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High-resolution range profile (HRRP) is one of the most important approaches for 

radar automatic target recognition (RATR), which can project the target echoes from the 
scattering center of a ship target onto the radar line of sight (RLOS). This paper proposes 
an approach to use convolutional neural networks (CNNs) to recognize HRRP ship targets 
and a two-dimensional HRRP data format as the input of the CNN network. Compared 
with traditional pattern recognition approaches of handcrafted features based on research-
ers’ prior knowledge and experience, the target recognition approach with deep neural net-
work helps to avoid excessive use of artificially designed rules to extract features, and deep 
learning can automatically get the deep description features of the target. The approach 
presented in this paper has three main advantages: (1) Experiments conducted on the ship's 
HRRP dataset collected from the actual coastline are more realistic than most other papers 
using simulated datasets; (2) Proposed two-dimensional binary-map HRRP data format 
has good recognition performance, so it can be known that proper data preprocessing can 
improve recognition accuracy; (3) It can be seen from the experimental results that the 
CNN-based method proves that CNN can automatically learn the discriminative deep fea-
tures of HRRP. It is feasible to use CNN to radar automatic target recognition based on 
real-life radar HRRP of ship targets. 
 
Keywords: high-resolution range profile (HRRP), convolutional neural network (CNN), 
radar automatic target recognition (RATR), artificial intelligence (AI), machine learning, 
radar line of sight (RLOS), automatic identification system (AIS), range-azimuth map (R-
A map) 
 

1. INTRODUCTION 
 

Radar automatic target recognition (RATR) means that the radar antenna receives ro-
bust radar information from the radar microwave signal reflected from the target, and uses 
this information to automatically recognize the target. RATR technology has played an im-
portant role in modern coastal warning control, maritime rescue, navigation management and 
naval warfare, and has led to extensive research in the past few decades. In these studies, 
radar high-resolution range profile (HRRP) information for RATR is a promising technology. 
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The radar HRRP is the one-dimensional projection of the target in the radar observa-
tion direction obtained by radar which reflects the energy distribution of the target scatter-
ing echoes in each range cell along the radar line of sight (RLOS) and implies information 
about the target geometry that contributes to the classification. In addition, it has relatively 
small data. Therefore, RATR based on HRRP has been widely concerned by experts and 
scholars engaged in radar automatic target recognition research. The most popular type of 
radar is the pulsed radar. The pulse repetition interval (PRI) is the time interval between 
two adjacent pulses. Each echo reflected by the target will generate a corresponding HRRP 
within the PRI. The radar HRRP of a ship target is shown in Fig. 1. 

 
Fig. 1. Schematic diagram of radar HRRP for ship targets. 

 

H.-J. Li and S.-H. Yang [1] used HRRP as the data feature vector and established 
decision rules to identify five types of aircraft based on matching scores. Y. Wang et al. 
[2] introduced atomic norm minimization to estimate the scattering center of HRRP to 
alleviate off-grid problems caused by traditional sparse inverse approaches. D. Zhou, X. 
Shen and W. Yang [3] proposed a radar target recognition fuzzy optimization transform 
approach based on HRRP. The goal of this approach is to maximize the distance between 
classes while preserving the within-class structure. J. Liu et al. [4] introduced a scale space 
theory to extract range profiles’ multi-scale features. Although the structural features have 
excellent performance in RATR based on HRRP, they also indicate that the classification 
method still has the ameliorative possibility from the combination with other feature ex-
traction techniques. D. Zhou [5] proposed a radar HRRP dictionary learning algorithm, 
namely reconstructive and discriminant dictionary learning algorithm based on sparse rep-
resentation classification criteria. Extensive experimental results show that the algorithm 
is more robust to the variation of target aspect and noise’s effect and superior to other 
similar approaches. L. Du et al. [6] introduced a novel noise-robust recognition method for 
HRRP data to enhance its recognition performance under the test condition of low signal-
to-noise ratio (SNR). A. Zyweck and R. E. Bogner [7] proposed data preprocessing and 
subspace algorithms for HRRP recognition. 

In the above approaches, feature extraction is the most critical step. Most of the radar 
dynamic target features are based on the domain knowledge of HRRP data, such as sub-
space features, high-order spectral features and differential power spectrum features. These 
features are artificially extracted, and the effect depends on the actual experience of the 
researchers and application background. 

In recent years, with the rise of large-scale deep neural networks and the support of 
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high-performance computing hardware, neural network deep learning technology has open- 
ed up a new research opportunity for the traditional radar automatic target recognition field. 
Therefore, some researchers began to use the high-dimensional nonlinear computing meth-
ods to pursue higher, more accurate and more robust type recognition performance. 

J. Lundén and V. Koivunen [8] used the CNN to automatically extract features of 
HRRP targets from multiple static radar systems for target recognition. The experimental 
results show that the proposed approach can obtain good recognition performance even at 
low SNR, which is better than some traditional pattern recognition approaches. Therefore, 
the convolutional neural network is used to replace the traditional approach to identify the 
target. 

The Hidden Markov model (HMM) is another widely discussed approach for realiz-
ing RATR using HRRP. B. Pei and Z. Bao [9] used hidden Markov model (HMM)-based 
method for recognizing HRRP by combining the location information of points scattering. 
B. Feng, B. Chen, and H. Liu [10] proposed a deep network with HRRP target recognition 
by adopting multi-layered nonlinear networks for feature learning, and established an ef-
fective loss function approach under Mahalanobis distance criterion. J. Lu et al. [11] pro-
posed Fourier-Mellin transform (FMT) to eliminate the time-shift and azimuth dependence 
of radar signals, and used a binary tree-based multiclass support vector machine (SVM) 
for classification. J. Lu et al. [12] used Kolmogorov-smirnov test (KS test) to achieve 
frame segmentation, so that each frame of data satisfies the same Gaussian distribution, 
and different frame data meet different requirements distributed. Finally, based on the 
complex Gaussian distribution of ship identification, Bayesian classifiers are classified us-
ing traditional classifiers: support vector machines and Naive Bayes. 

O. Karabayır et al. [13] used CNN for ship classification by stacking each one-dimen-
sional HRRP into a two-dimensional gray-scale map, that is, copying 32 times 1×168 size 
one-dimensional HRRP into a 32×168 data image. J. Song et al. [14] proposed a multi-
channel CNN architecture for ground target HRRP recognition. This architecture can be 
applied to many forms of HRRP, such as real, complex, spectrum, polarization, and se-
quence. Compared with the single-channel form, the proposed method shows a considera-
ble improvement in recognition accuracy. 

Q. Zhang et al. [15] proposed a CNN-ELM network structure that combines convo-
lutional neural networks with extreme learning machines for ship HRRP target recognition. 
The input HRRP data of the network will be reordered to convert one-dimensional data 
into two-dimensional data. In the experiment, the recognition rate of CNN-ELM reached 
99.50%. 

W. Jinwei et al. [16] proposed a CNN-BiRNN-based method to identify aircraft 
HRRP. The main contribution of this method is to use CNN to explore the spatial correla-
tion of the raw HRRP data, extract the expression features, and then combine BiRNN to 
fully consider the time dependence between distance units. It is seen in the experiment that 
the best recognition effect of CNN-BiRNN reaches 93.30%. 

The authors proposed a method in CVGIP 2020 [17], which applies CNN to HRRP 
of ship target recognition, and proves that an effective HRRP data format as the input of 
the CNN network can have good recognition accuracy. In this paper, the authors will give 
a more detailed description of how to build a real-life HRRP database with the help of 
automatic identification system (AIS). In addition, the authors have also done more exper-
iments and data analysis to make this research more complete. 
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In summary, compared with traditional pattern recognition approaches based on hand-
crafted features, the target recognition approach with deep neural network helps to avoid 
excessive use of artificially designed rules to extract features, and deep learning can auto-
matically get the deep description features of the target. The features extracted by deep 
learning approach are more conducive to classification. Therefore, this research applies 
deep convolutional neural network to RATR by using real-life radar HRRP and obtains a 
good performance. 

Fig. 2 shows the function blocks of the proposed approach. Firstly, the HRRP data 
are collected and labeled by manual. Then, the HRRP chips are cut as many frames with a 
designed frame-cutting software, construct the HRRP original database of the six types of 
targets. Secondly, some pre-processing of the signal is performed. The echo signal of the 
radar is first processed by non-coherent integration (NCI) to alleviate the fluctuation of the 
signal and increase SNR. Since the ship target has a certain reasonable size range, we 
eliminate noisy range cells to reduce the amount of data processing. Thirdly, according to 
the planned HRRP raw data format, three different HRRP data formats are generated as 
the subsequent input of CNNs. Finally, use three different data formats as the input of four 
different CNN architectures to explore which network architecture and data format can get 
the best recognition accuracy. Experimental results show that the proposed approach is 
comparable to the other state-of-the-art HRRP target recognition approaches. 

 
Fig. 2. The function blocks of the proposed approach. 

 

The remainder of this paper is presented as follows. Section 2 describes the collection 
and construction of the ship HRRP dataset. Section 3 describes the procedures for prepro-
cessing the HRRP of ship targets. The design of the proposed CNNs is presented in Section 
4. The experimental results and analysis are illustrated in Section 5. Finally, the conclu-
sions are described in Section 6. 

2. COLLECTION AND CONSTRUCTION OF DATASET 

The radar HRRPs used to recognize ship targets is carried out through ship infor-
mation collected by radar and AIS. AIS is an automatic tracking system designed to pro-
vide information about ships, such as unique identification, position, course and speed, to 
facilitate maritime tracking and surveillance of ships. AIS information is complementary 
to maritime radar, which is still the primary method to avoid collisions for water transport. 



RATR BASED ON REAL-LIFE HRRP OF SHIP TARGET BY USING CNN 

 

 

737

The construction of the HRRP dataset follows four main steps. First, collect HRRP 
data of ships through radar. Next, the collected HRRP data are manually identified and 
labelled by using AIS information. Then, the HRRP chips are cut as many frames with a 
designed frame-cutting software. Finally, post-processing is done to each ship HRRP chip 
so as to guarantee the reliability and good quality. The HRRP ships dataset constructed by 
ourselves has three essential properties: reality, diversity and large scale.  

The steps to collect HRRP data for ships are as follows. Firstly, use GPS to locate the 
radar equipment position. Secondly, turn on the radar and connect a notebook or handheld 
device to the AIS on internet to query current ship information near the coast and calculate 
search command parameters, including range-center, range-coverage, azimuth-center and 
azimuth-coverage. Thirdly, run the Range-Azimuth map (R-A map) software, as shown in 
Fig. 3.  

 
Fig. 3. The R-A map. It shows the response from the target echoes. It can be seen from the figure 
that there are seven ship targets. From this figure, we can see the intensity of the echo reflection of 
each ship target and its two-dimensional range. 

 
Compare the information of the R-A map with the AIS, as shown in Figs. 4 (a) and 

(c), to find and track the ship, and input the search angle and range parameters to collect 
the HRRP data of the designated ship. Fourthly, execute the standby command to stop the 
radiation, record the HRRP data and the AIS ship information for the later recognition of 
the ship. Finally, repeat the above steps to collect the ship HRRP and AIS ship information. 
For increasing the diversity of the database, collect information on the same ship at differ-
ent locations, as shown in Figs. 4 (b) and (d).  

 

(a) (b)
Fig. 4. Some examples of AIS information and trajectories of the collected ships. 
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(c) (d)
Fig. 4. Some examples of AIS information and trajectories of the collected ships; (a) and (c) show 
the AIS information of two ships; (b) and (d) show the trajectories of the two ships shown in (a) and 
(c), respectively. Each different color trajectory represents a different continuous data collected. 
These data can indicate that the ship data collected are diverse, including different ranges and azi-
muths. 

 

 

(a) (b)
Fig. 5. An example: the HRRPs of the same ship collected at different azimuth angles and its histo-
gram; (a) shows the HRRPs of the same ship named HuaHang collected at different azimuth angles; 
(b) exhibits the histogram of HuaHang’s HRRPs collected at different azimuth angles. 
 

Ships in real-life are non-cooperative targets. However, the collected data sets are 
diverse. Fig. 5 (a) is the HRRPs of the same ship named HuaHang collected at different 
azimuth angles. The X axis represents the range cells from 23 to 57. The Y axis is the in- 
tensity of the target’s echo. The five HRRPs from left to right in Fig. 5 (a) are the points 
taken from the five trajectories from right to left of Fig. 4 (b). They represent the HRRPs 
of the HuaHang ship at five different azimuth angles which are located at 15, 0, 6, 12, 
17 angles of the azimuth respectively. Fig. 5 (a) demonstrates that the HRRPs of the same 
ship at different angles are slightly different. Fig. 5 (b) shows the histogram of HuaHang’s 
HRRPs collected at different azimuth angles. The histogram exhibits that the HRRPs are 
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collected at the azimuth angle between about 20 and 20 angles. The X axis represents the 
azimuth angle. The Y axis means the number of the HRRP chips collected at different 
azimuth angles. 

This research collects a large amount of HRRP data. After the program automatically 
inspects the data, the original dataset has a total of 207,610 chips data, and the invalid chips 
data with the echo values of 0 are removed. The number of valid data after selecting is 
207,545. There are six types of ships for this research. The six types of ships are named 
Alpha, Beta, Gamma, Delta, Epsilon, and Zeta, as shown in Fig. 6. Table 1 show the dis-
tributions of chips data. The raw data is the hexadecimal data, and the two tuples represent 
a decimal value, and the data byte order is little-endian. 

 
Fig. 6. Six ship types and their HRRPs. 

 

Table 1. Six ship types and chips data distribution. 
Ship type Original chips Valid chips

Alpha 66792 66746
Beta 40346 40344

Gamma 21697 21680
Delta 53082 53082

Epsilon 11493 11493
Zeta 14200 14200
Total 207610 207545
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Fig. 7 is a schematic diagram of the hexadecimal raw data format of the original data 
files of the collected ships. Each file begins with the ship code, as shown in (a) for the type 
of ship; (b) for the ship number of the classification; (c) for the reserved field; (d) for the 
frame number; and (e) is a HRRP with range cell size 35. 

 
Fig. 7. The hexadecimal raw data format of the original files of the collected ships 

3. PREPROCESSING 

The preprocessing of HRRP plays an important role. The data format of the input net- 
work is an important factor to the effect of feature extraction. After proper preprocessing 
approaches, it is possible to enrich the features, thereby enhancing recognition perfor-
mance. 

3.1 Non-Coherent Integration 

A single target echo has a lower SNR, so if the target is not large, it will not be easily 
detected. In addition, a single target echo causes a signal fluctuation due to the ship’s 
movement. This can be improved by NCI. NCI is to align consecutive pules and accumu-
late N pules. NCI can reduce the target aspect- and amplitude-sensitivity and improve the 
stability of HRRP. The results from our experiments show a high recognition rate, so it can 
be inferred that HRRP has stable characteristics after continuous target echoes are accu-
mulated by NCI. That is to say, HRRP collected from different aspects has stable amplitude 
characteristics and discriminative. 

3.2 Eliminate Noisy Range Cells 

The size of the ship’s target usually has a certain reasonable value, so the numbers of 
range cell corresponding to the target echoes do not need to be observed too much when 
performing target recognition. In order to reduce the dimensions of the feature vector and 
the computational load, after aligning the center of the range cell, only reserve 35 range 
cells for target recognition. 

3.3 Data Format Transformation 

In the following sections, this research will introduce three different types of data for- 



RATR BASED ON REAL-LIFE HRRP OF SHIP TARGET BY USING CNN 

 

 

741

mats based on the original data as shown in Fig. 6. The first is the one-dimensional HRRP 
data format, which is the most commonly used form for most papers. The second is the 
two-dimensional gray-scale HRRP data format proposed by [13]. The third is the proposed 
solution, namely two-dimensional binary-map HRRP data format. 
 
(A) One-dimensional HRRP data format 

Convert the raw data into a one-dimensional HRRP data format with labels, and take 
out 135 range cells and use them as input data for one-dimensional CNN. 

 
(B) Two-dimensional gray-scale HRRP data format 

O. Karabayır et al. [13] proposed stacking a one-dimensional HRRP data by just cop-
ying to obtain an enhanced performance two-dimensional gray-scale image. In this paper, 
the one-dimensional 135 HRRP will be copied and stacked into a two-dimensional gray-
scale HRRP of 3535. 

 
(C) Two-dimensional binary-map HRRP data format 

By observing the HRRP of the ship target, the radar echoes reflected by the structure 
of different ship targets will have different correlations, so they can be roughly classified 
by visual perception. Therefore, the most suitable way is to regard HRRP as two-dimen-
sional image, as shown in Fig. 8. 
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Fig. 8. Schematic diagram of the two-dimensional binary-map HRRP data format. 

 

In this paper, a HRRP with 35 range cell is presented in a bar graph, and the image is 
a binary-map of size 13035. The range cell is taken as the X-axis and the echo intensity 
is taken as the Y-axis of the binary image. If the echo intensity of the original data is r(x), 
it is a real number; x is range cell number and is an integer. The value f(x, y) of the pixel 
coordinate (x, y) defining the binary image is equal to 255 or 0; the conversion relationship 
between r(x) and f(x, y) is expressed as follows: 

0,      0 ( )
( , ) .

255,   ( )

y r x
f x y

y r x

 
  

  (1) 
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4. DESIGN OF THE PROPOSED CNN 

CNN is a popular and famous neural network for Deep Learning. It is pointed out 
from most of the papers that CNN was first introduced by Y. LeCun et al. [18] in 1995.  

The proposed approach uses CNN to recognize ship targets based on radar HRRP 
dataset. The design of the proposed CNN starts with two convolutional layers and two 
fully-connected layers, as shown in Fig. 9. However, in order to avoid overfitting, the 
dropout layer is added, and then the number of layers of the network is gradually adjusted 
to find better performance. This research proposes four different CNN architectures and 
experiment with three input data formats under each architecture. The four CNN architec-
tures are as follows: 

 
1. CNN2C2F: CNN consists of two convolutional layers and two fully-connected layers. 
2. CNN2C3F: CNN consists of two convolutional layers and three fully-connected layers. 
3. CNN3C2F: CNN consists of three convolutional layers and two fully-connected layers. 
4. CNN3C3F: CNN consists of three convolutional layers and three fully-connected layers. 

 
The proposed CNN architectures are containing the convolutional layers with the ker-

nel size of 55, stride of 11, padding size of 11, and the maxing pooling layers with the 
size of 22. The drop rate of the first layer is set to 0.25, and the remaining drop rate is 0.5.  

 
Fig. 9. The CNN architecture composed of two convolutional layers and two fully-connected layers. 

4.1 Activation Function 

The activation function simulates the effect of a threshold in a biological neuron. 
When the signal strength reaches a threshold, the signal is output, otherwise there is no 
output. The activation function is generally a nonlinear function, which performs nonlinear 
transformation on the input signal, and then passes the transformed output as input to the 
next layer of neurons, so that the neural network can solve more complicated problems. 
The equation is expressed as 

Y = Activation((weight  input)+bias). (2) 

(A) ReLU 
In the experiment, the ReLU activation function is selected. Compared with the tra-

ditional Sigmoid and Tanh, the computation amount of ReLU is small, the convergence 
speed is obviously faster, and the problem of gradient vanish is relatively less likely to 
occur. In addition, ReLU will cause the output of some neurons to be zero to sparse the 
neural network and avoid overfitting problems. ReLU is defined as 
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f(y) = max(0, y).  (3) 

(B) Softmax 
The Softmax function [19] is a generalization of logistic Regression. The basic goal 

of Softmax is to convert numbers into probabilities. It can normalize a K-dimensional vec-
tor with any real number into a probability distribution which consists of K probabilities 
proportional to the exponentials of the input numbers, so that each element function. The 
Softmax is defined as 

1

( ) ,    for 1,..., .
j

k

z

j K z

k

e
z j K

e




 


  (4) 

4.2 Loss Function 

In order to know the quality of the model training, the loss function [20] is used to 
evaluate the prediction result of the model; if the predicted result is too different from the 
actual result, the loss function will be large. With the help of some Optimizer, the loss 
function gradually reduces the prediction error as the model learns.  

In this paper, the cross entropy is used as the loss function. Compared with other loss 
functions, the gradient decreases faster. However, it is worth noting that the cross entropy 
must be used with Softmax, and the label needs to be a one-hot type binary value sequence. 

Suppose x is a random variable, p(x) is a probability density function, and the infor-
mation gain I(x) is defined as Eq. (5). It means that the lower the probability, the larger the 
information gain. Entropy is the average information gain contained in all received mes-
sages. It can also be regarded as the turmoil of the data or the uncertainty of the data. The 
entropy equation is defined as Eq. (6). 

In the classification problem, each data has a set of prediction probability, so when 
calculating the cross entropy of each data, the entropy calculated by each category is added, 
as shown in Eq. (7) [20]. 

I(x) = log2(p(x)) (5) 

H(X) = i  pilog2(pi)  (6) 

, 2 ,1 1
log ( )

C n

c i c ic i
H y p

 
    (7) 

where c is the category and n is all the number of data, yc,i is a binary indicator which 
means that the ith data belongs to the real category of the c-class. Pc,i is the probability that 
the ith data belongs to the c-class prediction. 

4.3 Optimizer 

Use the optimizer to adjust the model’s parameters during training to reduce the value 
of loss function and make the prediction as accurate as possible. In other words, the opti-
mizer is actually an optimization of the gradient descent algorithm, and the optimizer will 
be told that it is moving in the right or wrong direction. The well-known optimizers such 
as RMSprop, AdaGrad and Adam have similar effects in many cases. 
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RMSProp optimizer learns faster when the gradient is large, and slows down when 
the gradient becomes smaller. AdaGrad can amplify the learning rate when the previous 
gradient is small, and can constrain the learning rate when the gradient is large. Adam 
retained RMSProp’s approach of adjusting the gradient velocity in the past gradient direc-
tion and AdaGrad’s adjustment of the learning rate of the past gradient squared value, and 
“bias-correction” of the parameters, so that each learning rate has a clear range, so that the 
update parameters are relatively stable. The Adam algorithm is computationally efficient 
and suitable for problems with large data and parameters. Adam’s application to MNIST 
character recognition is significantly lower than other optimizers, as shown in Fig. 10 [21]. 
Therefore, Adam is the best choice. 

 

 
iterations over entire dataset 

Fig. 10. Diagram of the optimizer comparison [21]. 
 
The initial learning rate is set to 0.001, and the optimizer selects Adam. In general, 

within a reasonable range, the larger the batch size, the more accurate the direction to the 
optimum. If the batch size is too large, a local optimum may occur. The small batch size 
introduces more randomness and will bounce around the optimum and be difficult to 
achieve convergence. But in rare cases, the small batch size may work better. After testing, 
the batch size is set to 300. As for the selection of the activation function, except that the 
activation function of the fully-connected layer of the last layer is Softmax for outputting 
the probability of each class to which the target belongs, the activation functions of the 
remaining layers are all Rectified Linear Units (ReLU). 

5. EXPERIMENTS AND ANALYSIS 

The proposed CNN is based on adjusting the convolutional layers and fully-connected 
layers of the CNN architecture to explore the applicability of the HRRP dataset used in 
CNN applied in this research. The kernel size of the convolutional layer is 55, and the 
kernel size of the max-pooling layer is 22.  

In the experiment, 20% of the training set is used as the validation set in the training 
process, and the accuracy of the validation set is used to evaluate the quality of the model. 
The initial learning rate is set to 0.0001, and the batch size is 300. After 70% data training 

          MNIST MULTILAYER Neural Network + dropout
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set experiment, the Further, Fig. 11 shows the confusion matrix of the classification results 
by using the two-dimensional binary-map HRRP as the test dataset. The HRRP of the 
Gamma ship is similar to the Alpha ship, and the number of samples of Alpha is relatively 
large, so the probability of 1.01% of the Gamma ship is incorrectly predicted as Alpha ship. 
The Epsilon ship is similar to the Delta ship’s HRRP, and the Delta has a relatively large 
number of samples, so the Epsilon ship has a 1.63% chance of being mispredicted as a 
Delta ship. Recognition accuracy curves of training and testing set for three data formats 
are shown in Figs. 12 (a)-(c). 

 
Fig. 11. The confusion matrix of two-dimensional binary-map HRRP using CNN3C2F. 

 

 
(a) (b) (c) 

Fig. 12. Recognition accuracy curve of training and testing set for three data formats: (a) one-dimen-
sional HRRP data format; (b) two-dimensional gray-scale HRRP data format; and (c) two-dimen-
sional binary-map HRRP data format. 

 

As shown in Fig. 12 (a), the accuracy of the validation set does not increase signifi-
cantly after 250 epochs, so the epoch of the one-dimensional HRRP data format experi-
ment is set to 300. As shown in Fig. 12 (b), the accuracy of the validation set does not 
increase significantly after 150 epochs, so the epoch of the two-dimensional gray-scale 
HRRP data format experiment is set to 200, and the accuracy of the validation set in Fig. 
12 (c) does not increase significantly after 60 epochs, so the epoch of the two-dimensional 
binary-map HRRP data format experiment is set to 100. 

In the experiments, we split the data with two manners, including in the ratio of 5:5 
and 7:3, to the training and test dataset respectively. It can be seen from Tables 2-5 that the 
experimental results in the ratio of 7:3 for the training and test dataset are better, and the 
accuracy is improved by about 0.001~0.003. 

In order to facilitate the comparison of the four neural network architectures and the 
applicability of the three data formats, the experimental results of the training data of 70% 
are taken as an example. It can be seen from Tables 2-5 that from the perspective of archi- 
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tecture adjustment, a small increase in the convolutional layer or the fully-connected layer 
of the CNN architecture does not significantly improve the recognition rate. From the per-
spective of the data format fed to the neural network, O. Karabayır et al. [13] proposed 
stacking a one-dimensional HRRP data by just copying to obtain an enhanced performance 
two-dimensional gray-scale image and directly feeding the one-dimensional HRRP to the 
neural network. The difference in recognition rate is not significant, both between 98-99%. 
Compared with the former two, the two-dimensional binary-map HRRP data format pro-
posed in this paper has the best recognition rate, and can reach the recognition rate of more 
than 99%. 

In order to meet the application requirements of real-time ship target recognition in 
the future, the authors have counted the test time. This paper uses a training model with a 
better test accuracy to count the test time, that is, the dataset of the model is divided into a 
training dataset and a test dataset with a ratio of 7:3. “Total” means that 62,263 chips of 
test data are read continuously, and “one” means that only one chip of test data is read in 
an experiment. The time calculated in this experiment includes the calculation of file read-
ing, data format conversion, one-hot encoding and testing. 

From Fig. 13 and Tables 2-5, it can be seen that it takes a lot of time to read only one 
chip of data, which takes about 6 seconds on average. The average test time obtained by 
reading all the test data at one time is very fast, only about 0.00023 seconds, which means 
that every execution most of the time for a program is to initialize the environment and 
read files. The size of a single test data is not the main reason for the prolonged test time. 

 

Table 2. Network parameters and performance of CNN2C2F for 3 HRRP data formats. 
 one-dimensional 

two-dimensional 
gray-scale

two-dimensional  
binary-map 

Epoch 300 200 100 
Parameters 40778 310666 1195402 

Train : Test data 5:5 7:3 5:5 7:3 5:5 7:3 
Training time(s) 592.24 843.76 684.64 988.854 828.60 1173.98 
Validation Loss 5.90% 4.24% 4.36% 4.11% 3.73% 3.39% 

Validation Accuracy 98.25% 98.63% 98.57% 98.63% 99.11% 99.18% 
Testing time(s) (total)  8.42  9.74  21.89 
Testing time(s) (one)  6.02  5.77  5.89 

Test Loss 5.87% 4.34% 5.14% 4.38% 3.04% 3.10% 
Test Accuracy 98.15% 98.53% 98.27% 98.47% 99.16% 99.17% 

 

Table 3. Network parameters and performance of CNN2C3F for 3 HRRP data formats. 
 one-dimensional two-dimensional  

gray-scale
two-dimensional  

binary-map 
Epoch 300 200 100 

Parameters 48650 318538 1203274 
Train : Test data 5:5 7:3 5:5 7:3 5:5 7:3 
Training time(s) 682.94 918.00 695.89 992.17 848.14 1183.43 
Validation Loss 5.27% 4.50% 5.22% 4.49% 3.80% 3.50% 

Validation Accuracy 98.30% 98.47% 98.31% 98.51% 99.09% 99.14% 
Testing time(s) (total)  8.83  10.16  23.84 
Testing time(s) (one)  6.06  6.20  5.99 

Test Loss 5.32% 4.58% 5.41% 4.45% 3.30% 3.23% 
Test Accuracy 98.15% 98.46% 98.12% 98.44% 99.05% 99.15% 
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If real-time response is emphasized in actual application, the users can choose one-
dimensional HRRP data format as the input data type, and use CNN2C2F as the model, in 
which it only takes 8.42 seconds to predict all the test data. If higher accuracy is required 
in actual application, the users can choose two-dimensional binary-map HRRP data format 
as the input data type, and use CNN3C2F as the model. It takes 22.61 seconds to predict all 
the test data with the accuracy rate 99.20%. 

 

Table 4. Network parameters and performance of CNN3C2F for 3 HRRP data formats. 
 one-dimensional 

two-dimensional 
gray-scale

two-dimensional  
binary-map 

Epoch 300 200 100 
Parameters 53810 228082 670450 

Train : Test data 5:5 7:3 5:5 7:3 5:5 7:3 
Training time(s) 653.61 930.79 805.65 1120.80 975.30 1350.35 
Validation Loss 3.55% 3.43% 5.26% 4.14% 4.53% 3.37% 

Validation Accuracy 98.89% 98.88% 98.66% 98.79% 99.07% 99.25% 
Testing time(s) (total)  8.79  10.90  22.61 
Testing time(s) (one)  6.30  6.06  6.25 

Test Loss 3.58% 3.40% 5.16% 4.53% 3.79% 3.27% 
Test Accuracy 98.82% 98.84% 98.59% 98.64% 99.07% 99.20% 
 

 
Table 5. Network parameters and performance of CNN3C3F for 3 HRRP data formats. 

 one-dimensional 
two-dimensional  

gray-scale
two-dimensional  

binary-map 
Epoch 300 200 100 

Parameters 61682 235954 678322 
Train : Test data 5:5 7:3 5:5 7:3 5:5 7:3 
Training time(s) 669.04 903.25 804.37 1138.76 990.11 1361.47 
Validation Loss 3.52% 2.93% 5.08% 4.85% 5.25% 3.66% 

Validation Accuracy 98.91% 99.04% 98.55% 98.73% 99.06% 99.17% 
Testing time(s) (total)  8.82  10.30  22.75 
Testing time(s) (one)  6.61  6.04  6.10 

Test Loss 3.28% 3.00% 5.16% 4.86% 4.56% 3.67% 
Test Accuracy 98.89% 98.97% 98.31% 98.59% 99.10% 99.11% 

 

  
Fig. 13. Testing time for different CNN architectures with 3 HRRP data formats. 
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Table 6 summarizes some well-known CNN architectures compared with the pro-
posed architecture. These well-known CNNs, including LeNet, AlexNet and ZFNet, all 
use our dataset and two-dimensional binary-map HRRP data format. Table 6 shows that 
LeNet is the most similar to our architecture, but the performance is slightly worse. The 
architectures of AlexNet and ZFNet are much more complicated, and they cannot achieve 
better recognition accuracy. Table 6 exhibits that the proposed architecture, which has 
three convolutional layers and two fully-connected layers, is slightly better than the other 
well-known architectures. Therefore, for the recognition of our dataset, a deeper network 
may not be able to get better results but it consumes more time.  

 

Table 6. Comparison of different CNNs with our proposed architecture. 
 LeNet AlexNet ZFNet 

The proposed  
approach 

Parameters 1798966 36667966 23859190 670450 
Train : Test data 7:3 7:3 7:3 7:3 
Training time(s) 31097.16 130881.67 21539.12 1350.35 
Validation Loss 3.47% 6.20% 4.56% 3.37% 

Validation Accuracy 99.09% 99.04% 98.95% 99.25% 
Testing time(s) (total) 63.85 349.79 66.48 22.61 

Test Loss 3.53% 5.99% 4.78% 3.27% 
Test Accuracy 99.05% 98.94% 98.85% 99.20% 

 

Table 7 summaries classification results of some published papers. In Table 7, the 
datasets in the [11-13, 15, 16] studies are all established in a simulated manner, and the 
datasets used in our experiments are the data collected in the real-life situation. 

There are relatively few studies using deep learning on the HRRP target recognition. 
Most of the HRRP data of the researches are generated in a simulated way, rather than the 
data collected under the real-life environment. Therefore, it is difficult to be applied in 
real-world conditions to recognize the ship. 

From Table 7, it can be found that the accuracy of the research using the neural net-
work to identify the ship is better than the result of using the traditional approach. It also 
demonstrates the proposed approach is comparable to the other state-of-the-art HRRP tar-
get recognition approaches. 

 

Table 7. Comparison of different approaches for HRRP recognition performance. 

Approach Dataset Description 
Recognition 
accuracy(%) 

[11] Simulation data FMT, SVM 80% 
[12] Simulation data Frame segmentation, Bayes 89.36% 
[13] Simulation data MatConvNet 93.90% 
[15] Simulation data CNN-ELM 99.50% 
[16] Simulation data CNN-BiRNN 93.30% 

One-dimensional HRRP  
With our dataset 

Real-life data CNN3C2F 98.84% 

[13] with our dataset Real-life data CNN3C2F 98.64% 
The proposed approach Real-life data CNN3C2F 99.20% 

Bold values indicate the best performance with real-life data. 
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6. CONCLUSIONS 

This research constructs a ship radar HRRP dataset with the radar and AIS, and pro-
posed a CNN-based ship target recognition approach experimenting with this dataset. First, 
this paper describes how to build a real-life HRRP dataset of ship targets. Then, prepro-
cessing approaches for the ship HRRP dataset are described. After that, three different 
HRRP data format are proposed, including the common one-dimensional HRRP data for-
mat, the two-dimensional gray-scale HRRP data format proposed in [13], and the two-
dimensional binary-map HRRP data format proposed by us are introduced. Furthermore, 
we have designed four different architectures of CNN to compare the recognition perfor-
mance of the above three data formats by adjusting the number of network layers. Finally, 
experimental results showed that the proposed approach has a brilliant performance for 
recognition. 

The proposed approach has three key advantages: (1) Experiments with ship HRRP 
datasets collected by using radar and AIS from actual coastline in this research are more 
realistic than most other papers using simulated datasets; (2) The proposed two-dimen-
sional binary-map HRRP data format has better recognition performance than other data 
formats, so it can be known that the appropriate data preprocessing can improve the recog-
nition accuracy; (3) In this research, the experimental results show that the proposed ap-
proach based on CNN architecture can prove that CNN can automatically learn the discri-
minant deep features of HRRP. It is feasible to use CNN to automatically classify ship 
targets based on HRRPs. 

The result of the proposed approach is comparable to the other state-of-the-art HRRP 
target recognition approaches. Through the experiments in this research, it is proved that 
it is feasible and high-accuracy to use CNN to recognize the ship target based on HRRPs 
collected from the actual coastline. The findings of this research help to extend HRRP 
recognition technology to coastal surveillance and military radar automatic target recogni-
tion.  
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