
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 30, 701-712 (2014)

701

Analysis of Performance of Consultation Methods
in Computer Chess

KUNIHITO HOKI1, SEIYA OMORI2 AND TAKESHI ITO3

1The Center for Frontier Science and Engineering
2Department of Communication Engineering and Informatics
3Department of Information and Communication Engineering

University of Electro-Communications
Chofu, Tokyo 182-8585, Japan

The performance of consultation methods, i.e., majority voting, the optimistic selec-

tion rule, and the pseudo-random number (PRN) ensemble method, are examined in
computer chess using 2180 chess problems. Here, the optimistic selection rule selects a
program that returns the highest search value, and the PRN ensemble consists of multiple
individual copies of one base program, and each copy is diversified by adding random
numbers to the evaluation function of the base program. We carried out empirical ex-
periments by using state-of-the-art chess-program Crafty as the base program. We found
that the percentage of correct answers increased from 55.6 to 57.1% using optimistic se-
lection from the PRN ensemble. The experimental results indicated that the consultation
methods allowed simple yet effective distributed computing in chess.

Keywords: computer chess, chess problem, consultation method, majority voting, opti-
mistic selection, pseudo-random number (PRN) ensemble

1. INTRODUCTION

The old proverb of “two heads are better than one”, means that an ensemble of peo-
ple may be able to solve a problem that an individual cannot. This explains our original
motivation for designing consultation methods in computer games. That is, an ensemble
of game programs may be able to play a better move than an individual program can (see
Fig. 1). Although much successful work with ensemble based systems in computer sci-
ence has been done [1], designing an ensemble in computer games still remains difficult.

Thus far, three simple techniques of consultation have been reported in shogi, which
is a Japanese chess variant. The first is majority voting to select a single move from mul-
tiple moves provided by the ensemble of programs. This selection rule had first been
examined in 55 shogi, a shogi variant that uses a small board and a limited set of piec-
es [2]. Subsequently, majority voting was examined in standard shogi [3]. The second
technique is the optimistic selection rule. A shogi program usually returns a search value
in addition to a move to play. This selection rule makes use of the search value, and se-
lects a program that returns the highest search value [4]. The third technique is the pseu-
do-random number (PRN) ensemble. Here, the ensemble is built using multiple copies of
one base program, and each copy is diversified by adding random numbers to the evalua-
tion function of the base program [3, 4].

The primary goal of the consultation methods is to strengthen base programs by
composing an ensemble of these programs. In addition to the primary goal, these meth-

Received February 28, 2013; accepted June 15, 2013.
Communicated by Hung-Yu Kao, Tzung-Pei Hong, Takahira Yamaguchi, Yau-Hwang Kuo, and Vincent Shin-
Mu Tseng.

admin
打字機文字
DOI:10.1688/JISE.2014.30.3.10

KUNIHITO HOKI, SEIYA OMORI AND TAKESHI ITO

702

Fig. 1. Methods of consultation and their goal. Best opinion is selected from multiple opinions.

ods can be expected to provide a fail-safe distributed computing system. That is, the
breakdown of a component in the entire system merely means the number of voters is
reduced by one.

We assessed the performance of these consultation methods, i.e., majority voting,
the optimistic selection rule, and the PRN ensemble, in chess, which we report in this
paper. We used Crafty as a fair implementation of the chess program [5]. It was devel-
oped by Dr. R. Hyatt and it finished second in both the 2010 Fifth Annual Americas’
Computer Chess Championships (ACCA) and the 2010 World Computer Rapid Chess
Championships. We evaluated its performance by using 2180 chess problems.

Chess is probably one of the most popular board games in the world and has several
similarities to shogi in that (i) it is a two-player turn-based board game, (ii) it has the
same origin as chaturanga, which was played before the 6th century in India, (iii) its
main objective is to checkmate the opponent’s king by forcing it under inevitable threat
of capture, (iv) it has a promotion rule, and (v) the best algorithms of tree searches for its
strength are -search variants as far as is known.

There are also some differences between these two games. One of the clearest dif-
ferences is the absence of the dropping rule in chess, i.e., in shogi, a captured piece can
be dropped back onto the board. The absence of this dropping rule makes the number of
choices smaller than in shogi [6, 7]. Therefore, it would be an interesting study to meas-
ure the performance of these consultation methods in chess.

The remaining part of this paper is structured as follows. The next section reviews
research related to the consultation methods in chess. The third section presents our re-
sults on the chess program, where the consultation methods are empirically evaluated.
The last section is the conclusion.

2. RELATED WORK

Althöfer and Snatzke proposed 3-Hirn in two player games [8], where two pro-
grams make one proposal move, and a human selects a single move from these two and
controls the time. They reported that human selection strengthens programs in the team
by about 200 Elo points in chess, where the human has 1900 Elo points and is weaker
than these programs. Because the consultation methods remove human intervention,

ANALYSIS OF PERFORMANCE OF CONSULTATION METHODS IN COMPUTER CHESS

703

these can be regarded as a reduced form of 3-Hirn. An attempt to eliminate human inter-
vention from 3-Hirn can also be found in 2-Hirn [9]. Here, a sub-computer in addition to
the main computer was used to obtain human-like playing styles.

Obata et al. evaluated the performance of majority voting in shogi [3]. They ob-
served performance increments from 50-100 Elo points in their experiments on three
state-of-the-art shogi programs. Sugiyama et al. also assessed the performance of the
optimistic selection rule in shogi [4], and reported that it outperformed majority voting.
Majority voting has also been applied to a go program that carries out Monte-Carlo tree
searches [10]. Here, its performance was evaluated using a state-of the-art go program
called Fuego [11], and it outperformed a method of standard root parallelization in dis-
tributed-memory environments. These methods did not perform better than tree-search
parallelization in shared-memory environments in these studies on majority voting and
the optimistic selection rule.

Computer players that use majority voting can be found in recent computer shogi
games, because consultation methods offer easy use of massive-scale distributed envi-
ronments for strength, make players safer against failures in the system, and they can be
combined with different parallel-search methods. Monju won third prize in the 19th
computer shogi championship in 2009 [12]. Here, the PRN ensemble was built using
Bonanza, whose source codes are available online [7]. Moreover, Akara 2010, which
defeated one of the top female shogi players, Ichiyo Shimizu, employed majority voting
and consisted of four different computer programs, Gekisashi, GPS Shogi, Bonanza, and
YSS [13]. All four programs have won the computer shogi championships in the past 10
years.

Because consultation methods use distributed computing environments to obtain
better moves to play, they can be regarded as the simple distributed computing of game-
tree searches. The concepts and mechanisms for the consultation methods differ from the
common tree parallelization of chess programs in which each processor takes responsi-
bility for part of the game tree to conduct searches. One well-known method that has
been applied to parallel searches in distributed environments is the young brothers wait
concept (YBWC) [14]. Young brothers are child nodes expanded after the first child
node and they are searched in parallel. YBWC assumes that the game tree is well ordered,
i.e., the best child will be expanded first for most of the tree search. Note that a well-
crafted -search program satisfies this assumption because a sequential -search is
effective when this property is satisfied. A speedup of about 35 was obtained for 24 test
positions for a distributed system with 64 processors. This work used a transputer (Inmos
transputer T800), which is hardware intended for parallel computing and a chess pro-
gram called Zugzwang that ran on a single processor that only visited about 350 nodes
per second. This hardware and software had totally different characteristics from those
used today.

Himstedt proposed the extended use of pondering methods for distributed compu-
ting in chess [15]. The expected move of an opponent in ordinary pondering methods is
considered as already played, and a computer player starts searching during the oppo-
nent’s thinking time to avoid the computer from becoming idle while his/her opponent is
thinking. The reported method starts searching speculatively ahead on the basis of the
expected move sequence during both the player’s and opponent’s thinking times. The
playing strength of GridChess in this study increased by 51 Elo points by using eight

KUNIHITO HOKI, SEIYA OMORI AND TAKESHI ITO

704

workers. Himstedt also reported the performance of distributed tree searches using mod-
ern hardware and software on the basis of YBWC [15]. He built a parallelized version of
Gaksch’s Toga, which is based on Letouzey’s Fruit, and observed an Elo difference of
about 52 points between four- and one-node clusters, where each node contained four
cores. Because the number of games was only 70, the Elo difference was not statistically
significant. This work replicated a part of hash-table entries between all cluster nodes to
keep the game tree well ordered. This replication incurred network communication, and
high bandwidth and low latency interconnection networks were advantageous.

Other than chess, Brockington and Schaeffer proposed a distributed -search, cal-
led asynchronous parallel hierarchical iterative deepening (APHID) [16]. Their method
was based on a master/slave model of communication, where the master divided the
game tree into fixed subsets and each slave took responsibility for some of the subtrees.
It used the APHID table to control the work of all slaves. The Othello program Keyano
sped up a 12-ply search of 74 test positions by around eight by using APHID on 16 pro-
cessors. Kaneko and Tanaka also proposed a distribute -search method using a mas-
ter/slave model in shogi [13, 17]. Their method divided the game tree on the basis of
move ordering and the program GPS Shogi increased the winning percentage from 50 to
70%. Their tree parallelization was successfully combined with majority voting by four
different programs. Table 1 summarizes the details between different distributed-com-
puting methods in chess and shogi. Kishimoto and Schaeffer proposed transposition-
table driven scheduling alpha-beta (TDSAB) [18], which combined two different meth-
ods of transposition-table driven scheduling (TDS) of single-agent searches and a variant
of search MTD(f). Performance in their study was assessed with Awari and Ama-
zons.

Table 1. Distributed computing using high-performance chess and shogi programs. The
forth column shows our rough estimate of effectiveness. Note that each method
has been demonstrated by using the different game and computational resources.

Method Game Workers Effectiveness

3-Hirn [8] Chess A human and different programs High

Optimistic pondering [15] Chess Same programs Low

Distributed tree search
based on YBWC [15]

Chess Same programs Medium

Majority voting [13] Shogi Different programs Medium

Majority voting using PRN ensemble [3] Shogi Same programs Low

Optimistic selection
using PRN ensemble [4]

Shogi Same programs Low

Distributed tree search
based on Kaneko and Tanaka [13]

Shogi Same programs Medium

Consultation methods also have similarities to parallel dovetailing methods and par-
allel random search algorithms in single-agent puzzles and AND/OR-game solvers,
where multiple solvers are executed for speedup [19-22]. Because the output of these
solvers is the ‘game is solved’ or the ‘game is not solved yet’ rather than move candi-

ANALYSIS OF PERFORMANCE OF CONSULTATION METHODS IN COMPUTER CHESS

705

dates with evaluation values, the selection rules for these candidates are not necessary in
dovetailing methods.

3. EXPERIMENT

We assessed the performance of consultation methods using Crafty-23.4 whose
source codes are available online [5]. It uses state-of-the-art techniques such as the prin-
cipal variation search (PVS) [23-25], a capture search as a quiescence search, transposi-
tion tables indexed by Zobrist hashing [26], static exchange evaluation [27], killer and
history heuristics [28, 29], null move pruning [30, 31], futility pruning [32, 33], and late
move reductions [7, 34]. The base program in our research (i) receives a chess position,
(ii) searched a game tree rooted at the position, and (iii) output a move with a search
value. We allocated 1024 megabytes for the transposition table used by the tree search,
which was sufficient for all the experiments.

The PRN ensemble consisted of M base programs, and determined which move to
play by selecting one from M programs. The evaluation function to diversify the outputs
of the base programs was modified by adding pseudo-random numbers from an approx-
imated normal distribution N(0,), where is the standard deviation. The values were
generated on the basis of a central limit theorem that generated 12 uniform random
numbers in intervals of [0,], added them all up, and subtracted six. As a result, the
values were in intervals of [−6, 6]. We pre-computed 4096 random numbers in this
way from N(0,) and a random number and a game position were paired up with the
Zobrist hashing key of the position [26], so that the modified evaluation function with
the random number always returned the same value for the same position. This modifica-
tion was so simple that this hardly had any impact on the search speed.

The ensemble in our research behaved as follows: (i) M programs received the same
chess position, (ii) M programs searched the same position individually using different
series of pseudo-random numbers, (iii) M programs output multiple moves and corre-
sponding search values, and (iv) a single move was selected based on majority voting or
the optimistic selection rule. Majority voting is one of the most popular decision rules.
When three programs output move A and two output B, the majority of move A is se-
lected. However, the optimistic selection rule selects a program that returns the highest
search value. An auxiliary rule for random selection is used in both cases to break a tie.

We evaluated the performance of programs by the percentages of correct answers to
2180 chess problems from the Encyclopedia of Chess Middlegame (the second section of
879 problems) [35], Win at Chess (300 problems) [36], and 1001 Winning Chess Sacri-
fices (1001 problems) [37].

3.1 Controlling Computational Resources through Nodes

We limited the computational resources for all tree searches by the number of nodes.

All programs, i.e., the base programs in the ensemble and the original program, searched
50, 100, and 200 kilonodes. The first reason as to why we limited computational re-
sources by the number of nodes was the reasonable correlation between searched nodes
and search time. The second reason was that the search results were irrelevant to com-

KUNIHITO HOKI, SEIYA OMORI AND TAKESHI ITO

706

puter hardware specifications, so that a set of experiments could be conducted using
multiple different computers in a laboratory. Moreover, because network communication
between M base programs was only caused at the beginning and the end of game-tree
searches, the communication overhead was not taken into account.

We first examined the setup for the experiments and the performance of the diversi-
fied base program by using standard deviation . Table 2 lists the dependence of stand-
ard deviation on the percentage of correct answers. Note that = 0 means that there were
no modifications to the original program and the results for > 0 were averaged over 16
sets of experiments using different series of pseudo-random numbers. We can see that
the original program that searched 50,000, 100,000, and 200,000 nodes gave respective
correct answers to 54.6, 60.5, and 66.1% of problems. We can also see that the random
numbers in the evaluation function did not decrease the performance of the base program
if the standard deviation was less than 10 centipawns. Note that the base program val-
ued one pawn at 100.

Table 2. Percentage P() of correct answers using base program, where is standard
deviation for random numbers.

Nodes P(= 0) P(1) P(2) P(4) P(8) P(12) P(25) P(50) P(100)
 50,000 54.6 54.7 54.6 54.6 54.5 54.3 53.9 53.0 51.2
100,000 60.5 60.6 60.7 60.7 60.8 60.5 59.8 59.3 57.6
200,000 66.1 66.0 65.9 65.9 65.8 65.4 65.1 64.4 63.1

Table 3. Diversity of base program, where D() is percentage to output different answer
from original and is standard deviation for random numbers.

Nodes D(= 0) D(1) D(2) D(4) D(8) D(12) D(25) F(50) D(100)
 50,000 0.0 6.5 10.2 14.1 16.9 19.5 22.1 26.4 32.6
100,000 0.0 6.6 9.7 12.4 14.5 16.0 18.4 22.4 27.5
200,000 0.0 6.5 9.0 10.8 12.8 13.6 16.2 19.0 23.1

These results indicate that such a small standard deviation suffices for the base pro-
gram to diversify its outputs by a sufficient amount. Table 3 summarizes the diversity of
the base program, where the results for > 0 were also averaged over 16 sets of experi-
ments using different series of pseudo-random numbers. The base program with = 8 in
this table output a different answer from the original with probabilities of 10% or more.
Moreover, there was a preferred tendency, i.e., the deeper the base program searched the
game tree the less the random numbers diversified the output of the base program. That
is, the increment in the number of nodes from 50,000 to 200,000 at = 8 increased the
percentage of correct answers from 54.5 to 65.8% and decreased the percentage to output
a different answer from the original from 16.9 to 12.8%.

Table 4 lists the percentages of correct answers using majority voting in M base
programs. We can see from this table that the more M increases, the more the percentage
of correct answer increases. However, the increment in the percentage of correct answers
was very small and majority voting in 16 base programs with 200,000 nodes improved
the percentage from 66.1 to 66.7%. This means that majority voting in the PRN ensem-
ble was not effective in solving chess problems.

ANALYSIS OF PERFORMANCE OF CONSULTATION METHODS IN COMPUTER CHESS

707

Table 4. Percentage P() of correct answers using majority voting, where is standard
deviation for random numbers and M is size of ensemble players.

50,000 nodes (percentage using original program is 54.6%)
M P(= 1) P(2) P(4) P(8) P(12) P(25) P(50) P(100)
4 54.6 55.0 54.6 55.0 55.5 55.3 54.4 52.6
8 54.4 54.9 54.9 55.7 55.4 55.3 54.4 53.7

16 54.7 54.6 55.1 55.6 55.9 55.3 55.0 54.8
100,000 nodes (percentage using original program is 60.5%)

M P(= 1) P(2) P(4) P(8) P(12) P(25) P(50) P(100)
4 60.7 60.9 61.1 61.2 61.1 61.4 59.9 60.3
8 60.6 60.9 61.2 61.5 61.7 61.1 61.1 60.4

16 60.6 61.0 61.1 61.6 61.1 61.0 61.2 60.6

200,000 nodes (percentage using original program is 66.1%)
M P(= 1) P(2) P(4) P(8) P(12) P(25) P(50) P(100)
4 66.4 66.1 66.2 66.0 65.6 66.1 65.3 64.9
8 66.2 66.1 66.2 66.3 66.1 66.3 65.6 64.9

16 66.1 66.0 66.3 66.6 66.7 66.2 66.0 65.4

Table 5. Percentage P() of correct answers using optimistic voting, where is standard
deviation for random numbers and M is size of ensemble players.

50,000 nodes (percentage using original program is 54.6%)
M P(= 1) P(2) P(4) P(8) P(12) P(25) P(50) P(100)
4 55.3 55.6 55.6 56.3 56.1 56.2 55.7 54.3
8 55.3 56.1 56.0 56.5 56.4 56.6 56.0 54.7
16 55.3 56.2 56.2 57.1 56.8 57.0 57.4 55.0

100,000 nodes (percentage using original program is 60.5%)
M P(= 1) P(2) P(4) P(8) P(12) P(25) P(50) P(100)
4 61.3 62.1 61.7 62.1 62.3 62.2 61.0 59.9
8 61.5 62.6 62.8 63.2 62.4 62.4 62.0 60.8
16 61.5 62.7 63.0 63.3 63.3 62.8 62.3 60.8

200,000 nodes (percentage using original program is 66.1%)
M P(= 1) P(2) P(4) P(8) P(12) P(25) P(50) P(100)
4 66.8 66.8 66.6 66.1 66.7 66.9 66.0 65.0
8 66.8 67.4 67.2 66.8 67.3 67.0 66.4 65.7
16 66.9 67.7 67.6 67.4 67.6 67.4 67.0 66.1

Table 5 summarizes the percentages of correct answers using the optimistic selec-
tion rule. Here, we observed greater improvements to performance than those with ma-
jority voting. The ensemble player of 16 base programs with 50,000 nodes improved the
percentage from 54.6 to 57.1%, that with 100,000 nodes improved the percentage from
60.5 to 63.3%, and that with 200,000 nodes improved the percentage from 66.1 to 67.7%.
Although the optimistic selection rule sufficiently improved performance, this method
did not seem to outperform the original program that searched twice more nodes of the
game tree. Increments in the nodes from 50,000 to 100,000 improved the percentage in
the original program from 54.6 to 60.5%.

KUNIHITO HOKI, SEIYA OMORI AND TAKESHI ITO

708

Finally, we assessed how the number of correct answers increased due to the opti-
mistic selection rule. Table 6 lists two kinds of numbers. The first is the number of chess
problems where the original program returned a correct answer and the ensemble pro-
gram returned an incorrect answer (denoted as CorrectIncorrect). The second is the
number of chess problems where the original program returned an incorrect answer and
the ensemble player returned a correct answer (denoted as IncorrectCorrect). These
results indicate that the changes between correct and incorrect answers are stochastic.
That is, the performance of the base program was improved by optimistic selection for a
specific chess problem with a certain probability. However, this method also had the
probability of performance worsening for another specific chess problem.

Table 6. Changes in number of correct and incorrect answers, where M is size of en-

semble players and each base program searches 50,000 nodes for chess prob-
lem with standard deviation for random numbers, = 12.

Majority voting
 M = 4 M = 16
Incorrect Correct 71 99
Correct Incorrect 44 55
Optimistic Voting
 M = 4 M = 16
Incorrect Correct 83 129
Correct Incorrect 41 72

3.1 Controlling Computational Resources by Depth

We limited the computational resource for tree searches by using the nominal depth

of the programs. All programs, i.e., the base programs of the ensemble and the original
program, search with a depth of eight plies. Note that Crafty employs some methods of
search-depth extensions and reductions for particular moves. Therefore, the nominal
depth specified in this experiment was not equal to the depth of the actual game tree.

Table 7. Percentage P() of correct answers using base program, where is standard

deviation of random numbers and nominal depth is eight.

P() 59.0 59.2 58.2
Average nodes searched 65511 84951 173010

We examined the setup for the experiments and the performance of the diversified
base program by using standard deviation . Table 7 lists the dependence of standard
deviation on the percentage of correct answers and the number of averaged nodes. We
can see that the random values from N(0,10002) decreased the percentage from 59.0 to
58.2%. This decrement is unusually small, considering that the standard deviation equals
a value of 10 pawns (corresponding to two rooks).

ANALYSIS OF PERFORMANCE OF CONSULTATION METHODS IN COMPUTER CHESS

709

Table 8. Percentage P() of correct answers with nominal depth of eight, where is
standard deviation for random numbers and M is size of ensemble players.
Percentage using original program is 59.0%.

Majority voting

M P(= 12) P(25) P(50) P(100)

4 59.5 60.1 59.9 61.2

8 59.8 60.2 59.8 61.6

16 59.7 60.2 60.6 61.3

Optimistic voting

M P(= 12) P(25) P(50) P(100)

4 61.6 62.3 62.8 64.7

8 62.4 63.7 64.0 66.2

16 63.4 64.7 65.6 68.1

We can also see that the random values increased nodes that had to be searched
with the depth of eight plies. This means that the random values decreased the amount of
tree pruning and increased the size of the search space. This is why the percentage of
correct answers did not decrease so much with a of two rooks. These results indicate
that even when the computational resources were limited by the number of nodes the
random values also diversified the search space from the original, and the PRN-ensemble
player covered a larger search space than the original program did.

Table 8 summarizes the percentages of correct answers. Note that = 0 means that
there are no modifications from the original program. When computational resources
were limited by the search depth, we observed an unusual property in that the percent-
ages increased even when was close to 100. Because the number of searched nodes
increased with , these results do not tell us about the performance of consultation
methods. As we observed in the previous subsection, the more M increases, the more the
percentages increase. Also, the optimistic selection rule was better than majority voting.

5. CONCLUSION

We evaluated the performance of consultation methods, i.e., majority voting, the
optimistic selection rule, and the PRN ensemble, in chess. We found that optimistic se-
lection from the PRN ensemble increased the percentages of correct answers by a suffi-
cient amount, whereas majority voting of the PRN ensemble did not. We also found that
the PRN ensemble not only diversified the evaluation values but also the search space for
the chess problems. As a result, the PRN-ensemble player covered a larger search space
than the original did.

The experimental results indicated that these consultation methods allow simple yet
effective distributed computing in chess. However, although optimistic selection from
the PRN ensemble sufficiently improved performance, these methods did not seem to
outperform the original program that searched twice as many nodes of the game tree. We
concluded from these observations that the selection rules discussed in this paper were
rather unsophisticated. Human selection from two programs is capable of improving

KUNIHITO HOKI, SEIYA OMORI AND TAKESHI ITO

710

performance by about 200 Elo points and doubling search time would not achieve this
improvement [8], which implies the existence of more sophisticated methods for better
ensemble systems. Building such systems in games would be an interesting problem in
artificial intelligence. We would like to leave this problem for future work.

REFERENCES

1. R. Polikar, “Ensemble based systems in decision making,” IEEE Circuits and Sys-
tems Magazine, Vol. 6, 2006, pp. 21-45.

2. M. Hanawa and T. Ito, “The council system in brain game,” in Proceedings of Cog-
nitive Science and Entertainment Symposium, 2009, pp. 72-75.

3. T. Obata, T. Sugiyama, K. Hoki, and T. Ito, “Consultation algorithm in computer
shogi – A move decision by majority –,” in Computer and Games, J. van den Herik,
H. Iida, and A Plaat, eds., LNCS 6515, Springer, 2010, pp. 156-165.

4. T. Sugiyama, T. Obata, K. Hoki, and T. Ito, “Optimistic selection rule for ensemble
approach to improving strength of shogi program,” in Computer and Games, eds.,
J. van den Herik, H. Iida, and A. Plaat, LNCS 6515, Springer, 2010, pp. 156-165.

5. R. Hyatt, Crafty 23.4, ftp://ftp.cis.uab.edu/pub/hyatt, last access, 2012.
6. H. Matubara, H. Iida, and R. Grimbergen, “Chess, shogi, go, a natural development

in game research,” ICCA Journal, Vol. 19, 1996, pp. 103-112.
7. K. Hoki and M. Muramatsu, “Efficiency of three forward-pruning techniques in

shogi: Futility pruning, null-move pruning, and Late Move Reduction (LMR),” En-
tertainment Computing, Vol. 3, 2012, pp. 51-57.

8. I. Althöfer and R. G. Snatzke, “Playing games with multiple choice systems,” in Pro-
ceedings of Computers and Games, J. Schaeffer, LNCS 2883, 2002, pp. 142-153.

9. K. Shibahara, T. Goto, N. Inui, and Y. Kotani, “2-Hirn”, in Proceedings of the 8th
Game Programing Workshop, 2003, pp. 59-66.

10. Y. Soejima, A. Kishimoto, and O. Watanabe, “Evaluating root parallelization in go,”
IEEE Transactions on Computational Intelligence and AI in Games, Vol. 2, 2010,
pp. 278-287.

11. M. Enzenberger, M. Müller, B. Arneson, and R. Segal, “FUEGO – an open-source
framework for board games and Go engine based on Monte-Carlo tree search,”
IEEE Transactions on Computational Intelligence and AI in Games, Vol. 2, 2010,
pp. 259-270.

12. T. Ito, “Consultation player “Monju” A majority rule to increasing the winning
rate,” IPSJ Magazine, Vol. 50, 2009, pp. 887-894.

13. K. Hoki, T. Kaneko, D. Yokoyama, T. Obata, H. Yamashita, Y. Tsuruoka, and T. Ito,
“A system-design outline of the distributed-shogi-system Akara 2010,” in Proceed-
ings of the 14th IEEE/ACIS International Conference on Software Engineering, Ar-
tificial Intelligence, Networking and Parallel/Distributed Computing, 2013, pp. 466-
471.

14. R. Feldmann, P. Mysliwietz, and B. Monien, “A fully distributed chess program,” in
Advances in Computer Chess 6, 1991, pp. 1-27.

15. K. Himstedt, “GridChess: combining optimistic pondering with the young brothers
wait concept,” ICGA Journal, Vol. 35, 2012, pp. 67-79.

ANALYSIS OF PERFORMANCE OF CONSULTATION METHODS IN COMPUTER CHESS

711

16. M. G. Brockington and J. Schaeffer, “The APHID parallel alpha-beta search Algo-
rithm,” in Proceedings of the 8th IEEE Symposium of Parallel and Distributed Pro-
cessing, 1996, pp. 428-432.

17. T. Kaneko and T. Tanaka, “Distributed game-tree search based on prediction of best
moves,” IPSJ Journal, Vol. 53, 2012, pp. 2517-2524.

18. A. Kishimoto and J. Schaeffer, “Transposition table driven work scheduling in dis-
tributed game-tree search”, in Proceedings of the 15th Canadian Conference on Ar-
tificial Intelligence, LANI, Vol. 2338, 2002, pp. 56-68.

19. R. Mehrotra and E. F. Gehringer, “Superlinear speedup through randomized algo-
rithms,” in Proceedings of International Conference on Parallel Processing, 1985,
pp. 291-300.

20. K. Knight, “Are many reactive agents better than a few deliberative ones?” in Pro-
ceedings of the 13th International Joint Conference on Artificial Intelligence, http://
dl.acm.org/citation. cfm?id=1624025.1624086, Vol. 1, 1993, pp. 432-437.

21. R. Valenzano, N. Sturtevant, J. Schaeffer, K. Buro, and A. Kishimoto, “Simultane-
ously searching with multiple settings: An alternative to parameter tuning for subop-
timal single-agent search algorithms,” in Proceedings of ICAPS, 2010, pp. 177-184.

22. K. Hoki and T. Ito, “Distributed computing of df-pn search using pseudo-random
number,” in Proceedings of the 16th Game Programming Workshop, 2011, pp. 116-
119.

23. J. Pearl, “Scout: A simple game-searching algorithm with proven optimal proper-
ties,” in Proceedings of the 1st Annual National Conference on Artificial Intelli-
gence, 1980, pp. 143-145.

24. T. A. Marsland and M. Campbell, “Parallel search of strongly ordered game trees,”
ACM Computing Surveys, Vo. 14, 1982, pp. 533-551.

25. A. Reinefeld, “An improvement to the scout tree search algorithm,” ICCA Journal,
Vol. 6, 1983, pp. 4-14.

26. A. L. Zobrist, “A new hashing method with application for game playing,” ICCA
Journal, Vol. 13, 1990, pp. 69-73.

27. F. Reul, “tatic exchange evaluation with -approach,” ICGA Journal, Vol. 33,
2010, pp. 3-17.

28. S. Akl and M. Newborn, “The principal continuation and the killer heuristic,” in
ACM Annual Conference Proceedings, 1977, pp. 466-473.

29. J. Schaeffer, “The history heuristic,” ICCA Journal, Vol. 6, 1983, pp. 16-19.
30. G. M. Adelson-Velskiy, V. L. Arlazarov, and M. V. Donskoy, “Some methods of

controlling the tree search in chess programs,” Artificial Intelligence, Vol. 6, 1975,
pp. 361-371.

31. E. A. Heinz, “Adaptive null-move pruning,” ICCA Journal, Vol. 22, 1999, pp. 123-
132.

32. J. Schaeffer, “Experiments in search and knowledge,” Ph.D. Thesis, Department of
Computing Science, University of Waterloo, Canada, 1986.

33. E. A. Heinz, “Extended futility pruning,” ICCA Journal, Vol. 21, 1998, pp. 75-83.
34. T. Romstad, “An introduction to late move reductions,” http://www.glaurungchess.

com/lmr.html, 2012.
35. N. Krogius, A. Livsic, B. Parma, and M. Taimanov, Encyclopedia of Chess Mid-

dlegames: Combinations, Chess Informant, Belgrade, Serbia, 1980.

KUNIHITO HOKI, SEIYA OMORI AND TAKESHI ITO

712

36. F. Reinfeld, Win at Chess (Dover Books on Chess), Dover Publications, NY, 2001.
37. F. Reinfeld, 1001 Winning Chess Sacrifices and Combinations, Wilshire Book Com-

pany, CA, 1969.

Kunihito Hoki received his Ph.D. from the Graduate School
of Science of Tohoku University in Miyagi, Japan. He is present-
ly working in the Center for Frontier Science and Engineering at
the University of Electro-Communications in Tokyo, Japan. His
current research interests include computer games and machine
learning.

Seiya Omori received his M.E. from the Department of
Communication Engineering and Informatics at the University of
Electro-Communications in Tokyo, Japan, in 2013. He intends to
start working for Canon Inc. in April 2013.

Takeshi Ito has been associated with the University of Elec-
tro-Communications since 1994. He received his Ph.D. from Na-
goya University graduated schools in Aichi, Japan in 1994. His
research interests include human cognitive processes and learning
processes in playing thinking games or solving difficult problems.

