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Many decision problems have two levels: one for strategic decisions, and another 

for tactical management. This paper focuses on the strategic level, more specifically the 
sequential exploration of the possible options and the final selection (recommendation) 
of the best option. Several sequential exploration and recommendation criteria are con-
sidered and empirically compared on real world problems (board games, card games and 
energy management problems) in the uniform (1-player) and adversarial (2-player) set-
tings. W.r.t. the sequential exploration part, the classical upper confidence bound algo-
rithm, the exponential exploration-exploitation algorithm, the successive reject algorithm 
(designed specifically for simple regret), and the Bernstein races, are considered. W.r.t. 
the recommendation part, the selection is based on the empirically best arm, most played 
arm, lower confidence bounds, based on the reward distribution or variants thereof de-
signed for risk control. This paper presents a systematic study, comparing the coupling of 
the sequential exploration and recommendation variants on the considered problems in 
terms of their simple regret. A secondary contribution is that, to the best of our 
knowledge, this is the first win ever of a computer-kill-all Go player against professional 
human players [16].    
 
Keywords: multi-armed bandit problems, metagaming, strategic choices, investment op-
timization, upper confidence bounds, simple regret, games  
 
 

1. INTRODUCTION 
 

Real world problems, ranging from electricity production and logistics to games, 
often involve two types of decisions: (i) tactical decisions, that is the (usually sequential) 
decision making problem involved in the everyday management of the system; (ii) stra-
tegic decisions, i.e. the long-term decisions such as investments, equipment (storage di-
mensioning) or contracts (buying options). 

In principle, the general real-problem can be modelled as a classical optimization 
one, where the action space contains both tactical and strategic options, and the tactical 
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and strategic decisions are jointly optimized. In many cases however, it is much easier to 
distinguish between both types of decisions, considering the nested problem made of a 
strategic level, where each transition of the strategic level implies solving yet another 
tactical sequential decision making problem.  

A simplified case is when the strategic decisions are taken once and for all, making 
the strategic problem a non sequential (thus simpler) optimization problem. The objec-
tive function considered at the strategic level however still requires one to solve the se-
quential tactical decision problem. The strategic objective function defines a computa-
tionally expensive optimization problem, possibly requiring fast approximations of the 
tactical level resolution and commonly involving stochastic or adversarial uncertainties.  

In the last decade or so, a wide body of theoretical and experimental works have 
been tackling non-sequential and often unstructured decision making problems, stemmed 
from the so-called bandit approaches [3, 24]. Strategic decision problems, while they can 
be modelled as bandit problems, however feature a very restricted time budget. Further-
more, in the 2-player (adversarial) case, they have a huge sparsity in the sense that the 
optimal solution (Nash equilibrium) contains few actions.  

The present paper proposes a systematic analysis of the bandit literature algorithms 
and its relevance w.r.t. strategic decision making problems, considering three representa-
tive benchmark problems. The performance criterion is the simple regret based on the 
general reward distribution possibly involving a risk criterion.  

The rest of this section presents the formalization of the problem, a motivating ex-
ample, and the background for the remainder of the paper. Section 2 describes the con-
sidered exploration and recommendation algorithms. Section 3 is devoted to the compar-
ative analysis of their experimental performances analysis in the 1-player and 2-player 
cases, considering the kill-all Go problem, energy management and Urban Rivals. The 
paper concludes in Section 4. 

 
1.1 Formalization 

 
There is no clear-cut characterization of strategic versus tactical decision making 

problems, although it is generally agreed that since strategic choices are made at a higher 
level, their tradeoff between exploration and evaluation is computationally more expen-
sive. After the game literature, the strategic (respectively, tactical) problem will be re-
ferred to as meta-gaming (resp., ingaming). Within the bandit framework (see below), 
the strategic problem is characterized by a small budget, specifically the number of itera-
tions T is small compared to the number of options. In the 1-player case (K arms), the 
number T of iterations is such that T < 100K; the simple regret (as opposed to the cumu-
lative regret [3]) is considered as performance criterion. In the 2-player case (K  K op-
tions, an option is a pair of arms), the number of iterations is less than the number of 
options (T ≤ K  K); the performance criterion is the average performance of the rec-
ommended distribution, naturally extending the simple regret to the 2-player case.  

Let us consider a set of strategic choices, a.k.a. arms or options in the bandit setting 
denoted with no loss of generality {1, …, K}. The time budget, a.k.a. Time horizon, T is 
finite. Given a performance criterion L, the exploration phase gathers T realizations L(θ1), 
L(θ2), …, L(θT), which sustain the selection of some θ* in the recommendation phase. 
The metagame in the 1-player case is detailed in Fig. 1.  
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Note that a simulator (emulating the resolution of the tactical decision making 
problem) is needed to evaluate L(θi). Such a simulator relies on the assumption that one 
can simulate the tactical choices after the strategic choices have been made. The simula-
tor assumedly enables to evaluate the tactical behaviors of both players. Indeed this as-
sumption requires that we can extrapolate the opponent strategy, or efficiently approxi-
mate it (such that playing optimally against the opponent strategy or its approximation 
does not make significant differences). This assumption, though a standard one in the 
game literature, does not hold for e.g. poker (where opponent modeling is a key strategi-
cal ability) or Go (where human players outperform computer-Go algorithms). 

The performance criterion is the simple regret, directly measuring the expected loss 
increase due to the strategic choices (to the extent that L(·, ·) is a good sampling of the 
possible outcomes). 

  Fig. 1. Metagaming with one players.               Fig. 2. Metagaming with two players. 
 

1.2 Motivating Example: High-Level Parameters of a Sequential Decision Making 
Problem 
 
In Section 1.2.1, we introduce the 1-player Markov Decision Processes (MDP) set-

ting, representative of the 2-player case as well. The following sections present three 
solvers: stochastic dynamic programming (SDP); direct policy search (DPS), and a hy-
brid approach which is the first contribution of our work. 

 
1.2.1 Markov decision processes 

 
Consider a system to be controlled. The system has an internal state xt at time t (e.g. 

current temperature, current stock levels). The transition model of the system is governed 
by the state equation (Eq. 1) and the controller sets its control variables ut using some 
policy ut = u(xt). The exogenous input it can be modeled as a Markov chain (possibly 
through increasing the state space dimensionality). The system is described along the fol- 
lowing equations: 
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(ct, xt+1) = f(xt, it, ut)         system equation    (1) 

         t
t T

C c


             total cost (2) 

ut = u(xt)                  u is the sought strategy    (3) 
it = MarkovChain(it-1)       a stochastic function    (4) 
 
The goal of such a Markov Decision Process (MDP) is to optimize the function u, 

such that the random variable C is “as small as possible”. As C is a random variable in 
the general case, different minimization criteria have been considered, possibly taking 
into account risk. 

1.2.2 Stochastic dynamic programming 

[8] has shown that, in the MDP case and for an optimization on expectation, an op-
timal u for solving Eqs. (1)-(4) is defined as follows: 

1( ) arg min ( ) ( , 1),t t
u

u o c u V x t       (5) 

where o is the observation, i.e. (xt, t) in the MDP case, and V(x, t) = infuct + ct+1 + … + 
ctime horizon T, with xt = x and for u an optimal-on-average policy for time steps t ≥ t. 

The very expensive computation of V(x, t) by backwards computation is the purpose 
of Stochastic Dynamic Programming (see e.g. [10] for a comprehensive introduction). 

 
1.2.3 Direct policy search 

 
While Stochastic Dynamic Programming (SDP) is quite efficient in the case of a 

linear or quadratic model, and accommodates large-dimensional decision u, it becomes 
very slow for high-dimensional state x (dimension > 250). This limitation (also addres- 
sed by Approximate Dynamic Programming) is the motivation for Direct Policy Search. 

Let us define: 

u(o) = θ(o),    (6) 

for some function θ parameterized by θ   (e.g., the weight vector of a neural net-
work). Then θ is optimized by minimization of the Simul function below: 

Function Simul(θ): 
 Construct the decision function o  u(o) as in Eq. (6); 
 Compute Simul(θ) = cost C for u (using a single simulation). 

Using human expertise for defining the θ function can make this approach quite 
efficient and anytime [9]. Note however that Simul is a stochastic function, as it depends 
on the random processes involved in the simulation, making the objective function θ  
Simul(θ) a noisy one. While noisy optimization is a difficult problem (see e.g. [20]), a 
good structured function might make the problem “sufficiently” smooth and convex for 
the convergence rate of an estimate θ̂ as a function of the computational budget c to be of 
the form E[Simul(θ) = O(1/c)]. 
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1.2.4 Direct value function search 
 
A variant of Direct Policy Search, based on the nice properties of the SDP repre-

sentation, is proposed in this paper. Formally, while Eq. (5) is kept, the value function 
V(xt) is optimized in the spirit of the DPS, as follows: 

 
V(x, t) = θ(x, t),    (7) 

 
where the optimal θ is optimized according to the Simul function below: 

 
Function Simul(θ): 

 Construct the decision function o  u(o) as in Eq. (5) using V(x, t) as in Eq. (7); 
 Compute Simul(θ) = cost C for u (using a single simulation). 
 
An extension is as follows: 
 

1( , ) inf ... ( , , 1)
t

t t k t t k
u

u x t c c x x t
      E     (8) 

where 
 θ(x, x, t) is a non-linear function of t and x, enabling the representation of com- 

plex controls; 
 θ(x, x, t) is a convex piecewise linear function of x, making Eq. (8) define a lin- 

ear programming problem if all ct are linear (quadratic extensions are possible). 
 
This setting benefits from both the scalability of linear or quadratic programming, 

and the genericity of direct policy search. In particular, one can show that all trajectories 
can be modeled within this setting, despite the restrictions on the convex piecewise line-
arity or quadraticity of θ(x, x, t) w.r.t. x. 

 
Formally, the proposed approach satisfies the following properties: 
1. If the cost ct is linear as a function of decisions, under linear constraints; if s  

θ(x, s) is convex piecewise linear; then decision making (Eq. 8) can be achiev- 
ed in polynomial time. 

2. If the cost ct is Lipschitzian, then any trajectory prescription p: s  s can be 
forced by some function  such that ∀x, t, the function x  θ(x, x, t) is con- 
vex piecewise linear with at most d + 1 linear cuts, where d is the dimension of 
the state space. 

 
Proof: Just set θ(x, s) = 2l||x − p(x)||1 (with l the Lipschitz constant for ct) for showing 
the result with 2d cuts. Optimizing the placement of linear cuts leads to d + 1 cuts.    

 
The main issue remains the (noisy) optimization of θ  E Simul(θ). 

 
1.3 Formal Background 

 
In the following, #E denotes the cardinal of the set E. Nt(i) is the number of times 
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the parameter i has been tested at iteration t (Nt(i) = #{j ≤ t; θj = i}). L̂t(i) denotes the av- 
erage reward for parameter i at iteration t 1

( ) ;
ˆ( ( ) ),

t j
t jN i j t i

L i r
 

  which is well defined  

for Nt(i) > 0. Upper and lower confidence bounds on L̂t(i) are given as: UBt(i) = L̂t(i) + 
ˆlog( ) / ( ); ( ) ( ) log( ) / ( )t t t tt N i LB i L i t N i  (often with a multiplicative constant factor 

plugged in front of the ).  
These confidence bounds are statistically asymptotically consistent estimates of the 

lower and upper confidence bounds in the 1-player case for a confidence converging to 1. 
For the EXP3 algorithm (see below), a weighted average is considered with 1ˆ ( )t tW i    
jt;j=i rj/pj(i), where pj(i) is the probability that i is chosen at iteration j given observa-
tions available at that time and i, Ŵ0(i) = 0). In the 2-player case, the quantities related 
to the second player are indicated with a prime (Ŵt(j), L̂t(j)). 

 
Following [13], the metagaming/strategic policy building involves:  
i) an exploration module, aimed at choosing θi (and θi in the 2-player case); 
ii) a recommendation module, aimed at choosing θ̂. 
 
The scope of this paper is restricted to the case where the detailed structure of the 

problem is unknown, and only available through high-level primitives such as the L 
function. It resumes an earlier work [11] that considered a different context and different 
bandit algorithms. The best performing algorithms in [11] are considered here together 
with new ones: the LCB recommendation, Bernstein races, Successive Rejects and Adapt- 
UCB-E. 

2. BANDIT ALGORITHMS 

A bandit algorithm involves an exploration and a recommendation strategy. Let us 
summarize the state of the art in exploration (Section 2.1) and recommendation (Section 
2.2); theoretical bounds are briefly discussed in Section 2.3. We then discuss paralleliza-
tion (Section 2.4) and risk analysis (Section 2.5). 

 
2.1 Algorithms for Exploration 

 
We present below several known algorithms for choosing θi, θi. The UCB (Upper 

Confidence Bound) formula is well known since [3, 24]. It is optimal in the 1-player case 
up to some constants, for the criterion of cumulative regret. The formula is as follows, for 
some parameter : θt = mod(t, K) + 1 if t ≤ K; θt = arg maxi L̂t-1(i) + 1log( ) / ( )tt N i 

   
otherwise. The EXP3 (Exponential weights for Exploration and Exploitation) algo-
rithm is known in the 2-player case [5]. It converges to the Nash equilibrium of the stra-
tegic game. In our variant, θt+1 = i with probability 

 

1

1{1,..., }

ˆexp( ( ))
(1 / ) .

ˆexp( ( ))
t

tj K

tW i
t

K t tW j

  



 


 

[13] has discussed the efficiency of the very simple uniform exploration strategy 
in the 1-player case, i.e. θt = arg mini{1,…,K}Nt-1(i); in particular, it reaches the provably-
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optimal expected simple regret O(exp(cT)) for c depending on the problem. [13] also 
shows that it reaches the optimal regret, within logarithmic terms, for the non-asymptotic 
distribution independent framework, with ( log( ) / ).O K K T  [26] has revisited recently 

the progressive discarding of statistically weak moves, i.e. Bernstein races; in this paper, 
we choose, as a next arm for exploration, the arm with smallest number of simulations 
among arms which are not statistically rejected: 

 

1
{1,..., }

( ) max ( )

arg min ( ).

t k t

t t
i K
UB i LB k

N i 




  

 
In many works, Bernstein bounds are used with a large set of arms, and coefficients 

in LB or UB formula above take into account the number of arms; we will here use the 
simple LB and UB above as our number of arms is moderate. Successive Reject (SR) is 
a simple algorithm, quite efficient in the simple regret setting; it explores uniformly non- 
discarded arms and at some given time steps discards the weakest arm; see [1, 16] for 
more details. Adaptive-UCB-E is a variant of UCB, with an adaptive choice of coeffi-
cients; see Fig. 3.  

 
Fig. 3. The adaptive-UCB-E algorithm from [1]. 

Importantly, we will also test progressive widening (see Section 3.1.2) and versions 
adapted for the risky case (see Section 2.5). 

 
2.2 Algorithms for Final Recommendation 

 
Choosing the final arm, used for the real case, and not just for exploration, might be 

very different from choosing exploratory arms. Typical formulas are: Empirically best 
arm (EBA): picks up the arm with best average reward. Makes sense if all arms have 
been tested at least once. Then the formula is θ̂ = arg maxi L̂T(i). Most played arm 
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(MPA): the arm which was simulated most often is chosen. This methodology has the 
drawback that it can not make sense if uniformity is applied in the exploratory steps, but 
as known in the UCT literature (Upper Confidence Tree [23]) it is more stable than EBA 
when some arms are tested a very small number of times (e.g. just once with a very good 
score  with EBA this arm can be chosen). With MPA, θ̂ = arg maxi NT(i). Upper Con-
fidence Bound (UCB): θ̂ = arg maxi UBT(i). This makes sense only if T ≥ K. UCB was 
used as a recommendation policy in old variants of UCT but it is now widely understood 
that it does not make sense to have “optimism in front of uncertainty” (i.e. the positive 
coefficient for / ( )tt N i in the UB formula) for the recommendation step. As Upper 
Confidence Bound, with their optimistic nature on the reward (they are increased for 
loosely known arms, through the upper bound), are designed for exploration more than 
for final recommendation, the LCB (Lower Confidence Bound) makes sense as well: θ̂ 
= arg maxi LBT(i). EXP3 is usually associated with the empirical recommendation tech-
nique (sometimes referred to as “empirical distribution of play”), which draws an arm 
with probability proportional to the frequency at which it was drawn during the explora-
tion phase; then P(θ̂ = i) = NT(i)/T. For the 2-player case, a variant of EXP3 benefiting 
from sparsity through truncation (TEXP3, Truncated EXP3) has been proposed [21]. It 
is defined in Fig. 6. For SR (successive reject), there are epochs, and one arm is discard-
ed at each epoch; therefore, at the end there is only one arm, so there is no problem for 
recommendation. 

 
2.3 Bounds 

 
The interested reader is referred to [1, 14] for a detailed analysis of simple regret 

bandit problems. For large T values, the best simple regret bounds (in O(K logK/T) with 
a universal constant) are obtained by a uniform exploration and EBA as a recommenda-
tion. For a UCB exploration, weaker bounds (for large T) are obtained: ( / log )O K T  
with EBA recommendation and log( )( )K T

TO with MPA recommendation. In practice how- 
ever, UCB most usually outperforms uniform exploration by far, as UCB shortcomings 
are only observed for huge (impractical) values of T. 

 
2.4 Parallel Settings 

 
Let us consider the parallel setting where p arms (possibly redundant) are simulta-

neously pulled.  
We can easily derive the following results from the state of the art:  

 
 Uniform exploration algorithms for simple regret: [14] has shown distribution-in- 

dependent bounds in ( log( ) / )O K K n for the simple regret with n rounds in a K-armed 
bandit with rewards in [0, 1]. This is obtained with uniform exploration; therefore the algo-  
rithm is fully parallel and with n rounds with p processors we get ( log( ) /( )).O K K pn  
A limitation of this positive result is that in spite of their theoretical optimality for huge 
values of n, algorithms with uniform allocation are not that convenient in the real 
world (see Section 2.3). It should however be mentioned that uniform allocation has 
obvious simplicity, robustness, parallelization advantages which, besides their mathe- 
matical foundation above, are recommended by practitioners in real-world cases [11]. 
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 Upper Confidence Bound for Best Arm Identification: [2] provides a different algori- 
thm, UCB-beta, which ensures that with probability at least 1 − , at least of the op- 
timal arms is found after a number of iterations linear (within logarithmic factors) in 

 

{1,..., }; 0

( ) 1
log( / ) ,

K

VarL
K

   


 

 
   

      

 
where k = supθ L(θ) − L(θ*). When the optimal arm is found, then the simple regret be-
comes zero, so this is the number of iterations necessary for reaching regret zero.  

If we use p processors, we can divide the variance by p, therefore the first term is 
divided by p, which suggests that we have a linear speed-up as long as the main term is 
the variance-based term. For ( )(inf )Var L

kp O



 we get a linear speed-up. 

 
2.5 Risk Analysis 

 
Various frameworks for risk analysis are relevant in the metagaming context. For a 

given risk level , let us define the conditional Value at Risk of a continuous random 
variable X, noted CVaR X, as the average over the quantile  of the X realizations. Then: 
 
 One might want to find an arm θ̂ which is less risky, minimizing on average the CVaR 

regret defined as rT = maxθ CVaR L(θ) − CVaR L(θ̂). In other words, one wants a good 
outcome result on average over runs. The performance criterion is then set to:  

 
ˆmax  ( )  ( ).CVaR L CVaR L


 E     (9) 

 One might want to find with high probability an arm which is good on average [22]. 
An appropriate criterion then regards the quantile  of the worst runs from the point of 
view of the average outcome reward: − CVaR  (max EL  EL(θ̂)). 

 Finally, one might want to maximize the quantile of the outcome:  

 CVaR( L(θ̂*))  CVaR( L(θ̂))   

where CVaR operates both on the randomness of the estimator θ̂ and on the random out- 
come L and where θ̂* is an optimal policy (including both an exploration policy and a 
recommendation policy) for minimizing  CVaR  L(θ̂*).  

The focus in the following will be on Eq. (9), as our goal is to find on average a 
non-risky policy. To the best of our knowledge, this criterion has not yet been considered 
in the bandit literature. We refer to [2, 27] for the risk analysis for cumulative regret. 

3. EXPERIMENTAL RESULTS 

All presented algorithms are investigated in the 1-player (playing against a stochas-
tic process) and 2-player (playing against an opponent, i.e. worst case robustness also 
referred to as adversarial) case. 
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3.1 One-Player Case: Playing Against Random 
 
Results on killall-Go were presented in [16]. We here provide results on Energy 

Management. 
 
3.1.1 Energy management 

 
In this section, we apply the methodology proposed in Section 1.2.4, i.e. decision 

policy u(o) = arg minuE(ct(u) + ... + ct+k) + θ(xt+k, xt+k+1, t + k + 1). 
We here use 
 
θ(xt, xt+1, t + 1) = θxt+1,    (10) 
 

which is a very simple model with constant marginal costs; the optimal value of θ was 
empirically chosen.  

We work with K = 20 options, corresponding to different investment choices. Each 
option is associated with m = 117 realizations. We here present the results using MPA, 
EBA, LCB as recommendation rules. We use UCB and Upper Confidence Bound tuned 
(UCBt) [4] as exploration rules, detailed in Section 2. UCBt is defined as follow: For 
some parameter : θt = mod(t, K) + 1 if t ≤ K;  

 
θt = arg maxi L̂t-1(i) + 

1 1log( ) / ( ) min{1/ 4, ( ( ))},t i tt N i V N i  
 

 

2 21
, ,1

2 log( )
( ) ( )

s

i i i ss

t
V s X X

s 
    

 
otherwise. We here consider budget T ≤ 100K = 2000. 

 
3.1.2 Huge number of options or small budget 

 
When T < K or T of the same order as T, it is not reasonable to work with UCB and 

LCB as if T was large. There should be a compromise between the number of studied 
arms and the precision of the analysis on different arms.  

This is termed progressive widening (PW). The principle of progressive widening is 
quite simple; instead of pulling the arm with best score at iteration t, we pull the arm with 
best score among arms with index at most C⌊t⌋. We here use the same data and same 
rules as in the Section 3.1.1. 

We here consider moderate budget T ≤ 10K = 200. Fig. 4 shows a comparison be-
tween the simple regret without PW and with PW when C = 2,  = 0.3 and  = 0.4. When 
 small, for example,  = 0.3, algorithm using PWoutperforms the simple regret; on the 
other hand, with  = 0.4, results are good. In particular, when using UCB as exploration 
rule and LCB as recommendation rule. In comparison, Successive Reject (SR) has a 
simple regret of −0.0153 ± 0.0022 (results are averaged on 100 trials). UCB with Pro-
gressive widening outperforms Successive Reject for moderate budgets (5K ≤ T ≤ 100K). 
For smaller budgets, Successive Reject outperforms UCB with Progressive Widening. 
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(a) Simple Regret UCB-EBA.   (b) Simple Regret UCB-MPA.     (c) Simple Regret UCB-LCB. 
Fig. 4. Results for simple regret with Progressive Widening (PW) using UCB ( = √2) as explora-

tion rules. EBA, MPA and LCB (from left to right) are used as recommendation rules. Here, 
T = 10K = 200. Note black line is result without PW, the range of standard deviation of the 
mean is marked in yellow. Red line is result with PW and  = 0.3, blue line is result with 
PW and  = 0.4. Abscissa is iteration number, ordinate is simple regret. All plots are aver-
ages over 100 trials. When T is small, PW outperforms other algorithms in spite of some 
instabilities when T corresponds to a newly added arm. 

 

3.1.3 Energy management: comparing different master plans 
 
Consider a problem in which the tactical level is hard. Then, the strategic level has 

to decide, for each simulation at the tactical level, the computational power devoted to 
this simulation. Formally, L(θ) is replaced by L(θ, c) where c is a time budget for the 
simulation. c large implies more precision (less bias) on the estimation; however, it also 
reduces the budget T for a given runtime, because the runtime will be nearly T  c. Clas-
sical simple regret bounds (see e.g. [14] for a survey) show that the optimal expected 
precision is ≤ C  K logK/T (reached e.g. by uniform exploration and EBA), where C is 
an absolute (i.e. distribution-independent) constant; therefore, if we want a precision , 
we know that we need T such CK logK/T ≤ . Deciding the runtime c necessary for a bias 
upper bounded by  is more difficult as existing bounds are far from being practical on 
non-trivial sequential decision making problems.  

In our work, we consider the following problem: the agent needs to decide how to 
distribute a limited number K + 1 of sites to energy production facilities. A site can be 
either a thermal power plant (TPP) or a hydro-electric plant (HEP), with the constraint 
that we must have at least one of each facility. This means that there are exactly K dif-
ferent possible configurations (the order does not matter): 1 TPP, 2 TPP, …, K TPPs. 
The resulting problem is a non linear stochastic sequential decision making problem (in-
flows and energy demand are random).   

Here, each possible configuration of the problem is an arm. The real value of such 
an arm is the expected cost of such a configuration under optimal management of the 
production facilities. 

In our experiment, we used a version of continuous MCTS (Monte-Carlo Tree 
Search [18]), as described in [17], to evaluate each arm. The longer MCTS runs, the less 
noisy and the closer it gets to the optimal value of a given configuration. There is an ob-
vious dilemma, between spending more time on each arm evaluation, and playing more 
arms. This is not the focus of this paper, but we believe this should be addressed in a 
future work.  



C. W. CHOU, P.-C. CHOU, J.-J. CHRISTOPHE, A. COUËTOUX, P. DE FREMINVILLE, ET AL. 

 

738

 

Table 1. (a) “real” value of each arm; computed by giving MCTS a large budget (100s); 
(b) expected simple regret of different bandit algorithms, as a function of the 
budget allowed to arm plays and to T.           

(a)                                        (b) 

 
 

We considered a problem with 8 locations, and at least one HEP and one TPP (K = 
7). The time horizon is of 5 time steps. An approximation of the real value of each arm is 
shown in Table 1. 

This problem is particularly difficult for two reasons. First, all the K configurations 
of the problem are not equally easy to solve for MCTS. Hence, for a small tactical budg-
et c, it is very likely that θ*

c = arg maxθ EL(θ, c) will be different from θ* = arg maxθ EL(θ). 
This means that if c is not big enough, the bandit algorithm is going to converge towards 
a suboptimal arm. Secondly, the distribution followed by each arm is very far from sat-
isfying common assumptions of bounded rewards and variances. Our problem does not 
have bounded rewards. And, because for small tactical budgets, MCTS will occasionally 
make mistakes, the distribution of some arms is heavy tailed. This is particularly harmful 
to the stability of the mean estimator, that is crucial in most bandit algorithms studied here.  

We compared five different bandit strategies: UCB, Successive Reject, and uniform 
exploration, UCB and SR using the median of the rewards instead of the mean reward. 
When it made sense, we used up to three different algorithms for final recommendation: 
LCB, EBA, and MPA. Our results are shown in Table 1. 
 
Discussion  From our results, it seems like the most determinant factor in reducing the 
simple regret is the budget given to MCTS. At a MCTS budget of 3.2 or 12.8 seconds, an 
increase in T actually decreases the performances of most algorithms. The only bandit 
algorithm that works in this setting is SR using the median. Looking closely at our data, 
it appears that the main reason for the poor performance of all the other algorithms is due 
to the heavy tail distribution of the arms. In such a setting, the mean estimator does not 
work. One needs to use a truncated version of the mean. 

Most likely, increasing the MCTS budget to a very high value until the arms are no 
longer heavy tailed would make the mean based algorithms more efficient. But this could 
prove impractical. We think that an important future work would be to find an adaptive 
method to progressively increase the bandit budget and the MCTS budget, in order to 
avoid wasteful increases in bandit budget, as seen in our results (see Table 1). 
 
3.1.4 Energy management with risk 

 
We here work on the risky case, as discussed in Section 2.5, i.e. we aim at minimizing  
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ˆ(max ( ) ( )).CVaRL CVaRL


 E    (11) 
 
We work on the same data as in Section 3.1.1. We modify recommendation rules and 
exploration rules as follows for this case: 
 
 EBA, LCB become EBArisk and LCBrisk by replacement of L̂T by the empirical estimate 


TCVaRL of CVaR LT. 

 UCB becomes UCBrisk by defining θi as follows 
 

1
ˆarg max ( ) log( 1) / ( )  otherwise.i t t

i
CVaR L i t N i      

  
Experiments have been conducted to assess the ability of the proposed modified 

strategies to minimize the risk criterion defined by Eq. (11). Their results obtained with a 
selection of parameters are given by Fig. 5. 

In the first experience (Fig. 5 (a)), the exploration strategy is fixed to uniform. The 
comparison between the EBA/LCB and their risk EBArisk/LCBrisk counterparts demon- 
strates that recommendation rules can be specifically derived for risk minimization. 
Moreover, these modified rules outperform the previously presented approaches by the 
only change of the recommendation strategy. In the same manner, by fixing the recom-
mendation procedure to MPA, Fig. 5 (b) shows that one can minimize risk by only 
switching exploration rule from UCB to UCBrisk. Risk can thus be minimized through an 
alternative choice of exploration and/or recommendation strategy. Furthermore, Fig. 5 (c) 
also indicates that uniform exploration with risk-sensitive recommendations (EBArisk or 
LCBrisk) leads to comparable performances than UCBrisk with MPA recommendation. 
Nevertheless, these results emphasize as well the importance of the combination of rules. 
For instance, Fig. 5 (b) points out that UCBrisk-EBA configuration results are close to 
results for UCB-MPA and are clearly outperformed by the UCB-EBArisk approach. Re-
sults show that it is worth using EBArisk and LCBrisk rather than EBA and LCB, even 
with moderate values of T. Also, experiences suggest, in a risk minimization perspective, 
that uniform exploration should always be associated with EBArisk or LCBrisk and UCBrisk 
with EBArisk, LCBrisk or MPA recommendation. In the last case, Fig. 5 (d) shows that the 
combination of UCBrisk with EBArisk or LCBrisk doesn’t lead to an increase of perfor-
mances in comparison to UCBrisk-MPA. 

 
3.2 Two-Player Case: Sparse Adversarial Bandits 

 
This section is devoted to experiments around strategic optimization in 2-player 

cases. Section 3.2.1 discusses the impact of sparsity. Section 3.2.2 presents experimental 
results on Urban Rivals. 
 
3.2.1 Sparsity in 2-player games 

 
Recently [21] proposed a variant of EXP3 called TEXP3. TEXP3 takes its root into 

the fact that decision making algorithms in games rarely have enough time to reach the 
nice asymptotic behavior guaranteed by EXP3. Also, EXP3 fails to exploit that in most 
games, the number of good moves is rather low compared to the number of possible  
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(a) Comparison of LCB/EBA and LCBrisk/ 
EBArisk with an uniform exploration. 

(b) Comparison of UCB/UCBrisk-MPA with 
UCB-EBArisk and UCBrisk-EBA. 

     
log (#iterations)                              log (#iterations) 

(c) Comparison of UNIF-EBArisk/LCBrisk with 
UCBrisk-MPA. 

(d) Comparison of LCBrisk, EBArisk and MPA 
with UCBrisk exploration. 

Fig. 5. Results for risk log (risk) is plotted against log (#iterations). 

 
moves K. TEXP3 is an attempt to exploit these two characteristics. 

T = 100  K = 2000. The risk level is fixed to risk = 0.1. For UCB, LCB , UCBrisk 
and LCBrisk,  = √2. Plots are averaged over 100 trials. 

It uses the outcome of EXP3 and truncates the arms that are unlikely to be part of 
the solution. Algorithm 6 describes the implementation. The constant c is chosen as 1/T 
maxi(Txi)

 for some   ]0, 1[ (and d accordingly), as in [21], while T is the number of 
iterations executed. We set  = 0.7 in our experiments, following [7, 21]. 

The natural framework of EXP3 is a 2-player game. 
 
3.2.2 Urban rivals 

 
In this section we apply EXP3 and TEXP3 to Urban Rivals, a stochastic card games 

available for free on Internet and that fits the framework. The game is as follows: (1) 
player 1 choose a combination 1  {1, …, K1} of cards; (2) simultaneously, player 2 
choose a combination    {1, …, K} of cards; (3) then the game is resolved (ingaming). 
We consider a setting in which two players choose 4 cards from a finite set of 10 cards. 
There exists 104 combinations, yet by removing redundant arms, we remain with 715 
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different possible combinations (both K1 = K2 = 715), allowing the same card to be used 
more than once. The first objective is to test whether EXP3 (and TEXP3) is stronger than 
a random player for different numbers of iterations T. We are specifically interested in 
situation where T is small (compared to K1  K2) as it is typically the case in games. Ta-
ble 7 (left) present the score (in %) of EXP3 versus a random player. EXP3 significantly 
beats the random player when T > 25000. It can thus execute a strategic choice that out-
performs a random player when they have similar tactical capabilities. As T grows, the 
strategic choice becomes better. Next we look into a way to make an even better choice 
with a smaller T. Recently TEXP3 has been proven to outperform a random player with 
less information than EXP3 (experimentally in [21], theoretically in [7]). Table 7 (right) 
presents the performance of TEXP3 against a random player under the same settings as 
EXP3 above. These results are in line with previous studies; however, the improvement 
is much better  probably because we have here a highly sparse problem. Even with the 
lowest setting (T = 10000), TEXP3 managed a strong performance against a random 
player. Again, with little information (T << K1  K2), TEXP3 can make strategic choices 
that influence the outcome of the game positively; furthermore, it clearly outperforms 
EXP3. 

 

 
Fig. 6. TEXP3 (truncated EXP3), offline truncation post- 

EXP3. 
Fig. 7. EXP3 vs Random (left) and 

TEXP3 vs Random (right). 

4. CONCLUSIONS AND PERSPECTIVES 

The investigation of the strategic decision making problem in the 1-player case 
demonstrates that the most important component is the exploration one, and that UCB 
generally is the best exploration algorithm (except for very small budget, see below). 
This result, consistent with earlier results on artificial problems [13], is surprising as the 
performance criterion is the simple regret (the natural one for strategic choices): Despite 
their asymptotic optimality (within logarithmic factors) for both a fixed distribution and 
a distribution-free setting w.r.t simple regret, uniform exploration algorithms are outper-
formed by UCB by far. It is worth noting that the UCB variant referred to as Adapt- 
UCB-E, designed for parameter free simple regret, behaves well. Lastly and importantly, 
Successive Reject outperforms UCB variants for the small time budget; SR, de-
signed for simple regret, shows a very stable behavior (never very bad). However, for 
very small time budgets, Progressive widening is necessary; see below.  

Let x and y be the approximate Nash equilibria as proposed 
by EXP3 for the row and column players respectively. 
Truncate as follows 
 
 xi = xi if xi > c, xi = 0 otherwise; 
 yi = yi if yi > c, yi = 0 otherwise. 
 
Renormalized: x = x/i xi; y = y/i yi.  
Output x, y. 
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Regarding the recommendation algorithms, the results confirm the usual practice 
in Monte-Carlo Tree Search: the lower confidence bound performed very well; the most 
played arm and the empirically best arm also performed well. It must be emphasized that 
many practitioners in the Computer-Go literature (based on heavily tuned bandit algo-
rithms) use combinations of EBA and MPA and LCB as recommendation arms for opti-
mal performance. As could have been expected, and was also reported in [11], EBA be-
comes weaker as the number of arms increases. Bernstein races performed moderately 
well; further work will be devoted to check whether hyper-parameter tuning can improve 
their results. Adapt-UCB-E performs well, though it remains comparable to SR or other 
UCB variants. Last but not least, Progressive Widening is shown to be highly efficient 
for moderate K values. 
 
Risk. Several risk criteria have been defined (Section 3.1.4), relatively to the algorithm 
stochasticity and relatively to the outcome distribution; these criteria are not equivalent. 
The performance was shown to significantly improve when using risk-sensitive criteria 
in both exploration and recommendation, even with a moderate time budget. 
 
Progressive widening and very small time budget. Progressive widening, first pro-
posed by [19, 28] to handle a large number of options, was extended to stochastic tree 
search with continuous domains in [17]: at iteration t, one selects the arm with best score 
with index at most C⌊t⌋. Significant evidence confirms the relevance of the PW heuris-
tics (with an exponent  circa 0.3). Notably, PW is the only relevant algorithm for T < K, 
contrasting with other algorithms, including successive reject. 
 
In the 2-player case, EXP3 performed very well, confirming earlier results [6, 12, 21]; 
this was expected as EXP3 is dedicated to the adversarial setting. The efficiency of the 
truncation algorithm TEXP3 on sparse problems [21] was also confirmed (as mentioned, 
metagaming often yields sparse problems). Unexpectedly, the TEXP3 results were much 
better than in the original paper [21], which is explained from the higher sparsity of the 
benchmark problems. Results include experiments on a real game, Urban Rivals, where 
the strategic choice consists in choosing the cards. 
 
Further work. No prior knowledge about the structure of the arm space (e.g. domain 
knowledge, similarity) was involved in this paper. In the 1-player case, the literature on 
how to use prior knowledge in a bandit setting (e.g. progressive widening, progressive un- 
pruning) is advancing at rapid pace. How to use a structure on the arm space (e.g. similarity 
or distance between arms) [15, 17, 19, 25] is among our perspectives for further research.  
 

In the 2-player case, both the structure of the search space, and the prior knowledge 
on the adversarial strategic choices, have been to a large extent ignored in the literature. 
How to handle such prior knowledge is the main goal of our further work. 
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