is that our algorithm’s data utility is feasible. 
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Table 3. Utility metrics in (k, )-obfuscation algorithm and Rand-Walk algorithm. 

Finally, we use Ii to measure the changes of node importance in obfuscation graphs. 
Figs. 10 and 11 illustrate the changes of Ii in UGDP algorithm graph and (k, )-obfusca- 
tion algorithm graph. 

 

Table 2. Utility metrics in UGDP algorithm. 

nodes’ number metrics original graph
1

1 = 0.01 1 = 0.1 1 = 1 

n = 200 
NE 4049.00 2980.85 2935.48 3057.38 
AD 20.00 29.84 29.35 30.57 
DV 447.89 27.34 23.52 27.88 

n = 500 
NE 24818.00 18584.36 18599.10 18593.00 
AD 49.00 74.33 74.39 74.37 
DV 2607.00 62.50 64.36 60.15 

n = 4039 
NE 88234 66174.94 66186.89 66198.39 
AD 21.00 32.76 32.77 32.77 
DV 3262.12 1555.22 1556.92 1554.82 

n = 36692 
NE 183831.00 137860.15 137893.07 137911.26 
AD 5.00 7.51 7.51 7.52 
DV 1328.41 799.00 798.07 798.86 

n = 63731 
NE 817090.00 612833.04 612890.90 612896.75 
AD 12.00 19.23 19.23 19.23 
DV 1785.84 924.60 926.06 925.78 

n = 317080 
NE 1049866.00 787429.84 787421.12 787430.32 
AD 3.00 4.96 4.96 4.96 
DV 113.27 59.18 59.19 59.19 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

nodes’ number metrics original graph
k t 

k = 10 k = 20 t = 5 t = 10 

n = 200 
NE 4049.00 2927.57 2985.48 2089.48 2064.08 
AD 20.00 18.13 18.92 10.45 10.32 
DV 447.89 714.35 733.62 136.82 127.83 

n = 500 
NE 24818.00 18967.09 18969.48 12625.94 12607.90 
AD 49.00 37.53 37.18 25.25 25.21 
DV 2607.00 4479.33 4511.92 688.08 696.27 

n = 4039 
NE 88234 86368.84 86313.12 45176.57 45082.76 
AD 21.00 21.38 21.37 11.23 11.23 
DV 3262.12 3244.85 3245.46 711.13 717.31 

n = 36692 
NE 183831.00 183761.76 183730.92 100215.88 99815.99 
AD 5.00 5.00 5.00 2.98 3.09 
DV 1328.41 1328.33 1328.33 387.37 396.34 

n = 63731 
NE 817090.00 816286.26 816278.78 425702.09 424627.74 
AD 12.00 12.80 12.80 6.94 6.96 
DV 1785.84 1764.44 1764.44 493.18 498.01 

n = 317080 
NE 1049866.00 1049604.00 1049671.30 621827.57 621810.02 
AD 3.00 3.31 3.31 2.03 2.04 
DV 113.27 111.112 111.12 36.09 37.07 
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(a) The feasible of NE.                    (b) The feasible of AD. 

Fig. 9. The data feasible of NE and AD in our algorithm. 

 
(a) 1 = 0.1 and k = 10.                    (b) 1 = 0.1 and k = 20. 

Fig. 10. The comparison of UGDP algorithm graph and (k, )-obfuscation algorithm graph using Ii. 

 
 (a) 1 = 1 and k = 10.                        (b) 1 = 1 and k = 20. 

Fig. 11. The comparison of UGDP algorithm graph and (k, )-obfuscation algorithm graph using Ii. 
 

Due to space limitations and the similarity of plots, we present the results in the 
circumstances of k  {10, 40} and 1 = {0.1, 1}. In Figs. 10 (a) and (b), we use same pri- 
vacy budget but different obfuscation levels where 1 = 0.1 and k = {10, 40}. We can see 
that Ii in UGDP algorithm and (k, )-obfuscation algorithm is similar. Two algorithms 
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can achieve the similar results in node’s importance because Ii of two algorithms distrib-
utes in the same probability band. The same conclusions can be made in Figs. 11 (a) and 
(b) where the privacy budget 1 is 1 and obfuscation levels k are {10, 40}. So, given a 
graph G, we can learn that no matter how much the privacy budget and the obfuscation 
level are, we have the same utility results by Ii between our UGDP algorithm graph and 
(k, )-obfuscation algorithm graph. 

6. CONCLUSIONS 

In this paper, we introduced a model for achieving an uncertain graph, and to sup-
port our model, we proposed an algorithm to inject uncertainty for edges based on edge 
differential privacy. The algorithm we proposed not only satisfies the concept of uncer-
tain graphs but also satisfies edge differential privacy. That is, our algorithm satisfies all 
the characteristics of differential privacy, especially it’s strictly provable and rigorous 
privacy guarantees. And the UGDP algorithm also achieves privacy preserving of uncer-
tain graphs, the relationships between individuals are uncertain and attackers cannot ex-
plicitly infer the relationships between them. Meanwhile, we made privacy analysis and 
utility analysis for three algorithms. The conclusions are that our algorithm has better 
privacy than (k, )-obfuscation algorithm and better utility than Rand-Walk algorithm as 
well. And we defined some metrics to prove the data utility of our algorithm is feasible. 
The results we obtained can incite directions for future work. 
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