
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 30, 787-817 (2014)

787

Method for Extracting Valuable Common Structures from
Heterogeneous Rooted and Labeled Tree Data*

JURYON PAIK1, JUNGHYUN NAM2, UNG MO KIM1 AND DONGHO WON1,+

1Department of Computer Engineering
Sungkyunkwan University

Suwon, 440-746 Korea
2Department of Computer Engineering

Konkuk University
Chungju, 380-701 Korea

The most commonly adopted approach to find valuable information from tree data is

to extract frequently occurring subtree patterns. Because mining frequent tree patterns
has a wide range of applications such as XML mining, web usage mining, bioinformatics,
and network multicast routing, many algorithms have been recently proposed to find the
patterns. However, existing tree mining algorithms suffer from several serious pitfalls in
finding frequent tree patterns from massive tree datasets. Some of the major problems are
due to (1) the computationally high cost of the candidate maintenance, (2) the repetitious
input dataset scans, and (3) the high memory dependency. These problems stem from the
fact that most of the algorithms are based on the well-known apriori algorithm and have
used anti-monotone property for candidate generation and frequency counting in them.
To solve the problems, we apply the pattern-growth approach instead of the apriori ap-
proach, and choose to extract maximal frequent subtree patterns rather than frequent sub-
tree patterns. We present several new definitions and evaluate the effectiveness of the
proposed algorithm.

Keywords: tree mining, subtree pattern, maximal frequent subtree, pattern-growth ap-
proach, label projection

1. INTRODUCTION

1.1 Motivation

Tree is popular in many research fields thanks to its sufficient expressive power to

describe data. In database area [1-7] XML documents are rooted labeled trees where the
vertices represent elements or attributes and the edges represent element-subelement and
attribute-value relationships. Labels are usually assigned to all vertices of trees via la-
beling functions. The structure of XML allows the applications to interpret and process
information on the Web easily. Moreover, being platform-neutral about the contents
published on the Web, it simplifies the integration of existing applications and represen-
tation of data in various human readable formats. Currently, it becomes the lingua franca
for modeling of a wide variety of data sources as XML documents and produces an
enormous amount of information. With the ever-increasing amount of tree data, the re-
searchers in database communities have been required to consider analyzing complex

Received February 7, 2013; revised May 19 & July 13, 2013; accepted August 19, 2013.
Communicated by Vincent S. Tseng.
* This research was supported by Basic Science Research Program through the National Research Foundation

of Korea (NRF) funded by the Ministry of Education (NRF-2010-0020210).
+ Corresponding author.

admin
打字機文字
DOI:10.1688/JISE.2014.30.3.15

JURYON PAIK, JUNGHYUN NAM, UNG MO KIM AND DONGHO WON

788

tree data, such for mining, classification, clustering, indexing and so on.
In web mining, access trees are used to represent accessing patterns of each indi-

vidual user [8-10]. It improves the quality of web services delivered to users because
such patterns provide the web administrators with meaningful information about user
access behaviors or usage patterns.

In molecular biology and evolution, a phylogenetic tree is used to show the inferred
evolutionary relationships among various biological species [11, 12]. One of the methods
is that scientists model the evolutionary history of a set of species that have a common
ancestor using rooted unordered labeled trees. Finding cousin pairs, which represent
evolutionary relationships between species, in these trees allows much easier under-
standing of the evolutionary history for those species.

From the above examples, we can see that trees in real applications are often labeled
and rooted. Even they model data in different research fields, the practical parts from
them are commonly occurred parts having frequent and intentional knowledge, best
known as frequent patterns. In case of tree data, patterns mean also trees usually called
subtrees. In order to use intentional information from tree data, frequent patterns, fre-
quent subtrees, have to be discovered.

However, the problem of finding subtrees is not easy task to do in spite of its ap-
plicability to a variety of subject areas. Because of the hierarchical structure of trees, the
traditional information finding methods which are typically applied to the data of flat
structure cannot be directly used. Even though trees can be flattened out into a set, this
may result in loss of significant structural information. It is not a trivial work to discover
useful and common information from a collection of trees, which is the aim of this paper.

1.2 Focus

The first step toward mining information from trees is to find the subtrees frequent-

ly occurring in the trees. Frequent subtrees provide useful knowledge in main cases such
as gaining general information of data sources, mining of association rules, classification
as well as clustering, and helping standard database indexing [13]. However, as observed
in Chi et al.’s paper [14], due to combinatorial explosion, the number of frequent sub-
trees usually grows exponentially with the size of a tree, especially when the trees stored
in the database are strongly correlated each other. What we can suppose from the expo-
nential growth of the trees follows.

First, the end-users will be overwhelmed by the huge number of frequent subtrees
presented to them and, therefore, have difficulty in gaining insights from the frequent
subtrees. Second, the mining algorithms may not be easily solved because of the expo-
nentially growing numbers of frequent subtrees. The algorithms presented by Wang and
Liu [15] and Xiao et al. [16] tried to alleviate the first problem by only finding so called
“maximal frequent subtrees” and presenting them to end-users.

A maximal frequent subtree is also a frequent subtree. However, it has a particular
condition that is none of its proper supertrees are frequently occurred in a given dataset.
Maximal frequent subtrees hold all of frequent subtrees inside according to its definition.
Therefore, the number of maximal frequent subtrees is much smaller than that of fre-
quent subtrees. However, finding maximal frequent subtrees is still not fully developed
and needs to be further researched. Handling the maximal frequent subtrees is an inter-
esting challenge, though, and represents the core of this paper.

EXTRACTION OF COMMON STRUCTURES FROM TREE DATA

789

1.3 Contributions

From the perspective of data mining algorithm designs, we consider the challenging

problem how efficiently we can reduce the number of subtrees generated to obtain
maximal frequent subtrees. The proposed solution relies on such a bijection between the
labeled rooted tree and sequence, and leverages its properties to realize an algorithm that
is inherently list-based not tree-based. The benefit of the proposed algorithm is that it not
only gets rid of the process for infrequent tree pruning, but also totally eliminates the
problem of subtree generation, which significantly improves the performance of the
whole mining process.

The main contributions of this paper are as follows: (1) It is introduced a concept of
label-projected database and described how it is related to a tree database; (2) The pro-
posed algorithm requires only a single time scan of original tree database, which signifi-
cantly reduces the time cost for the database; (3) For the first time, modified structures of
linked-lists are applied to store tree data, which are basic units of a label-projected data-
base. They represent each label of trees in a newly way; (4) A conceptually simple, yet
computationally efficient algorithm is fully and thoroughly described, which aim is to
discover only maximal frequent subtrees from a rooted and labeled database; (5) The
proposed algorithm directly extracts its targets without any subtree generations.

2. RELATED WORKS

The rising of tree data and the need for mining them have sparked a lot of interest in
finding frequent trees in forests [17-22]. Wang and Liu [17] considered mining of paths
in ordered trees by basing the apriori strategy [23]. It was a start of a journey towards
being able to research trees vigorously and a real developmental milestone for them.

One of the best-known algorithms, TreeMiner, developed by Zaki [21] for mining
frequent ordered embedded subtrees used the depth-first traversal idea. Also, for efficient
subtree counting and manipulation he adopted a novel string representation of tree, so
named scope-list. During joining trees, other than the naïve apriori property it took the
advantage of a useful property of the string encoding for rooted ordered trees. TreeMiner
represented trees in vertical format and uses scoping to prune the search space and effi-
ciently mine for frequent subtrees. A limitation of this method, however, is that it uses
pointer-based dynamic data structures and spends a lot of memory.

FREQT algorithm proposed by Asai et al. in [18] used an extension only approach
to find all frequent induced subtrees from labeled ordered trees. In a preprocessing phase,
all frequent labels in the database are determined. Then an enumeration tree is built to
enumerate all frequent subtrees. To build an enumeration tree, for each (k+1)-subtree
Pk+1, one has to identify a unique parent Pk (of size k). In FREQT this problem is solved
by removing only the rightmost vertex.

The famous two algorithms, however, had been developed basing on the apriori
property, which can suffer from two high computational costs: generating a huge number
of candidate sets and scanning the database repeatedly for the frequency counting of
candidate sets. That may degrade the mining performance dramatically.

To solve those problems, FP-growth methods [24] have been developed, which

JURYON PAIK, JUNGHYUN NAM, UNG MO KIM AND DONGHO WON

790

adopt mostly a divide-and-conquer strategy. FP-growth based algorithms avoid candidate
sets generation. Instead, they construct a concise in-memory data structure that preserves
all necessary information, recursively partitions an original database into several condi-
tional databases, and searches for local frequent subtrees to assemble larger global fre-
quent subtrees. Each conditional database is associated with the data structure and fre-
quent subtrees. Well-known FP-growth based methods are l-patterns by Chopper and
FST-Forest by PathJoin.

Wang et al. [20] had proposed two algorithms, Chopper and XSpanner, to mine
frequent embedded subtrees. Chopper recasts subtree mining into sequence mining and
uses PrefixSpan [25] to compute the set of frequent sequences, l-patterns. These frequent
sequences correspond to candidate subtrees that are evaluated against the database and
those subtrees that are infrequent are pruned away. The major cost of Chopper comes
from two parts. The first part is for mining the l-patterns: the pruning of unpromising
l-patterns improves the performance of the sequential pattern mining. The second part is
for checking every one of trees against the l-patterns and candidate tree patterns. Such
unpromising l-patterns may bring unnecessary overhead to the mining. This observation
motivates the design of XSpanner, in which mining sequential patterns and extracting
frequent subtree patterns are integrated. It recursively mines projected databases. A po-
tential problem is, however, that the recursive projection may lead to a lot of pointer
chasing and poor cache behavior.

Xiao et al. presented the algorithm PathJoin [16]. Their methodology was based on
FP-growth, however, their target results were not frequent subtrees but maximal frequent
subtrees. Due to the previously mentioned problems caused by mining frequent subtrees,
they mined the special frequent subtrees which none of their proper supertrees are fre-
quent. PathJoin used uses a new compact data structure, FST-Forest, to store compressed
trees representing the trees in the database. However, the algorithm applied post-pro-
cessing techniques that pruned away non-maximal frequent subtrees after discovering all
frequent subtrees. Therefore, the problem of the exponential number of frequent subtrees
still remains.

Another algorithm described by Chi et al. [26] attempted to directly find closed and
maximal frequent subtrees only. The algorithm used several pruning and heuristic tech-
niques to reduce the search space that does not correspond to closed and maximal fre-
quent subtrees and to improve the computational efficiency on the generation of closed
and maximal frequent subtrees. However, it bases on enumeration trees, which is one of
the branches of apriori techniques.

In this paper, we suggest a new algorithm. Its underline approach is taken from
FP-growth method and its target result is set to maximal frequent subtrees. The former is
for not performing the candidate subtrees generation and the latter is for alleviating the
huge amount of frequent subtrees.

3. PRELIMINARIES

3.1 General Tree Definitions

In this subsection we briefly recap tree related well-known definitions first based on
the papers [13, 21].

EXTRACTION OF COMMON STRUCTURES FROM TREE DATA

791

The fundamental tree property for representing data to achieve in the paper is root-
ed labeled trees. A rooted tree is directed acyclic graph satisfying: (1) there is a special
vertex, called a root, which has no entering edges, (2) every other vertex has exactly one
entering edge, and (3) there is a unique path from the root to each vertex. A tree is a la-
beled tree if there is a labeling function that assigns a label to each vertex of a tree. The
labels in a tree could be unique, or duplicated labels are allowed for different vertices.

The rooted labeled tree is denoted as T = (r, N, E, L), where N = {v1, v2, …, vi} is a
set of vertices, E = {(u, v) | u, v  N} is a set of edges, r  N is the root, and L is a label-
ing function which maps each vertex of T to one of labels in a set L = {1, 2, …, j}. For
brevity we call the rooted labeled tree simply as a tree in the remains of the paper.

A size of a tree T is defined as a number of vertices the tree has. In the paper, a tree
with size k is denoted by a k-tree. A path p in a tree is a sequence of edges, p = (v1, v2),
(v2, v3), …, (vn-1, vn), where vn  N (1  n  i), shortly p = v1, v2, …, vn-1, vn. There is a
unique path from the root to each vertex in a tree. If u, v  N and there is a path from u
to v, then u is called an ancestor of v and v a descendant of u. If u is an immediate ances-
tor, then u is called the parent of v, and v the child of u. Each vertex v has just one parent
while a vertex u can have one or more children. There are sibling vertices which share a
same parent vertex. If for each parent vertex its children are uniquely identified, left to
right, we call a tree is ordered. Otherwise, a tree is unordered.

According to the above definitions, trees have unique features that make them easy
to represent other data types. However, those features also cause a tricky problem in re-
trieving information from trees. That is because of the hierarchy of trees, and the sug-
gested solution of discovering information from them is a means of subtree inclusion
[123]. The general tree inclusion problem given a pattern tree S and a target tree T is to
find the subtrees of T that are instances of S. We give three types of subtree inclusion
which are widely applied in the tree mining along with their characteristics.

The first one is an exact subtree; given a tree T = (r, N, E, L), we say that an or-
dered tree S = (r, NS, ES, L) is included as an exact subtree of T, if and only if (1) NS 
N, (2) ES  E, (3) for any vertex v  N, if v  NS then all descendants of v must be in NS,
(4) for all edges (u, v)  ES the parent-child relation between vertices u and v is pre-
served in T identically with the one in S, (5) the label of any vertex v  NS, L(v) = L(v),
and (6) the left to right ordering between the siblings in S must be preserved in T. Exact
subtree problems have been researched comprehensively and are solvable in linear time,
however, the definition is too restricted and there is no room for further improvement. A
more relaxed definition is required.

The second one is an induced subtree; given a tree T = (r, N, E, L), we say that an
ordered tree S = (r, NS, ES, L) is included as an induced subtree of T, if and only if (1)
NS  N, (2) ES  E, (3) for all edges (u, v)  ES the parent-child relation between vertices
u and v is preserved in T identically with the one in S, (4) the label of any vertex v  NS,
L(v) = L(v), and (5) the left to right ordering among siblings in S should be a suborder-
ing of the corresponding vertices in T. An induced subtree S of T can be acquired by re-
peatedly pruning leaf vertices or the root if it has only one child in T. However, it still
relies on the parent-child relation causing the restriction.

The third one is an embedded subtree; given a tree T = (r, N, E, L), we say that an
unordered or ordered tree S = (r, NS, ES, L) is included as an embedded subtree of T, if
and only if (1) NS  N, (2) for all edges (u, v)  ES, u is an ancestor of v in T, (3) the la-

JURYON PAIK, JUNGHYUN NAM, UNG MO KIM AND DONGHO WON

792

bel of any vertex v  NS, L(v) = L(v), (4) if S is ordered, then for v1, v2  NS the order of
v1 must precede that of v2 in S if and only if the order of v1 precedes that of v2 in T. The
definition of embedded subtree extends those of exact and induced subtrees. The tree T
must preserve ancestor-descendant relation but not necessarily parent-child relation for
vertices in S.

3.2 Frequent Subtree vs. Maximal Frequent Subtree

Often occurred information means some data patterns frequently used by various
users or applications. And, the primary goal of mining tree dataset is to provide such
often occurred tree patterns. However, it is not straightforward as mentioned in the pre-
vious. We briefly describe the fundamental concepts of tree pattern occurrences.

We let D = {T1, T2, …, Ti} be a set of trees and |D| be a number of trees in D, where
0  i  |D|. Given a tree S, the frequency of S with respect to D, freqD(S), is defined as
TiDfreqTi(S), where freqTi(S) is 1 if S is a subtree of Ti and 0 otherwise. The support of
S with respect to D, SupD(S), is a fraction of trees in D that have S as a subtree, SupD(S) =
freqD(S)/|D|. A subtree is called frequent if its support is greater than or equal to a mini-
mum value of support specified by users or applications. This specified number is called
minimum support and written . The problem of mining frequent subtrees is to uncover
all pattern trees S which satisfies the condition SupD(S)  , -frequent subtrees. As
stated in the previous, however, the combinatorial time for subtree generation becomes
an inherent bottleneck of frequent subtrees mining and it causes finding all of them be-
comes harder.

The alternative way is required, and that is maximal frequent subtrees. It has to sat-
isfy the following conditions when some minimum support  is given: (1) SupD(S)  .
(2) there exists no any other -frequent subtree S in D such that S is a subtree of S. A
maximal frequent subtree is also frequent subtrees, however, none of its proper super-
trees are frequent. Despite the fewer total numbers than that of frequent subtrees, maxi-
mal frequent subtrees do not lose frequent patterns since they subsume all of them.

4. SEAMSON ALGORITHM

4.1 Mining Goal

As we recall, the goal of this paper is to discover some special frequent subtrees,
named maximal frequent subtrees, from a database of rooted labeled trees. The simple
depiction of expected result from the suggested algorithm is on Fig. 1. We illustrate
simply two user’s access trees to Amazon web sites. In the trees, vertices correspond to
web pages users visited and edges do to the links between the pages. Actually, each ver-
tex label is taken by a URL, but we just use key words of it for the simplicity. As the
result, the obtained maximal frequent subtree has five vertices. It turns out that this sub-
tree is a part of a web site for HarryPotter store and a part of a web site for the books of
Database. From this mining result, we can infer that both visitors have similar interests in
browsing Amazon web sites. A service provider (in this example, we can say Amazon
itself) can grasp the point of customer’s web trace at a glance, due to the maximal fre-
quent subtree.

EXTRACTION OF COMMON STRUCTURES FROM TREE DATA

793

203.252.53.108

Books Amazon Shorts

Computer&Internet HarryPotter Store

Computer Science Database VideosBooks

199.236.222.174

Books

FictionReferences Textbooks

Database Action SF&Fantasy

HarryPotter Store

VideosBooks

Books

Database HarryPotter Store

VideosBooks

Fig. 1. Uncovered maximal frequent subtree from two user’s access trees.

One of experiments presented by Chi et al. in [28] shows the benefits from using
maximal frequent subtrees in mining of web access trees. Their experiments were run on
the log files at UCLA Data Mining Laboratory (http://dml.cs.ucla.edu). From the log
files 2,793 user access trees were generated that touched a total of 310 web pages, where
vertices correspond to those pages and edges correspond to the links between them. As
the vertex labels URLs were taken. For minimum support  = 1%, their algorithm mined
one maximal frequent subtree having 18 vertices along with 16,507 frequent subtrees.
And it provides that the maximal frequent subtree is a part of a web site for the ESP2Net
project. From the mining result, one factor can be derived that many visitors to UCLA
DM Lab are interested in details about the ESP2Net project.

Handling efficiently such maximal frequent subtrees represents the core of this pa-
per. For the ultimate goal we propose a fresh tree mining algorithm which adopts the
approach of pattern-growth methods. SEAMSON standing for Scalable and Efficient
Algorithm for Maximal frequent Subtrees extractiON which fundamental ideal had been
published in [29, 30]. Its goal is same as that of the algorithm EXiT-B [27] previously
published; however, its approach is totally different.

SEAMSON is developed to fix the problem of EXiT-B that is not guaranteeing that
all frequent vertices have right relations with other frequent vertices when they build
maximal frequent subtrees, to adopt a FP-tree based pattern-growth approach that makes
the steps of subtree generations unnecessary, to extend the target dataset which is just for
XML in EXiT-B but now it covers all tree structured data, and to extract maximal fre-
quent subtrees without any candidate subtree generation that guarantees right relations
between frequent vertices.

From the next subsection, we describe the detailed explanation of SEAMSON
thoroughly and clearly, along with considering both the accuracy of the results and the
efficiencies of performance and space aspects.

JURYON PAIK, JUNGHYUN NAM, UNG MO KIM AND DONGHO WON

794

4.2 Label Projection

Trees are usually stored in a database D according to their related documents and
each document is treated as a transaction. That is we say document-driven layout in this
paper. In such layout, the whole trees are scanned every time whenever frequency is
computed for each label and, thus, it requires O(|D||T||L|) time complexity to get the fre-
quencies of the whole labels, where |D| is a total number of trees, |T| is a maximum
number of vertices of a tree, and |L| is a number of distinct labels. It is not a serious
problem when |D| and |T| are reasonably small. It may hinder the computation, however,
if both values are large, and actually in the real world, two factors are large.

What if the database has been organized in a label-driven layout? During the scan
of trees, all vertices with the same label are grouped together. The vertices from the same
tree form a member of the group and the number of members actually determines the
frequency of a given label; the maximum number of members is a number of trees in D.
We name this new method as label projection. After all labels are projected, the docu-
ment-driven layout is changed into label-driven layout in which the time complexity to
check labels’ frequencies requires at most O(|L||D|). If hash-based search is used, the
complexity is reduced up to O(|D|).

Definition 1 [label-list] Let  be a label in L. During pre-ordered scanning trees, tree
indexes and vertex indexes which are projected by  construct a single linked list named
as label-list. The label-list for a given label  is denoted -list.

The head of label-list points to the first object in a body just like the ordinary head
of linked list. Along with the indication, the head of a label-list gives information on
which vertex indexes have been mapped to a projected label.

The body of a label-list immediately follows its corresponding head. The main con-
cerns of the body are to evaluate how many trees have a projected label and to keep par-
ents indexes of the vertices in a head. The structure of a body is a sequence of members.
Each member is an object with one key field, one pointer field indicating to the next
member, and one satellite data field. As a key a tree index is used. Because only the trees
that assign a current projected label to their vertices are eligible to create members, the
total number of members in a body indicates the number of trees using a projected label
to their vertices. The satellite data field is for parent vertex indexes of the vertex in a
head. Note that the parent index becomes 0 if a vertex index in a head has no parent. To
mark it, we set 0 for such vertex’s parent index.

Assume T1, T2, and T3 in D are the trees whose at least one vertex is labeled by .
The vertices having  in each tree are: na  T1, nb, nc  T2, and nd

1  T3. First, tree in-
dexes are placed in key fields and parent indexes of the vertices are stored in satellite
data fields. The -list is (p1, T1, ), (p2 p3, T2, ), (p4, T3, ), where pi is a parent ver-
tex index,  means a pointer to a next member, and  means an empty pointer. The size
of -list, |-list|, is 3 with respect to the number of members.

During a database scan, members are generated and inserted into bodies of label-
lists. The newly inserted member is added to the end of a body and the pointer field of its
previous member points to this new member. The complete structure of a label-list is
depicted on Fig. 2. Let assume a label  be a current projecting label. As shown in the
picture, m trees constitute the -list.

1 na, nb, nc, nd denote vertex indexes.

EXTRACTION OF COMMON STRUCTURES FROM TREE DATA

795

label
node

indexes
body

Parents
position

tree index
1

next
Parents
position

tree index
2

next
Parents
position

tree index
m

…

ℓ-list

head body
element

Fig. 2. General structure of a label-list.

Definition 2 [L-dictionary] According to a hashed value of a projected label , the
generated -list is stored and arranged into an in-memory data structure. Whenever a
label is given, its corresponding label-list is searched and retrieved from that structure to
provide appropriate information. If a label has no matching label-list, it is newly pro-
jected label and thus its label-list is inserted into the structure. Since the structure works
just like an ordinary dictionary, it is named L-dictionary and notated by Ldic.

For a given tree, labels are projected by depth-first traversal order. During scan of a
first tree, say T1, only labels k, such as L(vi) = k  L where vi  NT1 (1  i  |T1|) and 1
 k  |L|, establish their label-lists. Each k-list constitutes fundamental units of a label
projected database, Ldic. After reading the first tree T1, there are k label-lists whose sizes
are all 1. This is because just one member for T1 is contained in bodies of each label-list.
While T2 is being scanned, its labels are first searched through Ldic to find matching la-
bel-lists. If not, a label-list is newly made.

When any label k is given to Ldic, its hash value is computed and it is searched
whether k-list already reside in Ldic. If so, a new member for T2 is created and is ap-
pended to an end of existing members of k-list’s body. The size of k-list is increased by
1. On the contrary, if null is returned, k-list has to be formed and inserted to Ldic. In this
case, the label k is used in none of vertices of T1, that is (k  L)  (k  LT1 = ), where
LT1 is the labels used in T1 (LT1  L). The stated procedure is repeated until every tree is
scanned and saved in Ldic.

Lemma 1: Let |Ldic| be a number of label-lists inside Ldic, size of Ldic. The range of its
size is always 0 < |Ldic|  |L|.

Proof: We prove informally by presenting the intuition. Let assume a set L = {1, 2}.
Since trees in D use only the labels in L, the label projection is performed with 1 and 2.
Because there is no tree having no vertex label, it is impossible for both 1-list and 2-list
to have zero member. At least one label should be assigned to vertices of the trees. If
both labels are used in at least one tree, two label-lists are built. For the given L, |Ldic| is 1
or 2 always. 

Fig. 3 presents a label projected database Ldic constructed from tree database D =

{T1, T2, T3}. Each label  L = {A, B, C, D, E, F, G} is projected to generate their la-
bel-lists. The number of members which can be added maximally in a body of a label-list
is 3, because it depends on the total number of trees. Thus, the expected size of any la-
bel-list is between 1 and 3. Then, the label-lists are stored in Ldic according to the order
of their hashed values, H(); we assume the function H() takes a label as input and
produces label’s hash value as output.

JURYON PAIK, JUNGHYUN NAM, UNG MO KIM AND DONGHO WON

796

T1 T2 T3

A

C

D B E

FG F

1

2

53 7

64 8

C

BD E

FF G

9

1210 14

1311 15

C

C D B E

B E

F G

F

16

2217 23 25

18 20

19 21

24

1 T1

2 T1

3 T1

2 T1

5, 7 T1

2 T1

0 T2

9 T2

14 T2

9 T2

10,12 T2

9 T2

0, 16 T3 ε

16 T3 ε

20 T3 ε

16,17 T3 ε

18,23 T3 ε

16,17 T3 ε

C-list

D-list

G-list

B-list

F-list

E-list

2,9,16,17

3,10,22

4,15,21

5,12,18,23

6,8,11,13,19,24

7,14,20,25

0 T1A-list 1

Fig. 3. Ldic from labeled trees.

4.3 Frequent 1-Subtrees and Candidate 2-Subtrees: F1 and C2

In traditional approaches for mining frequent subtrees, the first work is to discover
frequent single vertex trees from the single vertex trees, because the entire set of frequent
subtrees are generated by systematically growing the frequent 1-trees according to the
apriori property [14, 31-33].

When D and S are given, all labels of S should be frequent in order S to be a fre-
quent subtrees with respect to D. More technically speaking, if S is a k-tree and each one
of k vertices are mapped by distinct k labels, the individual k 1-trees should be frequent
subtrees of D in order S to be frequent. It means that k labels should be frequent labels.
Through the label projection, every label is projected over D, produces its label-list, and
builds Ldic. At current status, label-lists in Ldic are analogous to 1-trees in D.

Definition 3 [frequent label] When  is given with respect to D, a label  is said to be
a frequent label if -list is in Ldic and its |-list| is greater than or equal to   |D|2. Other-
wise, it is infrequent label.

Technically, being a frequent label means that a label  is mapped to vertices in
more than or equal to  trees. Based on the apriori property those labels hinder a tree to
grow3 as a frequent subtree of D, because the property can be also applied to trees. Since
growing trees starts from 1-trees, only frequent 1-trees contribute to the further progress.

2 Threshold notated by .
3 The meaning of ‘grow a tree’ is to build a supertree whose size is one more bigger than that of a current tree.

EXTRACTION OF COMMON STRUCTURES FROM TREE DATA

797

The label-lists, therefore, are pruned away from Ldic if and only if they have infrequent
labels. Being pruned from Ldic, those label-lists construct some special table, which re-
places traditional steps for generating candidate subtrees. The detailed explanation for
the table will be given later.

According to Definition 3, the label projected database Ldic is now tailored to the
labels qualified for only frequent 1-subtrees in D. Since the current values of Ldic have
been changed, we denote it simply Ldic

f, where f means filtration. Fig. 4 shows Ldic
f pro-

duced from the Ldic on Fig. 2. We assume the given  is ⅔. Only A-list is filtered out
from Ldic.

Definition 4 [frequent label-list] An label-list is said to be a frequent label-list iff it
satisfies the following conditions: For a given label-list -list (1) | -list| ≥ . (2) For each
member of it, when we let p be any parent index, L(p) is projected over D and its corre-
sponding L(p)-list exists in Ldic

f. (3) |L(p)-list| ≥ , that is L(p)-list  Ldic
f.

The first condition indicates that a label-list must be made from the frequent label.
The second and third ones focus on the body of a label-list, especially the parent indexes
in members. The essentiality of these considerations stems from the structure of the la-
bel-list. Unlike the structures in conventional methods, a single label-list is actually em-
bracing several trees implicitly which have two vertices, 2-trees. This is caused by the
parent indexes in each member.

1 T1

2 T1

3 T1

2 T1

5, 7 T1

2 T1

0 T2

9 T2

14 T2

9 T2

10,12 T2

9 T2

0, 16 T3 ε

16 T3 ε

20 T3 ε

16,17 T3 ε

18,23 T3 ε

16,17 T3 ε

C-list

D-list

G-list

B-list

F-list

E-list

2,9,16,17

3,10,22

4,15,21

5,12,18,23

6,8,11,13,19,24

7,14,20,25

Fig. 4. Label-lists with frequent labels in Ldic
f.

If n vertex indexes exist in a head, the total number of parent indexes in a body is
also n. This implies a current label-list holds the information of n 2-subtrees, and all leaf
vertices of the subtrees are labeled by a projected label of the label-list. Here is the big
difference; in most conventional approaches, every 1-tree has to be joined each other in
order to acquire 2-subtrees. Then, frequent 2-subtrees are discriminated from the ob-
tained trees by . However, in contrast to those methods, every 2-subtrees are directly
acquired from the label-lists in Ldic

f. More conveniently, the 2-subtrees whose leaf verti-
ces are mapped by infrequent labels are never generated.

However, it is not guaranteed that all parent indexes in Ldic
f are mapped by frequent

labels, because Ldic
f is a result of removing the label-lists from Ldic not satisfying Defini-

tion 4. Referring Fig. 4 again, C-list is a good example to explain how Definition 4
works. The projected label C is frequent. For the conditions (2) and (3), the parent index

JURYON PAIK, JUNGHYUN NAM, UNG MO KIM AND DONGHO WON

798

of the first member is given to a labeling function L as input, and then, L(1) computes
the output A. A-list is in Ldic, but the list is not in Ldic

f. This means the 2-subtree in T1
whose leaf vertex’s label is C and its parent vertex’s label is A is not frequent.

Starting from 2-subtrees the definition of embedded subtree has to be considered. It
causes the evaluation of ancestor indexes’ labels and their label-lists because embedded
frequent 2-subtree is made by replacing an infrequent parent vertex index with its fre-
quent ancestor’s index. Instead of generating and evaluating candidate 2-subtrees, la-
bel-lists in Ldic

f can provide frequent 2-subtrees by simply making frequent label-lists.

4.4 Frequent 2-Subtrees: F2

The label-lists in Ldic

f are divided into two types: one is for the label-lists which are
already frequent label-lists and the other is for the label-lists which have only frequent
labels. The former requires no further jobs; however, the latter does not. Some or all of
parent indexes are expected to be replaced with their ancestors’ indexes. Let assume a
given label-list is -list, it consists of m members (m ≥ ), and a parent index is p which
is the only parent index in the first member. Note that p’s ith ancestor is notated by pi (p0
is p itself).

Definition 5 [closest frequent ancestor] The index p has to be replaced by its frequent
ancestor index if L(p)-list  Ldic

f. Starting from p1 toward the root index (in the paper, 0
indicates the root), assume r = pd. It is checked whether L(pi) (1 ≤ i ≤ d) is frequent label
or not by Definition 3. The above process is iterated until the ancestor pi whose L(pi)
satisfies Definition 3 is firstly encountered. The index of pi is stored in the first member
instead of p. No more iteration is performed as soon as the ancestor is found. This pecu-
liar ancestor vertex index is named by closest frequent ancestor according to its role and
importance, and is denoted by Λp.

Fig. 5 clearly illustrates what the closest frequent ancestor is, how it is unveiled, and
how an embedded frequent subtree is made. For the sake of convenience, we assume D =
{T1, T2} and  = 1. Ldic

f has been constructed according to . In order to produce frequent
label-lists, four label-lists in Ldic

f are checked if there is any parent index which does not
have a frequent label. All label-lists, except F-list, are frequent label-lists. The index 12
in F-list is required by replacing 12. Its label is easily obtained by L(12) = A, which list
is pruned from Ldic

f. The easiest way for finding 12 is to use A-list since it has the in-
formation of the parent index of 12 within its body. The index 11 is mapped to the label
C and C has frequent C-list. The index 11 is the firstly met ancestor whose label is fre-
quent, thus, Λ12 = 11 has been prevailed and the process is stopped. The index 12 is now
replaced by 11 and F-list becomes the frequent label-list.

In the example, we should take a close look at the role of A-list. It was pruned from
Ldic, but it is used importantly to discover Λ12. The pruned label-lists are mainly used to
explore closest frequent ancestors because they are the only way to access ancestor in-
dexes of the vertices whose labels are infrequent.

Time complexity to get Λp can bound O(h) at worst case, where h is the height of a
tree including p, because discovery of Λp requires actually iterative backtrack of a path,
from p toward the root. The structure of a label-list, however, does not support the sys-
tematic procedures for iterative backtracking search since there is no mechanism to track

EXTRACTION OF COMMON STRUCTURES FROM TREE DATA

799

11

x

p

p C

x

1x

E

D

A

F

C

D

E

F

5, 11 4 T1 10 T2 

4, 10 0 T1

12

7, 14 5 T1

6, 13 5 T1

10

12 14

13

D

EF

C

4

5

6 7

Ldic
f filtered A-list

0 T2 

11 T2 

12 T2 

11 T2 

T1 T2 3 frequent 2-subtrees

C-list

D-list

E-list

F-list

A-list

p0 = x1

p1 = x2

p2 = x3

Fig. 5. Discovery of 3 frequent 2-subtrees: one is an embedded subtree uncovered by Λ12 and the

others are exact subtrees.

several label-lists. Hence, the filtered label-lists construct a table. This table is a hash
table table to provide constant-time O(1) search on average regardless of the number of
label-lists in the table, and is populated whenever the label-lists are pruned from Ldic. The
table is eliminated from the memory after every label-list in Ldic

f satisfies Definition 4.
Since its role is analogous to that of candidate subtrees, we name it candidate hash table
notated TC. The detailed explanation of how the table is constructed and Λp is discovered
via the table is given in section 4.5.

Lemma 2: It is infeasible that an identical label-list is included in both Ldic

f and TC.

Proof: Assume a label-list, say -list, exists in both Ldic

f and TC. This situation directly
causes conflict. It is at least proved from that -list has frequent label if it is in Ldic

f.
Hence, it is never excluded from Ldic

f, which means there is no chance for the list to be in
TC. On the contrary, once -list is in TC, it indicates that label  does not satisfy the given
. Definitely, the label-list has to be pruned from Ldic. Therefore, any label-list generated
from a label in L is contained in either Ldic

f or TC. 

4.5 Candidate Hash Table

The primary operation of TC is lookup. It works by transforming the key k using a
hash function HC to compute the index which indicates the desired location where the
value should be. The index is computed by HC(k). Under reasonable assumption, the
expected time to search for a value in a hash table is O(1).

JURYON PAIK, JUNGHYUN NAM, UNG MO KIM AND DONGHO WON

800

According to the table, it is determined whether a given index has a frequent label
or not. If a label of the index has been found in the table, the label is infrequent label.
Afterwards, the process is followed to traverse the closest frequent ancestor of the index.
Such mechanism is provided through three main entries of the hash table; key, value, and
index which are easily obtainable from label-lists, and two functions; a labeling function
L and a hash function HC.

As soon as a label-list is pruned from Ldic, the three entries are decided from the lists
at first to form a skeletal structure of TC. The label itself is eligible to become the key,
but there is one obstacle that needs to be resolved before it is used as a key; labels are
obtained by only vertex indexes with L. What is given to TC is the parent vertex index
not parent vertex’s label. If labels are defined as the keys, an additional work is required
to get labels of vertex indexes through L. This work only consumes O(1).

After a key has been determined, it is straightforward to select values for them. It is
an ancestor vertex index that gives the necessary information to perform backtracks,
which is provided by the body part of label-lists. In order to traverse, each key is associ-
ated with the body of their label-lists by the hash function HC.

The table structure and preprocessing step are depicted on Fig. 6 along with its
overall workflow. As stated in the previous subsection, label-lists in Ldic

f are examined
and parent indexes in their bodies are switched by their closes frequent ancestors to sat-
isfy all the conditions in Definition 4.

ℓ1

key index value

p1

node index

…

ℓ2

…
ℓTC_len

ℓ1-list’s body

ℓ2-list’s body

ℓTC_len
list’s body

…
p2

…

(1) (2) (3) (4)

(5)

(6)
Fig. 6. Structure of TC and its overall workflow.

Let 1-list  Ldic
f be a currently tested label-list and |1-list| be m. Each member of

its 1-list.b4 is required to undertake the following: Let any parent index in members be p.
(1) Each p of a member is associated to its label by L(p). (2) The obtained L(p) is given
to TC. If L(p) is not found among keys, p has a frequent label. Thus, p becomes a proper
closest frequent ancestor, and the process is terminated. (3) In case of L(p) is infrequent,
the index p is computed by HC(L(p)). (4) According to a result, the value L(p)-list.b is
returned. (5) As backtracking, (1) to (4) is done to every p1 in the value. (6) The p1
whose label is found as the key of TC iteratively performs (3) through (5) until Λp

1 is
found.

4 From now on, -list.b means the body of a -list.

EXTRACTION OF COMMON STRUCTURES FROM TREE DATA

801

For all m members the steps (1) to (6) are performed. What if a proper Λp is not
discovered until the end of backtracks? In such a case, none of p’s ancestors including p
itself have frequent labels. That means the vertex index whose label is 1 has no frequent
ancestors. Hence, Λp is set by 0 to indicate it is the root position’.

Fig. 7 shows how Ldic
f on Fig. 4 qualifies all of its label-lists to be frequent by using

TC. The parent index, p=1, in the first member of C-list.b is labeled by A, but, A-list was
not in Ldic

f because of |A-list| < 2. Instead, it is in TC.
Under support of TC, the index 1 traverses Λ1: (1) The label of 1 is determined

through L(1) = A. (2) The label A is given to TC to ascertain whether it is one of the keys
of TC. (3) Unfortunately, the returned value is A-list.b not null, which means the pro-
jected label A is infrequent. Thus, the index 1 should be switched by its Λ1. (4) The re-
turned value provides the method for backtracking, therefore, every vertex index inside it
corresponds to parents of index 1 (grandparents of index 2). (5) The value has only one
member, whose index 0 is given to TC in order to decide if its projected label is frequent
or not. (6) L(0) cannot be found among keys of TC because it is always in Ldic

f (the rea-
son will be given below). Therefore, 0 is the closest frequent ancestor of 1. (7) The index
1 of the first member of C-list.b is changed by 0.

Because there is no tree not to have the root vertex, the index 0 is always frequent
actually. However, it is not reflected in the Ldic

f shown on Fig. 7. When we retransform
frequent label-lists to obtain maximal frequent subtrees, 0 index and its corresponding
label have to be required. Therefore, we artificially assign a special label ⊤ to 0 index,
and insert its label-list, ⊤-list, into Ldic

f. Unlike other label-lists, the ⊤-list has no any
other members, because its role is just to provide the root label. We call the ⊤-list as
dummy label-list.

Referring Fig. 7 again, the first member of F-list.b has 5 and 7 indexes. Respective-
ly their corresponding labels are B and E, which are different. On the other hand, the
third member of F-list.b has 18 and 23 indexes and their corresponding labels are same
as B. In the former it is appropriate for both parent indexes to be stored, because differ-
ently labeled parent indexes can have the children same labeled. However, the latter is
different. Reminding the definition of frequency count, it does not matter how many
times a same subtree is occurred in one tree. The frequency is always 1. The duplicated
information is removed. The remained parent index is a representative index of the label.

After adding a dummy label-list into Ldic
f and organizing each member with repre-

sentatives, the finally gained Ldic
f is shown on Fig. 8. The bold numbers are the repre-

sentatives of members.

4.6 Label-List Extension

Now Ldic
f assures that all of vertex indexes in it are labeled by frequent labels. Then,

what about paths when the vertices form edges? The paths could possibly be frequent,
however, that is not guaranteed because of the fact that a path is a sequence of edges; let
an edge e connect exactly two distinct vertex labels by a and b, e = (a, b). If e wants to
be a frequently occurred edge, both labels a and b must be frequent labels. Hence, if a
path wants to be a frequently appeared path, all edges of the path should be frequently
occurred. When let a path be P, it is composed of a finite number of edges; P = e1e2…em.
Also the path P can be expressed with labels as shown in the following equations:

JURYON PAIK, JUNGHYUN NAM, UNG MO KIM AND DONGHO WON

802

A

key index value

1

node index
L(1)

0 T1 ε
HC (A)

1 T1 0 T2 0, 16 T3 εC-list 2,9,16,17

0 T1

2 T1

3 T1

2 T1

5, 7 T1

2 T1

0 T2

9 T2

14 T2

9 T2

10,12 T2

9 T2

0, 16 T3 ε

16 T3 ε

20 T3 ε

16,17 T3 ε

18,23 T3 ε

16,17 T3 ε

C-list

D-list

G-list

B-list

F-list

E-list

2,9,16,17

3,10,22

4,15,21

5,12,18,23

6,8,11,13,19,24

7,14,20,25

TC

Ldic

f

?0
L(0)

Fig. 7. Discovery and replacement of 1.

0 T1

2 T1

3 T1

2 T1

5, 7 T1

2 T1

0 T2

9 T2

14 T2

9 T2

10,12 T2

9 T2

0, 16 T3 ε

16 T3 ε

20 T3 ε

16 T3 ε

18 T3 ε

16 T3 ε

C-list

D-list

G-list

B-list

F-list

E-list

2,9,16,17

3,10,22

4,15,21

5,12,18,23

6,8,11,13,19,24

7,14,20,25

⊤-list 0 dummy label-list

Fig. 8. Ldic

f with a dummy ⊤-list and representatives.

P = e1e2…em = (v1, v2)(v2, v3)…(vm, vm+1)
= (L(v1), L(v2))…(L(vm), L(vm+1))

= L(v1)L(v2)…L(vm)L(vm+1) (1)

EXTRACTION OF COMMON STRUCTURES FROM TREE DATA

803

According to Eq. (1), a path P is finally represented with a sequence of labels,
which means all of the labels on the path should be frequent labels in order for P to be
frequent. The bottom line is that the frequency of a path depends on each individual edge
of it, and the frequency of an edge depends on its two composing vertices’ labels.

In order to verify edge frequencies veiled inside of the label-lists in Ldic
f, simply

parent indexes stored in body parts are used with the vertex indexes within the head parts.
For revealing frequent edges, the required work before any effort is done is setting so
called symbolic vertices based on the label-lists. What symbolic vertices are the vertices
that become outlines of maximal frequent subtrees.

Let assume a current reading label-list is -list. A symbolic vertex s labeled by , s,
is firstly generated. Afterwards, its body is traversed to reach parent indexes, and ac-
cording to their labels, their corresponding symbolic vertices are also created if not exist.
The explicit edges between s and parent symbolic vertices are made. Since any parent
symbolic vertex’s label is the label of a label-list in Ldic

f, forming edges actually relies on
extending labels of the label-lists. Hidden paths are revealed along with the systematic
relations between symbolic vertices.

Definition 6 [label-list extension] For -list, p is one of parent indexes in one of its
members. A symbolic vertex s which label is  is set first, and then the second symbolic
vertex whose label is L(p), sL(p) is set. Those two symbolic vertices are joined together in
order to uncover an edge. Since it seems that the vertex created from L(p)-list is extend-
ing the range of its scope with the vertex from -list, the extension is named as label-list
extension operation, abbreviated 2e. The operation 2e is denoted s

L(p)  , which means
L(p)  , where ‘’ indicates the direction of extending, parent to child. For every la-
bel-list in Ldic

f the extension is committed.
The Eq. (1) can be rewritten with the label-list extension as the follows:

P = e1e2…em = L(v1)  L(v2) … L(vm)  L(vm+1)

= sL(v1)  sL(v2) …sL(vm)  sL(vm+1) (2)

4.7 Potential Maximal Pattern Tree

While performing 2e operations, the required number of scanning Ldic
f is two. Dur-

ing the first scan, only head parts of label-lists are scanned and each label is read to set
their symbolic vertices. A created symbolic vertex has three fields; prm for pointing a
primary parent vertex, sub for indicating a subordinate parent vertex, and cnt for
counting edge’s frequency, respectively. The detailed role and functionality of the fields
will be described later in respect of the second scan.

The initially made symbolic vertices are identified as seeds because a potential
maximal frequent tree is brought forth base on and growing them. Along with the set-
tlement of seeds, a table is constructed with seeds and labels of the label-lists in Ldic

f. It
facilitates the process of extracting and traversing the tree being made. The key of the
table has labels from the label-lists as its values. Another column is for pointers which
indicate the locations of seeds within the tree; we name these pointers as seed-links.
Whenever a label is given to the table, a position of its seed is retrieved via its proper
seed-link. Since labels in the table head for the locations of their seeds in the tree and

JURYON PAIK, JUNGHYUN NAM, UNG MO KIM AND DONGHO WON

804

present them, we name the table as label header table, denoted TL.
The storage size for saving TL is appropriate; assuming a size of a single table rec-

ord x and |Ldic
f| = M, the total necessary space is fixed at xM because the length of a table

depends on the number of labels in Ldic
f. In the worst case, TL has a storage complexity of

Θ(x|L|) time if labels of a label set L are all frequent. However, it is unusual that every
label of L is frequent. This means the actually necessary space to store TL is much small-
er than that of the worst case, because of M  |L|. It is mainly used at the second scan
along with the operation 2e.

After completing the first scanning process, total seven seeds are generated for Ldic
f

on Fig. 8 and as well as a table TL has been created with seven rows. Each row contains a
label of a seed and a seed-link to the seed. Currently, none of seeds have specified values
in their three fields because the values of fields are set during 2e.

Ldic
f is scanned for the second time to run 2e. Body parts are analyzed. When a

current reading label-list is -list, 2e is started by parent indexes in each member
through the following: (1) Let a seed of the list be s which is pointed by the label . (2)
The body of -list is read. Assume a current member is m and it has total i parent indexes,
where each parent index is notated by pmi

. (3) A label of pmi
 is obtained by L(pmi

), and
guarantees that the row of L(pmi

)’s seed, sL(pmi)
, appears in TL. (4) Look up TL to obtain

the location of sL(pmi)
. (5) The seed sL(pmi)

 is a firstly determined symbolic parent vertex of
s, if s.prm is null. The field prm is for a first symbolic vertex set as a given seed’s par-
ent. The returned value, address of sL(pmi)

, is stored in s.prm. According to the address,
L(pmi

)   is run and sL(pmi)
.cnt is incremented by 1. Instead of incrementing a child

seed’s cnt, we increment a parent seed’s cnt. Because 2e is processed in a bottom-up
way, a parent seed is the end point of an edge.

What if s.prm is already preoccupied by other seed’s location, say an address of
sL(q)? There are three cases depending on whether sL(pmi)

 = sL(q) or not. According to the
case, the step (5) is replaced with one of the followings:

(5-1) If sL(pmi)
  sL(q) and s’s sub = null, s has more than one parent whose labels are

different as L(pmi
) and L(q). To avoid graph structure, a concept of subordinate

parent has been proposed; If a current seed’s prm is already set as the address of
sL(q), a new symbolic vertex is made, its address is set in s.sub, and its prm value
is the address of sL(pmi)

. By this way, there are one primary parent at top and several
subordinate parents following it. We denote it sj

 where j is the order of sub-parents.
For instance, s1

is the first sub-parent of s, where it is pointed by s.sub and
s1
.cnt is incremented.

(5-2) Another case is that sL(pmi)
 = sL(q), where the cnt value of sL(q) is increased by 1.

(5-3) The third case is that (sL(pmi)
  sL(q))  (s.sub  null). In this case, sL(pmi)

 has to be
compared with prm fields of s’s sub-parent vertices if s’s sub is not null. If the
value of any sub-parent’s prm is same as the address of sL(pmi)

, cnt of the corre-
sponding symbolic vertex is incremented by 1.

(6) Repeat from step (2) for all parent indexes pmi, and iterate all steps for all label-lists
in Ldic

f.

After completing the whole process, a single tree which root is the seed of ⊤-list is
derived. Because the tree includes maximal frequent subtrees, we name it potential maxi-
mal symbolic tree abbreviated PMST.

EXTRACTION OF COMMON STRUCTURES FROM TREE DATA

805

Fig. 9 illustrates TL and PMST. Each seed is associated with its corresponding label
in TL via seed-links (marked as seed @), shown as dotted lines with small arrowheads.
Edges made by operating 2e and connecting seeds or symbolic vertices are depicted by
solid lines in the figure. Solid lines are divided into two types according to their useful-
ness; blurred lines and bold lines. The reason is the frequency of edges was not consid-
ered in PMST. To take for it, cnt fields are read. If s.cnt is less than a given threshold,
s and its entering edge are not frequent. The blurred lines are those edges pruned from
PMST. On the contrary, the bold ones are frequent edges remained in PMST.

label seed @

⊤ 100

B 200

C 300

D 400

E 500

F 600

G 700

100

300 100 3

400 300 3 300 1

500 300 3

200 300 3

600 200 3

500 1

400 1

700 400 1

500 2

prt cnt suc

seed @ label

100 ⊤
200 B

300 C

400 D

500 E

600 F

700 G

Fig. 9. Derived PMST from Ldic

f, it holds potential maximal frequent subtrees.

In the figure, some seeds associated with the labels C, F, G are chained by several

sub-parents. Those are drawn with dash-dotted curves.
Before deriving a PMST tree, we can infer the number of maximal frequent subtrees

from label-lists in a final Ldic
f according to the following equation:

of maximal frequent subtrees = # of label-lists in which a count of members

having the index 0 is more than or equal to  (3)

Let 1-list, 2-list, 3-list be arbitrary frequent label-lists in Ldic

f and their sizes are
|1-list| = |2-list| = 2, |3-list| = 4, when a given  is 2. We assume each member of them
has only one parent index, for the sake of simplicity. The members of 1-list and 2-list
have a parent vertex index 0 which means the root; 1-list is denoted (0, T1, ),(0, T2,
) and 2-list (0, T1, ),(0, T2, ), which implies there maybe two maximal frequent
subtrees. Let the parent indexes in members of 3-list be p1, p2, p3, and p4. Then, we can
consider the following three cases:

 Case 1: L(p1) = L(p2) = 1 and L(p3) = L(p4) = 2: Two vertices labeled by 1 and 2 are

direct children of the root, because both edge frequencies satisfy 2. The vertex labeled
by 3 becomes a sub-parent, because both edge frequencies of different parents also

JURYON PAIK, JUNGHYUN NAM, UNG MO KIM AND DONGHO WON

806

meet 2. Since 3-list has no members satisfying the value of the equation, just two
maximal frequent subtrees can be derived, one is (1, {1, 3}, {(1, 3)}, L)5 and the
other (2, {2, 3}, {(2, 3)}, L).

 Case 2: L(p1) = L(p2) = L(p3) = 1 and L(p4) = 2: The edge (1, 3) satisfies the
threshold as 3, but the edge (2, 3) is not. Like case 1, 3-list has no members satisfy-
ing the value of the equation. Therefore, the number of maximal frequent subtrees are
still two, (1, {1, 3}, {(1, 3)}, L) and (2, {2}, {}, L).

 Case 3: L(p1) = L(p2) = 0 and L(p3) = L(p4) = 1 or 2: 3-list has two members in
which they have the index 0 and it satisfies the condition. The index 0 has total three
labels, 1, 2, and 3. By L(p3) = L(p4) = 1 or 2, 1 or 2 is connected by 3. There can
be total three maximal frequent subtrees, (1||2, {1||2}, {}, L), (1||2, {1||2, 3},
{(1||2, 3)}, L) and (3, {3}, {}, L).

Theorem 1 (Correctness) Label-list extension returns all the possible maximal fre-
quent subtrees in the given tree database.

Proof: According to Definitions 4, 5 and Lemma 2, all the vertices marked in Ldic

f are
guaranteed to be assigned by only frequent labels. The label-list extension procedure
produces every possible frequent path, and finally considers only maximal frequent paths
by extending each path with (L – TC)  {⊤} of the current label’s Ldic

f. During 2e, an
edge ei is uncovered by sL(vi)

  sL(vi+1) (1  i  m). If L(vi) is ⊤, then, the child symbolic
vertex sL(vi+1) is the real root of some tree, because sL(vi+1) is one of the highest ancestors’
symbolic vertices which all descendants have frequent labels according to Definition 5.
The sL(vi+1) rooted tree, TsL(vi+1), have its all possible frequent paths including maximal
frequent paths. Let assume any discovered path of TsL(vi+1), P = sL(vi+1)  sL(vi+2) …
sL(vi+m-1)  sL(vm). According to the values of symbolic vertices’ cnts, there are two cases:

If j | sL(vj)
.cnt   (i+1  j  i+m1), then the whole path P is a maximal frequent

path else j | sL(vj)
.cnt < , then only subpath P′ = sL(vi+1)  sL(vi+2) … sL(vj-1) becomes

a maximal frequent path. A subpath P″ = sL(vj)  sL(vj+1) … sL(vi+m-1)  sL(vm) is a dan-
gling frequent path. Later such dangling paths are pruned paths in PMST. In the end,
because the vertex sL(vi+1) is extended to its all maximal frequent paths, the tree TsL(vi+1)
carries a possible maximal frequent subtree. Therefore, the number of possible maximal
frequent subtrees equal to the value of s⊤.cnt.

4.8 Algorithm Analysis

The main idea of SEAMSON includes the following three points: Ldic from label

projection, Ldic
f with TC, and derivation of PMST. Fig. 10 shows the pseudo-code of

SEAMSON. There is only a single database scan. The label projected database, Ldic, is
constructed by the first key method Transform-Trees-to-Lists. Its first parameter rT is the
root of a tree T, and the second parameter Ldic is for storing a label projected database.
The next work is for identifying frequent labels among projected labels. As stated in
lines (4)-(7), each label-list in Ldic is checked whether its number of members is less than
the given . If so, the corresponding label-list is put into the table TC and deleted from
Ldic. The running time is O(|L|) because it depends on the number of label-lists.

5 T = (r, N, E, L).

EXTRACTION OF COMMON STRUCTURES FROM TREE DATA

807

Algorithm SEAMSON
input: D, L,  output: MaxForest
(1) ← D  
(2)for each tree T  D
(3) Transform-Trees-to-Lists(rT, Ldic)
(4)for each label-list -list  Ldic
(5) if |-list| < 
(6) TC ← TC + -list
(7) Ldic

f ← Ldic – -list
(8)Ldic

f ← Compute-Frequent-Lists(Ldic
f, TC)

(9)for each -list  Ldic
f

(10) for i = 0 to |-list|-1
(11) for each parent index p  -list[i].pids set a representative
(12)Ldic

f ← Ldic
f + ⊤-list

(13)for each -list  Ldic
f

(14) insert  into TL.label
(15) create a seed s for PMST
(16) write the address of s to TL[].seed@
(17)for each -list  Ldic

f
(18) Derive-Temp-MaxTree(-list, TL, PMST)
(19)for each node s  PMST (except the root sr)
(20) if s.cnt <  then PMST ← PMST – s
(21)MaxForest ← PMST - sr

Fig. 10. Pseudo-code of SEAMON algorithm.

By through the method Compute-Frequent-Lists, Ldic contains only frequent la-

bel-lists. For each label-list a few empirical works, inserting a dummy label-list and set-
ting representatives, are done as stated from line (9) to (12). In the code, -list[i] means
the (i+1)th member of -list and -list[i].pid means parent indexes of -list’s (i+1)th
member. At line (12), the dummy label-list is inserted manually.

Before invoking the third method, the table TL and an initial PMST are constructed
for deriving full PMST. This work requires simple insertion and creating operations, thus,
the running time is a constant time. From (9) to (16) the required running time is O(|L|(1
+ |D|) = O(|L| + |L||D|). By invoking Derive-Temp-MaxTree at line (18), the final goal of
SEAMSON is established. We now describe the each key method in more detail.

Transform-Trees-to-Lists Its pseudo-code is listed on Fig. 11. When the method is
invoked, the first work is to search a label of a passed vertex v whether it exists in Ldic or
not. If so, the vertex index v is inserted to the label-list’s head. According to existence or
nonexistence of v’s tree index in members of the label-list’s body, its parent indexes are
inserted to an existing member or a new member, respectively. The lines (1) to (6) shows
the code of it, where L(v)-list[i].tid means a tree index of the (i+1)th member of L(v)-
list and tidv is the tree index having the vertex index v.

Lines (7) and (8) are for the case when v’s label is not found in labels of Ldic. As
shown in the code, simply a new label-list for L(v) is generated and added to Ldic. Lines
(9)-(10) check whether a v has children and, when any child is found, the method is re-
cursively applied to each child vertex. Considering the running time of this method, for
searching work at line (1) it is proportional to a length of Ldic. Fortunately, the worst-case

JURYON PAIK, JUNGHYUN NAM, UNG MO KIM AND DONGHO WON

808

Method 1 Transform-Trees-to-Lists
input: vertex v, Ldic output: Ldic
(1)if L(v)  Ldic.label
(2) Ldic  +L(v)-list
(3)else
(4) L(v)-list.h  +v
(5) for i = 0 to |L(v)-list|-1
(6) if L(v)-list.tid == tidv then L(v)-list[i].pid  v1
(7) if there is no member having the same tree id with tidv
(8) L(v)-list.b  + new member for tidv
(9)while v’s children are all being scanned
(10) Transform-Trees-to-Lists(child u, Ldic)

Fig. 11. Pseudo-code of transformation for trees in order to convert labels-lists.

is O(|L|), because it depends on the number of labels L. The time for insertion is O(1).
The loop on lines (5)-(6) takes time O(|D|) because a size of a corresponding label-list’s
body can be a total number of trees in D at the worst-case. Following the depth-first
manner, the running time of Transform-Trees-to-Lists is O(|N|(|L|+|D|)).

Compute-Frequent-Lists As shown in the codes stated in Fig. 12, the main work is to
search closest frequent ancestors for the parent vertex indexes having infrequent labels.
Due to the recursive function closest-frequent-ancestors, every parent index finds its
closest ancestor having frequent label. In the code, TC.key is the keys of the table TC,
and TC[L(p)].val implies that the returned value from TC, actually L(p)-list.b.

Method 2 Compute-Frequent-Lists
input: old Ldic

f, TC output: new Ldic
f

(1)for each label-list -list  old Ldic
f

(2) for i = 0 to |-list|-1
(3) if p|(p  -list[i].pid  L(p)  TC.key)
(4) cfa  closest-frequent-ancestor(-list[i].tid, p, TC[L(p)].val)
(5) else
(6) cfa  p
(7) p  cfa
closest-frequent-ancestor(t, p, v)
(8)for i = 0 to |v.b|-1
(9) if v[i].tid == t
(10) if a|(a  v[i].pid  L(a)  TC.key)
(11) cfa  closest-frequent-ancestor(v[i].tid, a, TC[L(a)].val)
(12) else
(13) cfa  a
(14) return cfa
(15)return cfa

Fig. 12. Pseudo-code of computing frequent label-lists for enhanced Ldicf.

The worst time to process Compute-Frequent-Lists method is O(|L||D|Icfa), where Icfa
indicates the cost of time to compute closes frequent ancestors. The function closest-
frequent-ancestor itself requires O(1) time to replace an infrequent vertex with a frequent

EXTRACTION OF COMMON STRUCTURES FROM TREE DATA

809

vertex. Because it contains a recursive call to itself, the operations actually run in time at
most proportional to the height of an original tree and thus take O(lg|N|) time, therefore,
Icfa is replaced by O(lg|N|). The cost of time to run the method Compute-Frequent-Lists is
O(|L||D|lg|N|).

Derive-Temp-MaxTree When any label-list, -list, is read as the first action of De-
rive-Temp-MaxTree, each parent index in its body checks and determines its seed’s lo-
cation based on a comparison with s.prm or s.sub to make a parent-child relation with
s for PMST. Also, the occurrence count is accumulated in a proper seed or just symbolic
vertex. The work for determination is listed from lines (3) to (10) on Fig. 13.

The required running time depends on only the number of members of a label-list
for the first for loop; at the worst case, some label-list can have the number of members as
many as a total number of trees. The time complexity of Derive-Temp-MaxTree method,
therefore, is O(|D|).

Method 3 Derive-Temp-MaxTree
input: a single -list, TL, initial PMST output: full PMST
(1)for i = 0 to |-list|-1
(2) for each p  -list[i].pid
(3) if s.prm == null ⊲ s is known by TL[].seed@
(4) s.prm  TL[L(p)].seed@
(5) sL(p).cnt  +1
(6) else if (s.prm == TL[].seed@) or (j|sj.sub == TL[L(p)].seed@)
(7) sL(p).cnt  +1 or s

j.cnt  +1
(8) else
(9) create s

j+1
(10) s

j+1.cnt  +1

Fig. 13. Pseudo-code of computing frequent label-lists for enhanced Ldic
f.

5. EXPERIMENTAL EVALUATION

This section provides extensive experiments to evaluate the performance of the al-
gorithm SEAMSON using both synthetic datasets and a real application dataset; the for-
mer is generated by a tree generation program inspired by Zaki [21] and Termier [34]. It
constructs a set of trees D based on some parameters; T the number of trees in D, L: the
set of labels, f: the maximum branching factor of a vertex, d: the maximum depth of a
tree, : the random probability of one vertex in the tree to generate children or not, : the
average number of vertices in each tree in D. We allow multiple vertices in a tree to have
the same label. We used the following default values for the parameters; T = 10,000, L =
100, f = 5, d = 5.

The latter is CSLOGS6, which is also described in [21]. This real world dataset con-
sists of the web access trees collected over one month at the CS department of the Rens-
selaer Polytechnic Institute. CSLOGS contains 59,691 trees corresponding to user brow-
sing subtrees of the CS department website, and 13,209 unique vertex labels corre-
sponding to the URLs of the web pages.

 6 http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software/Software

JURYON PAIK, JUNGHYUN NAM, UNG MO KIM AND DONGHO WON

810

100

101

102

103

10-410-310-210-1100101

R
un

ni
ng

 ti
m

e
(s

ec
)

Minimum Support (%)

T = 10000
T = 15000

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 1⋅103 2⋅103 3⋅103 4⋅103 5⋅103 10⋅103 15⋅103

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Input Trees (T)

minsup = 0.2%
minsup = 0.15%

minsup = 0.1%

(a) Minimum support vs. Time. (b) Number of trees vs. Time.

Fig. 14. Scalability of the algorithm.

5.1 Performance Evaluation

In the first experiment, we want to evaluate the scalability of our algorithm with
varying minimum support and the number of trees T, while other parameters are fixed as:
L = 100, f = 5, d = 5,  = 20%,  = 13.8 and 20.5 (when T = 10,000 and 15,000, respec-
tively). Fig. 14 (a) shows the result, where the minimum support is set from 10% to
0.0001%. Both X- and Y-axis are drawn on a logarithmic scale for the convenience of
observation. We can find that the running time increases when the number of trees T
increases, however, both running times are rarely affected by the decrease of the mini-
mum support. This is because SEAMSON relies on the number of labels not the number
of vertices. Thus, it is very efficient for datasets with varying and growing tree sizes.

In Fig. 14 (b) the parameter T varies from 1,000 to 15,000 with  = 20. We evalu-
ated three different minimum supports, 0.2%, 0.15%, and 0.1%. The corresponding
graphs reveal considerable similarity which slowly increases until T = 11,000 and sud-
denly goes up between T = 11,000 and T = 13,000. Afterwards, the graphs are started to
rapidly deteriorate. Our understanding of this phenomenon is that the size of Ldic

f and its
label-lists are maximized when the number of input trees reaches at 12,000 and 13,000
under 100 distinct vertex labels.

Fig. 15 presents the number of maximal frequent subtrees under different minimum
supports and the number of input trees. Firstly on Fig. 15 (a) it seems that in both T =
10,000 and T = 15,000 the number of maximal frequent subtrees slowly grows before
the rapid rise. Between  = 0.3% and 0.2%, the two datasets generated with L = 100
produce the biggest number of maximal frequent subtrees. Afterwards, the number drops
off and keeps in steady state. This feature stems from the limited number of labels and its
random distribution for datasets generation. As another evaluation of the number of
maximal frequent subtrees, we gradually increased the parameter T from 2,000 to 15,000
under three different minimum supports as presented on Fig. 15 (b). The number of
maximal frequent subtrees slowly decreases while T increases under any minimum sup-
port. Because of the limited number of labels L = 100 and their random assignments to
vertices, the number of maximal frequent subtrees is getting less instead the size of those
trees are getting bigger.

EXTRACTION OF COMMON STRUCTURES FROM TREE DATA

811

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

10-410-310-210-1100101

N
um

be
r

of
 M

ax
im

al
 F

re
qu

en
t S

ub
tr

ee
s(

tr
ee

s)

Minimum Support(%)

T=10000
T=15000

100

101

102

 2⋅103 3⋅103 4⋅103 5⋅103 10⋅103 15⋅103

N
um

be
r

of
 M

ax
im

al
 F

re
qu

en
t S

ub
tr

ee
s

Number of Input Trees (T)

minsup=0.2%
minsup=0.1%
minsup=0.4%

 (a) Maximal frequent subtrees vs. . (b) Maximal frequent subtrees vs. T.

Fig. 15. Maximal frequent subtrees under different minimun supports and number of trees.

5.2 Performance Comparison

In this subsection, we evaluate the performance of SEAMSON in comparison with
PathJoin [16] which mines maximal frequent subtrees by adopting the idea of the FP-tree,
and CMTreeMiner [26] which is proposed to mine closed and maximal frequent subtrees
with tree enumerations. Because PathJoin uses the paths from roots to leaves to help
subtree mining, it does not allow any siblings in a tree to have the same labels. Therefore,
we changed the synthetic generator in the previous section 5.1 to generate a dataset that
meets the requirement. The parameters for the dataset are: T = 12,000, L = 100, f = 5, d =
5,  = 20%. We compare the above three algorithms in the aspects of time consumption
and memory usage.

Fig. 16 (a) compares running time of SEAMSON with those of CMTreeMiner and
PathJoin under different minimum supports from 100% to 0.0001%. PathJoin shows a
dramatic increase of time consumption as  decreases. Although it is fast for the mini-
mum values around 100%, it becomes obvious that PathJoin suffers from severe growth
of computation time from less than 70% while the other two do not. After obtaining all
frequent subtrees, PathJoin eliminates those that are not maximal. Thus, the number of
frequent subtrees is getting bigger as  is getting smaller, and this is the reason why
PathJoin requires the serious waste compared with SEAMSON and CMTreeMiner. The
algorithm CMTreeMiner shows better running time than PathJoin. However, it still
gradually increases along with the decrease of the minimum value and requires more
time consumption than SEAMSON. Compared to those algorithms, SEAMSON shows a
different trend of time consumption which is already presented and explained in section
5.1. In spite of decreasing minimum support, it is rarely affected by minimum support.
This means that the running time of SEAMSON has been fairly stable condition over any
minimum support.

The second comparison is for memory usage during each algorithm’s execution. As
the result in Fig. 16 (b), the slope of SEAMSON is lower than those of two. At the start-
ing point SEAMSON uses more memory than other algorithms, however, its memory
usage slowly increases, then slightly decreases, and increases again trivially. From T =
10,000 the memory consumption of SEAMSON is stabilized. On the contrary, the mem-

JURYON PAIK, JUNGHYUN NAM, UNG MO KIM AND DONGHO WON

812

10-1

100

101

102

103

10-410-310-210-1100101102

R
un

ni
ng

 ti
m

e
(s

ec
)

Minimum Support (%)

SEAMSON
CMTreeMiner

PathJoin

100

101

102

 1⋅103 2⋅103 3⋅103 4⋅103 5⋅103 10⋅103 15⋅103

M
em

or
y

U
sa

ge
 (

M
B

)

Number of Trees in a Dataset (T)

SEAMSON
CMTreeMiner

PathJoin

(a) Running time. (b) Memory usage.

Fig. 16. Comparison for three algorithms.

ory usages of CMTreeMiner and PathJoin are linearly increased during the growth of
number of trees. PathJoin more consumes the memory than SEAMSON from T = 2000
and CMTreeMiner exceeds SEAMSON from T = 6000. The memory usage keeps
growing during the algorithms’ execution except SEAMSON.

5.3 Real-World Dataset

With CSLOGS dataset, we evaluate SEAMSON running time, number of maximal

frequent subtrees, and memory usage. Fig. 17 shows respectively. In the first graph, it
can be observed the similar trend presented in Fig. 14 (a), only it is a little bit increased
around from  = 1%. However, afterwards it still shows the stability even though the
minimum support is decreased. The following experiment is for how many maximal fre-
quent subtrees can be extracted from CSLOGS. As presented in Fig. 17 (b) the number
dramatically increases two times: from 29 to 92 when the minimum support decreases
from 0.1% to 0.07% and from 92 to 199 when the support does from 0.07% to 0.05%.
The number of maximal frequent subtrees slightly increases after  = 0.05%, but the
slope is gentle.

100

101

102

10-210-1100101

R
un

ni
ng

 T
im

e
(s

)

Minimum Support (%)

100

101

102

10-210-1100101

N
um

be
r

of
 M

ax
im

al
 F

re
qu

en
t S

ub
tr

ee
s

Minimum Support (%)

100

101

102

10-210-1100101

N
um

be
r

of
 M

ax
im

al
 F

re
qu

en
t S

ub
tr

ee
s

Minimum Support (%)
 (a) Minimum support vs. Time. (b) Maximal frequent subtrees vs. Minimum support.

Fig. 17. Stability and reliability test for real world dataset.

EXTRACTION OF COMMON STRUCTURES FROM TREE DATA

813

100

101

102

10-210-1100101

M
em

or
y

U
sa

ge
 (

M
B

)

Minimum Support (%)

100

101

102

10-210-1100101

M
em

or
y

U
sa

ge
 (

M
B

)

Minimum Support (%)
(c) Memory usage.

Fig. 17. (Cont’d) Stability and reliability test for real world dataset.

In addition, to check the memory usage for the real world dataset, we perform the
experiment and show the result in Fig. 17 (c). It can be noticed that memory usage is
rarely affected by the minimum support. The dramatic increase is happened one time
when the support drops from 0.2% to 0.1%. In our opinion, it would stem from the fact
that the rapid increase of the maximal frequent subtrees presented in Fig. 17 (b).

With CSLOGS, the algorithm SEAMSON shows its stability and reliability both in
running time and memory usage even though minimum support decreases.

6. CONCLUSION

In this paper, we were interested in the problem of finding maximal frequent sub-
trees. To deal with it, first we pointed out inefficiency of some previously published fre-
quent subtree mining algorithms. Second, we proposed a new tree mining algorithm
which incorporates tree structures into list structures and thus, it allows us to analyze the
intricate trees more thoroughly. Lastly, we performed extensive evaluations to show the
benefits of our algorithm for maximal frequent subtrees mining.

The beneficial effect of our method was that it not only got rid of the process for in-
frequent tree pruning, but also eliminated totally the problem of candidate subtrees gen-
eration. Hence, we significantly improved the whole mining process. We plan to extend
our work in the following directions. First, some trees in real applications are unrooted,
i.e., they are free trees. Extending our algorithm to mining maximal frequent free trees is
another challenge. Second, frequent itemset mining has been extended to sequential pat-
tern mining [35] and episode mining [36]. Many databases of labeled trees also have
time-stamps for each transaction tree. Mining maximal sequential patterns and episode
trees from such databases is one of our future research topics.

REFERENCES

1. I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld, “Updating XML,” in Pro-

JURYON PAIK, JUNGHYUN NAM, UNG MO KIM AND DONGHO WON

814

ceedings of ACM SIGMOD International Conference on Management of Data, 2001,
pp. 413-424.

2. R. K. Wong, “The extended XQL for querying and updating large XML databases,”
in Proceedings of ACM Symposium on Document Engineering, 2001, pp. 95-104.

3. M. Arenas, W. Fan, and L. Libkin, “On verifying consistency of XML specifica-
tions,” in Proceeding of ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database System, 2002, pp. 259-270.

4. A. Azagury, M. Factor, Y. Maarek, and B. Mandler, “A novel navigation paradigm
for XML repositories,” Journal of the American Society for Information Science and
Technology, Vol. 53, 2002, pp. 515-525.

5. R. Praveen and M. Bongki, “Prix: indexing and querying XML using prüfer se-
quences,” in Proceedings of International Conference on Data Engineering, 2004,
pp. 288-299.

6. Z. Vagena, M. M. Moro, and V. J. Tsotras, “Supporting branched versions on XML
documents,” in Proceedings of International Workshop on Research Issues on Data
Engineering: Web Services for E-Commerce and E-Government Applications, 2004,
pp. 137-144.

7. L. I. Rusu, W. Rahayu, and D. Taniar, “Mining changes from versions of dynamic
XML documents,” in Proceedings of International Conference on Knowledge Dis-
covery from XML Documents, LNCS 3915, 2006, pp. 3-12.

8. R. Agrawal, S. Rajagopalan, R. Srikant, and Y. Xu, “Mining newsgroups using
networks arising from social behavior,” in Proceedings of International World Wide
Web Conference, 2003, pp. 529-535.

9. R. Cooley, B. Mobasher, and J. Srivastava, “Web mining: information and pattern
discovery on the world wide web,” in Proceedings of IEEE International Confer-
ence on Tools with Artificial Intelligence, 1997, pp. 558-567.

10. X. Wang, A. Abraham, and K. A. Smith, “Intelligent web traffic mining and analy-
sis,” Journal of Network and Computer Applications, Vol. 28, 2005, pp. 147-165.

11. D. Shasha, J. T. L. Wang, and S. Zhang, “Unordered tree mining with applications
to phylogeny,” in Proceedings of International Conference on Data Engineering,
2004, pp. 708-719.

12. S. Zhang and J. T. L. Wang, “Mining frequent agreement subtrees in phylogenetic
databases,” in Proceedings of SIAM International Conference on Data Mining, 2006,
pp. 222-233.

13. Y. Chi, S. Nijssen, R. R. Muntz, and J. N. Kok, “Frequent subtree mining  an over-
view,” Fundamenta Informaticae, Vol. 66, 2004, pp. 161-198.

14. Y. Chi, Y. Yang, and R. R. Muntz, “HybridTreeMiner: an efficient algorithm for
mining frequent rooted trees and free trees using canonical forms,” in Proceedings
of International Conference on Scientific and Statistical Database Management,
2004, pp. 11-20.

15. K. Wang and H. Liu, “Discovering typical structures of documents: a road map ap-
proach,” in Proceedings of Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, 1998, pp. 146-154.

16. Y. Xiao, J.-F. Yao, Z. Li, and M. H. Dunham, “Efficient data mining for maximal
frequent subtrees,” in Proceedings of IEEE International Conference on Data Min-
ing, 2003, pp. 379-386.

EXTRACTION OF COMMON STRUCTURES FROM TREE DATA

815

17. K. Wang and H. Liu, “Schema discovery for semistructured data,” in Proceedings of
International Conference on Knowledge Discovery and Data Mining, 1997, pp. 271-
274.

18. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, and S. Arikawa, “Efficient
substructure discovery from large semi-strucutured data,” in Proceedings of SIAM
International Conference on Data Mining, 2002, pp. 158-174.

19. A. Termier, M.-C. Rousset, and M. Sebag, “DRYADE: A new approach for discov-
ering closed frequent trees in heterogeneous tree databases,” in Proceedings of IEEE
International Conference on Data Mining, 2004, pp. 543-546.

20. C. Wang, M. Hong, H. Pei, H. Zhou, W. Wang, and B. Shi, “Efficient pat-
tern-growth methods for frequent tree pattern mining,” in Proceedings of Pacif-
ic-Asia Conference on Advances in Knowledge Discovery and Data Mining, LNCS
3056, 2004, pp. 441-451.

21. M. J. Zaki, “Efficiently mining frequent trees in a forest: algorithms and applica-
tions,” IEEE Transactions on Knowledge and Data Engineering, Vol. 17, 2005, pp.
1021-1035.

22. H. Tan, T. S. Dillon, F. Hadzic, E. Chang, and L. Feng, “IMB3-Miner: mining in-
duced/embedded subtrees by constraining the level of embedding,” in Proceedings
of Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNAI 3918,
2006, pp. 450-461.

23. R. Agrawal and R. Srikant, “Fast algorithms for mining association rules in large
databases,” in Proceedings of International Conference on Very Large Databases,
1994, pp. 487-499.

24. J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without candidate
generation: a frequent-pattern tree approach,” Data Mining and Knowledge Discov-
ery, Vol. 8, 2004, pp. 53-87.

25. J. Pei, J. Han, B. Mortazavi-Asl, and H. Pinto, “PrefixSpan: mining sequential pat-
terns efficiently by prefix-projected pattern growth,” in Proceedings of IEEE Inter-
national Conference on Data Engineering, 2001, pp. 215-224.

26. Y. Chi, Y. Xia, Y. Yang, and R. R. Muntz, “Mining closed and maximal frequent
subtrees from databases of labeled rooted trees,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 17, 2005, pp. 190-202.

27. J. Paik, J. Nam, D. Won, and U. M. Kim, “Fast extraction of maximal frequent sub-
trees using bits representation,” Journal of Information Science and Engineering,
Vol. 25, 2009, pp. 435-464.

28. Y. Chi, Y. Yang, and R. R. Muntz, “Canonical forms for labeled trees and their ap-
plications in frequent subtree mining,” Knowledge and Information Systems, Vol. 8,
2005, pp. 203-234.

29. J. Paik, J. Nam, J. Hwang, and U. M. Kim, “Mining maximal frequent subtrees with
lists-based pattern-growth method,” in Proceedings of Asia-Pacific Web Conference,
LNCS 4976, 2008, pp. 93-98.

30. J. Paik, J. Nam, H. Y. Youn, and U. M. Kim, “Discovery of useful patterns from
tree-structured documents with label-projected database,” in Proceedings of Interna-
tional Conference on Autonomic and Trusted Computing, LNCS 5060, 2008, pp.
264-278.

31. A. Inokuchi, T. Washio, and H. Motoda, “An apriori-based algorithm for mining fre-

JURYON PAIK, JUNGHYUN NAM, UNG MO KIM AND DONGHO WON

816

quent substructures from graph data,” in Proceedings of European Conference on
Principles of Data Mining and Knowledge Discovery, LNAI 1910, 2000, pp. 13-23.

32. M. Kuramochi and G. Karypis, “Frequent subgraph discovery,” in Proceedings of
IEEE International Conference on Data Mining, 2001, pp. 313-320.

33. R. Agrawal, T. Imielinski, and A. N. Swami, “Mining association rules between sets
of items in large databases,” in Proceedings of ACM SIGMOD International Con-
ference on Management of Data, 1993, pp. 207-216.

34. A. Termier, “Extraction of frequent trees in a heterogeneous corpus of semi-struc-
tured data: application to xml documents mining,” Ph.D. Thesis, Department of La-
boratoire de Recherche en Informatique, U.M.R. CNRS 8623, Paris South Universi-
ty, 2004.

35. R. Srikant and R. Agrawal, “Mining sequential patterns: generalizations and perfor-
mance improvements,” in Proceedings of International Conference on Extending
Database Technology, LNCS 1057, 1996, pp. 3-17.

36. H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of frequent episodes in
event sequence,” Data Mining and Knowledge Discovery, Vol. 1, 1997, pp. 259-
289.

Juryon Paik (白珠蓮) received the B.E. degree in Infor-
mation Engineering from Sungkyunkwan University, Korea, in
1997. She received her M.E. and Ph.D. degrees in Computer En-
gineering from Sungkyunkwan University in 2005 and 2008, res-
pectively. Currently, she is a Research Professor at the Depart-
ment of Computer Engineering, Sungkyunkwan University. Her
research interests include XML mining, semantic mining, and
web search engines.

Junghyun Nam (南正鉉) received the B.E. degree in In-
formation Engineering from Sungkyunkwan University, Korea,
in 1997. He received his M.S. degree in Computer Science from
University of Louisiana, Lafayette, in 2002, and the Ph.D. degree
in Computer Engineering from Sungkyunkwan University, Korea,
in 2006. He is now an Associate Professor in Konkuk University,
Korea. His research interests include information security and
retrieval.

EXTRACTION OF COMMON STRUCTURES FROM TREE DATA

817

Ung Mo Kim (金應模) received the B.E. degree in Mathe-
matics from Sungkyunkwan University, Korea, in 1981 and the
M.S. degree in Computer Science from Old Dominion University,
USA, in 1986. His Ph.D. degree was received in Computer Sci-
ence from Northwestern University, USA, in 1990. Currently he
is a Professor of School of Information and Communication En-
gineering, Sungkyunkwan University, Korea. His research inter-
ests include data mining, database security, data warehousing,
and GIS.

Dongho Won (元東豪) received his B.E., M.E., and Ph.D.
degrees from Sungkyunkwan University in 1976, 1978, and 1988,
respectively. After working at ETRI (Electronics and Telecom-
munications Research Institute) from 1978 to 1980, he joined
Sungkyunkwan University in 1982, where he is currently a Pro-
fessor of School of Information and Communication Engineering.
In the year 2002, he served as the President of KIISC (Korea In-
stitute of Information Security and Cryptology). He was the Pro-
gram Committee Chairman of the 8th International Conference

on Information Security and Cryptology (ICISC 2005). His research interests are on
cryptology and information security.

