
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 30, 637-652 (2014)

637

Multi-Step Learning to Search
for Dynamic Environment Navigation*

CHUNG-CHE YU1 AND CHIEH-CHIH WANG1,2
1Graduate Institute of Networking and Multimedia

2Department of Computer Science and Information Engineering
National Taiwan University

Taipei, 116 Taiwan
E-mail: fish60@robotics.csie.ntu.edu.tw; bobwang@ntu.edu.tw

While navigation could be done using existing rule-based approaches, it becomes

more attractive to use learning from demonstration (LfD) approaches to ease the burden
of tedious rule designing and parameter tuning procedures. In our previous work, naviga-
tion in simple dynamic environments is achieved using the Learning to Search (LEARCH)
algorithm with a proper feature set and the proposed data set refinement procedure. In
this paper, the multi-step learning approach with goal-related information is proposed to
further capture the successive motion behavior of the user in complex environments. The
behaviors of the demonstrator could be matched by the motion control module in which
policies of the demonstrator are well captured.

Keywords: learning from demonstration, robot navigation, dynamic environments, lear-
ning to search, motion behavior learning

1. INTRODUCTION

The learning from demonstration (LfD) [1] techniques have been applied to develop
control policies for mobile robots in recent years [2-6]. It would be natural and attractive
to find a way to teach a robot to learn behaviors from demonstrations instead of complex
rule designing, modeling, and parameter tuning procedures. It had been shown that the con-
trol policies in static environments could be learned using such LfD framework [6]. Thus,
we further focus on teaching a robot to navigate in dynamic environments in this paper.

The issues of the “freezing robot problem” in robot navigation are discussed in de-
tail [5]. Briefly speaking, a robot may freeze in one place or perform unnecessary ma-
neuvers to avoid collisions. The goal of our work is to accomplish collision-and freez-
ing-free navigation in dynamic environments. A model-free approach is used in which the
motion control parameters only come from the implemented Learning to Search (LEARCH)
[7] algorithm. The LEARCH algorithm had been shown that the robot locomotion and
manipulation problems could be solved using the functional gradient methods [2]. In our
previous work, the one-step greedy approach is further used to accomplish reactive mo-
tion control in a simple dynamic environment with the modification of a data refinement
procedure [8]. The learning performance is enhanced due to this modification to well
capture the behaviors of the demonstrator. The main assumption of the proposed ap-

Received February 28, 2013; accepted June 15, 2013.
Communicated by Hung-Yu Kao, Tzung-Pei Hong, Takahira Yamaguchi, Yau-Hwang Kuo, and Vincent Shin-
Mu Tseng.
* This work was supported in part by National Science Council, National Taiwan University and Intel Corpora-

tion under Grants NSC 100-2221-E-002-238-MY2, NSC 102-2221-E-002-179, NSC 100-2911-I-002-001,
and 101R7501.

admin
打字機文字
DOI:10.1688/JISE.2014.30.3.6

CHUNG-CHE YU AND CHIEH-CHIH WANG

638

proach is that the demonstrator would perform the same policy during the demonstration.
The goal location is given from the other high level planning module and a valid control
policy should exist for the demonstrator to navigate through the environment. The col-
lected data could be used to extract both the perception and action feature vectors. Then
the control policy for navigation could be learned using the proposed approach with
these perception and action features.

To further analyze the performance of the proposed algorithm and step closer to the
real-world setting, the experiments from a more complex simulation world are studied. It
is discovered that the information of the goal is essential for the learner to learn the poli-
cy. Second, the learned control policy may not be stable during successive steps as the
demonstrator because of the one-step greedy method. The multi-step learning algorithm
with goal information is developed to solve these issues. It is assumed that the next few
N steps worlds could be predicted based on the chosen actions of the controlled agent
and other moving agents. The perception feature could then be extracted accordingly
with the corresponding control feature.

The rest of this paper is organized as follows. Related works are briefly reviewed in
section 2. The learning algorithm is presented in section 3. Our previous work will be
briefly described and the multi-step learning algorithm with goal information will be
covered. The experimental results in complex environments are presented in section 4.
The conclusion and future work are listed in section 5.

2. RELATED WORKS

Robot navigation in dynamic environments is mostly accomplished using two mod-
ules: one is a planning system which generates a trajectory to reach the goal; the other is
a local reactive motion control system which guides the robot to follow the planned tra-
jectory and avoid any static and dynamic obstacle with imperfect environment models
[9]. The failure cases of the planning module for robot navigation are discussed in detail
and the rule-based nearness diagram (ND) navigation method [10, 11] is used as the re-
active navigation module to avoid the dead states when the planning module fails. For
the failure cases of the ND method, the robot stops and then turns around on itself to
update the model of environments in all directions for finding any potentially navigable
valley. The drawbacks of the ND method could be that it is hard to tune the parameters
in crowded and highly dynamic environments. In addition, it could be challenging to
generate human-like motion patterns based on the manmade rules.

Still based on a planning model, a crowd simulator is used to learn a path planner
from example traces [4]. The planned path is generated based on the prior knowledge
about the environment. Utilizing the information from local perception during the navi-
gation, the values of environmental factors such as moving direction and velocity of the
surrounding agents are continuously updated and the path to the goal location will also
be refined if necessary. It is assumed that the estimation of the environmental features is
updated at every time step and the re-planning is performed every few time steps. To
plan such a path for the next few time steps, the prediction of the flow features from the
moving crowds is needed. Thus, the Gaussian processes (GP) model [4] is used for the
environmental feature estimation.

However, the GP model may not be feasible to solve the “freezing robot problem”.

MULTI-STEP LEARNING TO SEARCH FOR DYNAMIC ENVIRONMENT NAVIGATION

639

The issues of the “freezing robot problem” are argued in [5]: due to the uncertainty ex-
plosion of moving agents, all forward paths may be decided as unsafe by a planner. Alt-
hough the quality of the motion prediction could be improved, without noticing the fact
of joint collision avoidance, the robot may still freeze in place or perform unnecessary
maneuvers to avoid collisions. To solve the robot freezing problem, the researchers are
inspired by the real world observation in which the phenomenon of joint collision
avoidance could be observed in the real world for pedestrians to make sufficient spaces
for navigation. Accordingly, the interaction Gaussian processes (IGP) model [5] is de-
veloped to estimate the crowd interaction from data by introducing the dependencies
between Gaussian processes. The independent GP priors are coupled by multiplying in
an interaction potential and the interaction could be modeled to present the occurrence of
joint collision avoidance. The interaction potential contains a parameter to control the
safety distance of the repulsion and another parameter for its strength. Even though some
different settings and the resulting interaction potentials are shown in their work, it could
be still challenging to tune the parameters. In the real world problems, this could be even
worse as the interaction potential should not be the same based on each moving agent’s
own policy. Using one universal interaction potential to introduce the dependencies for
the crowds could be improper whereas introducing parameters for each agent is even
more impractical due to the high complexity.

Other than using the LfD frameworks, the overall collision probability can be used
to rank candidate trajectories for accomplishing the navigation by considering the proba-
bility of colliding [12]. It is checked how serious the collision will be instead of checking
if a collision occurs. In general, the aim of a robot is to reach its goal position while
minimizing its collision probability. Although the navigation could be done in such set-
tings, lots of parameters tuning and setting processes are still needed.

In our previous work, navigation in simple dynamic environments is achieved using
the LEARCH algorithm with a proper feature set and the proposed data set refinement
procedure [8]. In this paper, to further capture the successive motion behavior of the user
in complex environments, the multi-step learning approach is proposed. The behaviors of
the demonstrator could be matched by the reactive motion control module in which poli-
cies of the demonstrator are well captured.

3. THE LEARNING ALGORITHM

In this section, our previous one-step greedy approach with data set refinement
procedure and learning results are briefly reviewed. Some implementation details may be
omitted due to the page limit and can be found in our previous work [8]. Then the per-
formance and issues in a more complex world are discussed. The multi-step learning
approach with goal-related information is proposed to deal with these issues. The per-
formance is significant enhanced in terms of training error and the testing behavior.

3.1 Implementation in a Simple Simulation World

The assumption of the original LEARCH algorithm is that the mapping from states
to features is static and fully known a priori [3]. However, if the mapping from states to
features is dynamic or not known a priori, the planned paths could not be generated dur-

CHUNG-CHE YU AND CHIEH-CHIH WANG

640

ing the training process. Thus, the main difference between the original LEARCH algo-
rithm and our previous works is that each example path is seemed as many example in-
stances. Instead of planning a path, the one step greedy loss-augmented cost states are
computed based on instances from the example paths [6, 8].

During the demonstration, the motion control data and the maps of the training en-
vironments are recorded to form the feature vectors for the training process. The full
feature vector consists of the perception feature and the control feature. The recorded
map with agents is used to extract local perception data from the user-controlled agent
and a nine-dimensional feature vector is formed by the perception data. The nine entries
consist of the left, ahead, and right information of the observed environment from the
agent which are further composed of the Manhattan distance between the agent and the
obstacle, the type of the obstacle, and the speed of the obstacle. 1 is used for static ob-
stacles, 0 for clear spaces if there is no obstacle within the limit range, and 1 for moving
agents. When there is no obstacle within the limit range, the distance is set to a maximum
value and the speed is set to 0. Here, the maximum value is 10 because a grid world of
size 3 by 8 only is used in our implementation. The left most and right most boundaries
of the simulation world are considered as static obstacles whereas the top most and bot-
tom most boundaries are considered as clean spaces. Then, the control feature is formed
based on the control commands. The control feature is a four-dimensional binary feature
to indicate the commands of up, left, stop, or right. Thus, if the user decides to stop, the
control feature should be (1, 1, 1, 1).

The procedure of the algorithm is presented in Algorithm 1 with step number N = 1
and the feature function mentioned above. The simple 0-1 loss function is used. In line 5,
for each valid control command, the next one step feature is calculated. In line 6, using
the current learned policy applied with the extracted features, the minimum cost one will
then be selected to be the positive example for line 7. The corresponding user-provided
demonstration data would be the negative example. The AdaBoost [13] algorithm with
decision stump is then used to do the classification in line 10 to get the log-hypothesis ht
for the log-costmap updating procedure. The training process is terminated if the learned
examples are close enough with the demonstration.

Algorithm 1 The revised LEARCH Algorithm
Require: training data, loss function, feature function, step number N

1. Initialize log-costmap to zero S0 = 0
2. for training iteration ttrain = 1 to T  1 do
3. Initialize the data set to empty
4. for training data i = 1 to I with length larger than N do
5. Compute the loss-augmented costmap / states for N step(s)
6. Find the minimum cost loss-augmented path / state
7. Generate positive and negative examples
8. end for
9. Form a data set without ambiguity for some ttrain > 0

10. Train a regressor or classifier on the generated data set to get log-hypothesis ht
11. Update the log-costmap St+1 = St + tht with step size t
12. end for
13. Return final costmap exp(St)

MULTI-STEP LEARNING TO SEARCH FOR DYNAMIC ENVIRONMENT NAVIGATION

641

It is observed that during the training, the training error of the classifier in line 10
may increase to indicate that many learned examples are the same as the demonstration.
This could be shown in the blue curve in Fig. 1. The positive and negative examples
could not be differentiated by the classifier because each pair of the corresponding posi-
tive and negative examples have the same feature value but with different labels. While
those learned examples are consistent with the demonstration, there still may be some
learned examples which are inconsistent with the demonstration. These ambiguous ex-
amples which would cause bad performance to the classifier should be eliminated while
the others are still usable for the classifier. Thus, the line 9 is added to the algorithm
compared with the original LEARCH algorithm.

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tr
ai

ni
ng

 e
rr

or

training iteration

Training error of the learned policy with loss (red) / classifier (blue)

output policy
inner loop classifier
(Algorithm 1, line 10)

Fig. 1. The training error of the learned policy with loss and the classifier. As the training iteration

increased, the error of the learned policy cost map exp (St) decreases while the error of the
classifier in Algorithm 1 line 10 increases.

After some training iteration ttrain > 0, if it is observed that the training error of the

classifier exceeds some certain value like 0.4, the collected examples should be refined
to get an example set without ambiguity. The learned policy could then be further im-
proved in the following iterations.

Throughout this paper, there are three types of training error and will be described
here for better understanding. The first type of training error comes from the classifier in
the LEARCH algorithm and is called “training error of the classifier” as mentioned
above. The second one is the training error with loss function in terms of control outputs
compared with the demonstrations during the training process which is called “training
error of the learned policy with loss”. The third one is the training error without loss
function in terms of control outputs compared with the demonstrations as self-testing.
For simplicity, it is called “training error” after section 3.4. The second and third one are
calculated as: mismatched output instances/total demonstration instances. The mis-
matched error is only counted once for multiple output commands with the same cost.

CHUNG-CHE YU AND CHIEH-CHIH WANG

642

3.2 Experimental Settings of the One-Step Greedy Approach

The simulation world is a grid world of 3 by 8. Example environments are listed in

Figs. 2 (a) and (b). It is assumed that the approximate goal direction is always the front
of the agent thus the control commands are only consisted of up, left, stop, and right. The
moving speed of the controlled agent is limited to 1. A human subject is told to control
the agent to navigate through the environment with the same control policy from any
initial position to (2, 8). The navigable places in the environment may be occupied with
other moving agents during the navigation. Those moving agents would move ahead at
various speeds while avoiding the collision with another agent. After the data collection
and training stages, different static and dynamic environments are used to test the learned
policy.

(a) Dynamic world. (b) Static world with (c) Learning result (d) Learning result (e) Learning result

user’s policy. Settings 1. Settings 2. Settings 3.
Fig. 2. The snapshots of the simulation example world and learning results in the static environ-

ment using different settings. The white block indicates clean space. The black block
means static obstacle. The cyan block indicates the controlled agent. The initial position of
the user controlled agent may change in each training data. Other moving agents may have
different colors while keeping the same color during the simulation for better visualization.
The next-step motion of those agents will be displayed as triangle to indicate the moving up
or rectangle when the agent decides to stop in the same position as in (a). The arrows, S
symbols, and numbers are added in (b)-(e) for better understanding of the user’s policy and
the learning results with the corresponding position in the simulation world. The S symbol
in (c) stands for stop command. Settings 1: perception feature with original LEARCH algo-
rithm. Settings 2: perception feature and control feature with original LEARCH algorithm.
Settings 3: perception feature and control feature with the modified LEARCH algorithm.
The stop commands would cause the agent to get stuck in the static environment using
perception feature only. The red (dark) arrows in (d) and (e) indicate the differences be-
tween the two settings.

3.3 Learning Results of the One-Step Greedy Approach

Three different settings are used to show their individual performances. In the first
two settings, the original LEARCH algorithm is used but with different feature functions.

MULTI-STEP LEARNING TO SEARCH FOR DYNAMIC ENVIRONMENT NAVIGATION

643

Only the perception feature is used in the first setting whereas the full feature vector
which consists both of the perception and control features is used in second scenario.
The third one is the proposed method. The modified LEARCH algorithm and full feature
vector are used to increase the performance. The trained policies in the static environ-
ment are shown in Figs. 2 (c)-(e). It could be shown that the stop commands in Fig. 2 (c)
would cause the agent to get stuck in the static environment using the perception feature
only. On the other hand, in Figs. 2 (d) and (e), the agent could be led to navigate through
the environment with any one of the two policies. Compare with the training policy from
Fig. 2 (b), note that in (1, 1), (2, 3), and (3, 6), proper commands are learned based on
the training examples. To further compare the performance between setting 2 and 3, we
also notice that some commands differ from those in Fig. 2 (b). In Fig. 2 (d), the output
command in (3, 5) differs from demonstration while in Fig. 2 (a), the output command in
(2, 1) does not match the demonstration. However, with the proposed modification, the
training error of the learned policy with loss is indeed reduced as shown in Fig. 3. With-
out the loss, the number of mismatch examples is 1 out of 142 using the proposed data
refinement procedure whereas for setting 2, using the original LEARCH algorithm, the
number is 10 out of 142.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tr
ai

ni
ng

 e
rr

or

training iteration

Training error of the learned policy with loss

original LEARCH
with data set refinement

Fig. 3. The training error of the learned policy with loss. The red curve is the result of original

LEARCH algorithm while the black curve is the proposed method.

After the comparison in static environments is discussed, the results from dynamic

environments are presented. In Fig. 4, the two moving agents in the mid line keep spaces
for the particular agent to pass the gate way while moving ahead without collision. The
particular cyan agent also recognizes the fact thus decides to utilize the free spaces and
moves to the mid line to complete the navigation task. In Fig. 5, the agents in the mid
line do not reserve free spaces for others to pass the gate way. In other words, the inter-
action potential is low for those agents. Unless using different parameters for the interac-
tion potential, the interaction model could not be captured well. Whereas using the pro-
posed model-free approach, the cyan agent could recognize the situation. The cyan agent
decides to cut in the mid line and follows the agent ahead to complete the navigation.
The intuition is that the interaction relations between the controlled agent and other
moving agents are preserved from the collected data. The policy to interact with different

CHUNG-CHE YU AND CHIEH-CHIH WANG

644

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4 (e) t = 5

(f) t = 6 (g) t = 7 (h) t = 8 (i) t = 9

Fig. 4. One of the testing results. The behavior of joint collision avoidance is well captured. Uti-
lizing the free spaces reserved by the two agents in the mid line, the cyan agent bypasses
the two agents to navigate through the gate way.

moving agents is consistent and could be extracted by the learning algorithm to repro-
duce the same behavior.

Using the proposed approach, different control policies could be learned to person-
alize the control policy if needed. In the simulation results, another data set is collected
to verify this statement in which a lining behavior is learned. The agent would be led to
the mid line as soon as possible and follow the movers ahead to pass the gate way in-
stead of trying to bypass the others as previous example shown in Fig. 5.

3.4 Multi-Step Approach

To further analyze the performance of the proposed algorithm, the experiments
from a more complex simulation world are carefully studied. The simulation world is
now an m by n map larger than the original 3 by 8 world. The user could only observe
the surrounding 5 by 5 window in which the user controlled agent will always appear in
the center of the window as in Fig. 6. All the moving agents have maximum moving
speed 1 and could move four-neighbor direction or stay in the same position. The infor-

MULTI-STEP LEARNING TO SEARCH FOR DYNAMIC ENVIRONMENT NAVIGATION

645

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4 (e) t = 5 (f) t = 6

Fig. 5. Another testing result. When t = 1, the output command is up. This means the cyan agent
tries to bypass other agents to navigate through the gate way. However, in this case, the
agents in the mid line do not reserve free spaces for others to pass the gate way. The cyan
agent recognizes the fact and decides to cut in the mid line at t = 2. After that, the cyan
agent has to follow the agent ahead to complete the navigation.

Fig. 6. The snapshot of the complex simulation window. The user controlled agent will always

appear in the center of the window to simulate the robot-centered world. The new added
light yellow block right next to the user controlled agent is the waypoint which may be
placed outside the local window during the navigation.

mation of the next-step motion is displayed as triangle to indicate the moving direction
or rectangle when the agent stays in the same position.

In order to evaluate the performance, the motion of the moving agent is pre-defined
thus every control sequence could be reproduced for analyzing the results of different
policies. During the experiments, it is soon discovered that the information of the goal
would be essential for the learner to learn the policy instead of using perception feature
and control feature only as in the simple simulation world. This could be shown in Fig. 7.
Not only the perception feature only setting gets high error rate as expected, the training
error is also high for using both the perception feature and control feature. It is found out
that our previous argument: the information of goal / waypoint is not needed is only
suitable for the simple environment and setting in section 3.2. While all the agents in-
cluding the user controlled agent are heading up, the information of the goal would be
similar between demonstrations and could be little or no help for training. However, the

CHUNG-CHE YU AND CHIEH-CHIH WANG

646

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tr
ai

ni
ng

 e
rr

or

training iteration

Comparison of the training error with different feature

local observation only
local observation and action
local observation, action,
and goal information

Fig. 7. Comparison of the training error with different feature functions. The highest red curve

shows the training error using local perception feature only. The middle green curve is the
result of using both perception feature and control feature. The lowest blue curve is the re-
sult of using additional goal-related information with perception feature and control feature.

user’s control policy could be affected by the information of the goal / waypoint in the
complex simulation world. It could be shown using Fig. 6 as an example. The control
output should be right since the waypoint is on the right-hand side of the controlled
agent. However, when the waypoint is on the left-hand side of the controlled agent, the
left command would be appreciated as a proper control output. Without the goal-related
information, the two cases would not be differentiated by the learner and the resulting
output would always be the same no matter where the waypoint is.

Besides the goal-related information, it is also found that the learned control com-
mands during successive steps may change frequently whereas the control commands are
more stable in original demonstrations. For example, for the successive up-up-right-right
commands, the learned control outputs for each individual example with step number N
= 1 may be up, right, right, and right. However, when testing, the successive output
commands may be executed as up-right-up-right because the second control output re-
sults in a world without user’s demonstration. In this case, although the training error
could be low, the behavior of successive steps may still not be similar with the demon-
stration. Thus, the multi-step learning algorithm with goal-related information is pro-
posed to solve these issues and would be described below. Briefly speaking, the aim of
the training process is to imitate the behavior of the demonstrator with multiple steps
instead of the next greedy step.

3.5 Implementation in a Complex Simulation World

The whole procedure of the algorithm is presented in Algorithm 1 with step number
N equal or larger than 1. In the implementation, the range of the step number N is from 1
to 5. The loss function is the normalized accumulated Manhattan distance for the N-step
path compared with the demonstration which could be defined as

MULTI-STEP LEARNING TO SEARCH FOR DYNAMIC ENVIRONMENT NAVIGATION

647

 

*2

,

1

1








N

n

N

n
nn

n

DemoPosPosistanceManhattanD
loss . (1)

The normalization term is calculated as the possible maximum accumulated Manhattan
distance for the N-step path which could be pre-computed in advance for each step
number. For better understanding, the testing result Fig. 8 is used as an example here.
Assuming that the 3-step worlds are Figs. 8 (a)-(c) and the demonstration worlds are Figs.
8 (a), (d) and (e). The loss value would be (0 + 2 + 0) / (2 * (1 + 2 + 3)) = 1/6.

(a) t = ti

(b) N = 1, t = ti + 1 (c) N = 1, t = ti + 2

 (d) N = 5, t = ti + 1 (e) N = 5, t = ti + 2

Fig. 8. Testing sequences for step number N = 1 and N = 5. The waypoint is at the right-upper
place. When t at some ti  1, the output command is up and the resulting world is (a). When
ti, using the result of step number N = 1 would get the right command and the world be-
comes (b) with waypoint at the right-upper place. The next output command would be up
and the final world is (c). However, based on the smooth motion style, the appropriate
successive output command should be up when ti and the resulting world would be (d) with
waypoint at the right-hand side. The next output command would be right and the final
world is (e). The agent changes moving direction twice using step number N = 1 but only
changes once when using step number N = 5.

CHUNG-CHE YU AND CHIEH-CHIH WANG

648

The feature function now mainly consists of local perception feature, control feature,
and goal-related feature. For describing the 5 by 5 window, the type of the object and the
moving direction of the object for each grid are used. The control feature is a five di-
mensional binary feature to indicate the commands of up, left, stop, right, or down. The
goal-related feature consists of leaving/approaching the waypoint or not and if the agent
reaches one waypoint.

The algorithm then starts with the initialization step in line 1. In line 5, for each
valid control command, the feature vector of the next N steps is calculated. For each se-
quence of user-provided demonstrations with length L larger than N, there would be L 
N + 1 negative examples for line 7. This could be done because the world of the next N
steps is recorded during the demonstrations. Thus, the feature could then be extracted
accordingly with the corresponding world. Then, for each other valid control sequence, it
is assumed that the world of the next N steps could be predicted based on the chosen
actions of the controlled agent and other moving agents. In the end, for each time step t,
the next-N-step perception feature, control feature, and goal-related feature are computed.
The feature vectors from t + 1 to t + N are then concatenated to form a longer feature
vector. Using the current learned policy applied with the extracted features, the minimum
cost one will then be selected as the positive example for line 7. Still, the AdaBoost [13]
algorithm with decision stump is used to do the classification and get the log-hypothesis
ht for the log-costmap updating procedure. The training process is terminated if the
learned examples are close enough with the demonstration.

4. EXPERIMENTAL RESULTS

The experimental settings in complex dynamic environments and the learning re-
sults are presented in this section. The training errors with different step numbers are
shown. The testing sequences are also presented to show the performance of the pro-
posed multi-step framework.

4.1 Experimental Settings

There are waypoints in the simulation world and the human subject could be guided
to perform the navigation in the dynamic environment. The whole map is larger than the
local observation window and is shown in Fig. 9. These waypoints could be generated
using any planning algorithm or pre-defined by hand in advance using the static map
without any moving agent. During the demonstration, when the waypoint is not in the
local observation window, the direction for approaching the next waypoint would be told
to the user. Such information is similar with the goal-related feature mentioned in section
3.5. A human subject is asked to complete the navigation with the same policy and not
rapidly change the moving direction as a controlling style. The data is then collected for
the training process.

4.2 Learning Results and Discussion

The training error with different step number N is shown in Fig. 10. The error is
counted when the predicted next one step is not the same as demonstration even for step

MULTI-STEP LEARNING TO SEARCH FOR DYNAMIC ENVIRONMENT NAVIGATION

649

Fig. 9. The simulation world with waypoints and other agents. The yellow blocks with number are

the waypoints. The other colored triangles are moving agents in this environment.

0 20 40 60 80 100 120 140
0.05

0.1

0.15

0.2

0.25

0.3

0.35

training iteration

tr
ai

ni
ng

 e
rr

or

Training error with different step number

N=1
N=2
N=3
N=4
N=5

Fig. 10. The training error with different step number N. All the final training errors are similar

while the training error with step number N = 1 is a little bit higher.

number N larger than 1. The reason is as follows. First, since it is only considered the
control output of the next step when moving the agent instead of executing N steps at a
time, it is suitable to compare the error in one-step version. Second, the training error
would be large if the error is counted when the successive steps are not completely the
same. It would be hard to judge if the large error for successive five-step setting is worse
than small error for the one-step setting. In fact, the training error for successive five-step
setting is about 0.4560 whereas the testing performance is better than using smaller step
number.

For each testing scenario, either with different waypoints or moving agents, the
training results with different step number are tested in order to compare the performance.
It could be observed that the user’s controlling style: keeping the smooth motion could
be captured when using a larger step number N whereas the successive control behavior
may not be well captured using step number N = 1. This could be shown in Fig. 8. The

CHUNG-CHE YU AND CHIEH-CHIH WANG

650

smoother successive up-up-right commands are executed using step number N = 5 while
the less smooth up-right-up commands are executed using step number N = 1.

Moreover, when using smaller step number, especially one-step only, the navigation
may not be completed due to the local trap conditions. The controlled agent would per-
form stop command for other non-moving agents. However, there are still some limita-
tions when using large step numbers. When encountering the trap conditions occurs in
small step number, using large step number may result in directly hitting and then pass-
ing through other agents in order to complete the navigation. This could be shown in Fig.
11. The navigation could be completed while the safety may not be guaranteed. During
the experiments, although the collision occurs, it happens less when using larger step
number. Using smaller step number not only increases the chance of encountering local
trap conditions but also the collision chance during the navigation. The main drawback
of using larger step number should be the fact that it is more unrealistic and time-con-
suming to predict the future world precisely. The step number could only be chosen as a
reasonable small number instead of a huge number in practical use.

(a) t = ti

(b) N = 1, t = ti + 1 (c) N = 1, t = ti + 2

 (d) N = 5, t = ti + 1 (e) N = 5, t = ti + 2

Fig. 11. Another testing sequences for step number N = 1 and N = 5. The waypoint is at the down

direction. When ti, using step number N = 1, the output command is stop and the resulting
world is (b). The agent could not bypass the non-moving one and continue performs the
stop again when ti + 1 and results in the world (c). In the end, the agent gets stuck and
could not complete the navigation. Using the result of step number N = 5 would get the
down command and the world becomes (d). The controlled agent hits an agent however
continuously navigates through the environment in the following steps (e).

MULTI-STEP LEARNING TO SEARCH FOR DYNAMIC ENVIRONMENT NAVIGATION

651

From the experimental results, it could be seen that the performance would be better
using a larger step number. The successive control behavior could be well captured than
using a small step number. However, the step number could only be chosen as a small
number instead of a huge one for getting reasonable prediction of the future world. In
our implementation, the maximum number for N is 5 which is considered as a reasonable
value compared with the size of the observation window and the maximum speed of the
moving agents. Beside further improvement for collision-free navigation, how to deter-
mine the best step number N online instead of choosing a particular one could also be the
future extensions of this work.

5. CONCLUSION AND FUTURE WORK

In this paper, the performance of our previous model-free learning approach with the
data set refinement procedure is quickly reviewed and further analysis is studied in more
complex simulation worlds. It is observed that the goal-related information is important for
the learner and should be included as part of features. To learn the successive steps, the
multi-step approach is developed and the behavior of the demonstrator is well captured by
the learner to reproduce the similar control policy in the simulation results.

The collision event in the simulation should be avoided to further increase the perfor-
mance. Besides using the rule-designed method to eliminate the output commands which
result in collision when both training and testing, using the current LEARCH approach, it
may be feasible to choose the minimum cost state which does not result in collision. How-
ever, it is not guaranteed that the second-best action could best explain the demonstration
when the first-best action fails. Thus, it is our ongoing work to use the interactive learning
mechanism to avoid the collision. The human subject could be involved in the learning
process when needed and new demonstration could be provided for interactively increasing
the learning performance. The interactive machine learning approach with human’s demon-
stration would be a natural extension of LfD.

REFERENCES

1. B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning
from demonstration,” Robotics and Autonomous Systems, Vol. 57, 2009, pp. 469-483.

2. N. D. Ratliff, J. A. Bagnell, and S. S. Srinivasa, “Imitation learning for locomotion
and manipulation,” in Proceedings of the 7th IEEE-RAS International Conference
on Humanoid Robots, 2007, pp. 392-397.

3. D. Silver, J. A. Bagnell, and A. Stentz, “Learning from demonstration for autono-
mous navigation in complex unstructured terrain,” The International Journal of Ro-
botics Research, Vol. 29, 2010, pp. 1565-1592.

4. P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate through crowded
environments,” in Proceedings of IEEE International Conference on Robotics and
Automation, 2010, pp. 981-986.

5. P. Trautman and A. Krause, “Unfreezing the robot: Navigation in dense, interacting
crowds,” in Proceedings of IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems, 2010, pp. 797-803.

CHUNG-CHE YU AND CHIEH-CHIH WANG

652

6. C.-C. Yu and C.-C. Wang, “Learning collision-free navigation from demonstration
without global information,” in Proceedings of International Conference on Service
and Interactive Robotics, 2011, pp. 232-237.

7. N. D. Ratliff, D. Silver, and J. A. Bagnell, “Learning to search: Functional gradient
techniques for imitation learning,” Autonomous Robots, Vol. 27, 2009, pp. 25-53,
10.1007/s10514-009-9121-3.

8. C.-C. Yu and C.-C. Wang, “Collision- and freezing-free navigation in dynamic en-
vironments using learning to search,” in Proceedings of Conference on Technologies
and Applications of Artificial Intelligence, 2012, pp. 151-156.

9. J. Minguez and L. Montano, “Sensor-based robot motion generation in unknown,
dynamic and troublesome scenarios,” Robotics and Autonomous Systems, Vol. 52,
2005, pp. 290-311.

10. J. Minguez and L. Montano, “Nearness diagram navigation (nd): a new real time
collision avoidance approach,” in Proceedings of IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2000, pp. 2094-2100.

11. J. Minguez and L. Montano, “Nearness diagram (nd) navigation: collision avoidance
in troublesome scenarios,” IEEE Transactions on Robotics and Automation, Vol. 20,
2004, pp. 45-59.

12. D. Althoff, J. Kuffner, D. Wollherr, and M. Buss, “Safety assessment of robot tra-
jectories for navigation in uncertain and dynamic environments,” Autonomous Ro-
bots, Vol. 32, 2012, pp. 285-302.

13. Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learn-
ing and an application to boosting,” in Proceedings of the 2nd European Conference
on Computational Learning Theory, 1995, pp. 23-37.

Chung-Che Yu (余宗哲) received his B.S. degree in Computer
Science and Information Engineering from National Taiwan Univer-
sity, Taipei, Taiwan, in 2007. He is currently a Ph.D. student at the
Robot Perception and Learning Laboratory at National Taiwan Uni-
versity. His research interests include robot navigation, machine
learning, and robot learning from demonstration.

Chieh-Chih (Bob) Wang (王傑智) earned his Ph.D. in Robot-
ics from the School of Computer Science at Carnegie Mellon Uni-
versity in 2004. He received his B.S. and M.S. from National Taiwan
University in 1994 and 1996, respectively. During his graduate study,
he worked with the Bayesian vision group at the NASA Ames re-
search center and at Z+F Inc. in Pittsburgh. From 2004 to 2005, he
was an Australian Research Council (ARC) Research Fellow of the
ARC Centre of Excellence for Autonomous Systems and the Aus-

tralian Centre for Field Robotics at the University of Sydney. In 2005, he joined the De-
partment of Computer Science and Information Engineering at National Taiwan Univer-
sity, where he is an Associate Professor and is pursuing his academic interests in robotics,
machine perception and machine learning. Dr. Wang received the best conference paper
award at the 2003 IEEE International Conference on Robotics and Automation (ICRA).

