
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 40, 1115-1138 (2024)

DOI: 10.6688/JISE.202409_40(5).0012

1115

A Partial-Filename Search Mechanism

for Encrypted Filenames in a P2P Network*

SHIN-YAN CHIOU1,2,3

1Department of Electrical Engineering, College of Engineering

Chang Gung University

Taoyuan, 333 Taiwan
2Department of Nuclear Medicine

Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
3Department of Neurosurgery

Keelung Chang Gung Memorial Hospital, Keelung, Taiwan

E-mail: ansel@mail.cgu.edu.tw

The efficiency and accuracy of data search, storage, confidentiality and security of

P2P systems is a serious concern. Previous studies have proposed using a partial filename

search function which allows the user to input a partial filename to search for associated

filenames on the remote system. However, if the file name is encrypted for enhanced se-

curity, this search function is ineffective. This paper proposes a search mechanism for en-

crypted filenames. In the case of filename encryption, the proposed method can also

achieve a partial filename search function while maintaining filename confidentiality. The

proposed system was implemented on an Android smartphone to simulate encrypted file-

name search. To the best of our knowledge, this is the first work done on partial-filename

search for encrypted filenames.

Keywords: encrypted filename search, partial filename search, P2P, security, confidential-

ity

1. INTRODUCTION

In recent years, P2P service applications have become more widespread. Users can

search for P2P-based files from any location, at any time, and on any device. This raises

significant user and file security issues, and maintaining file and filename confidentiality

while offering convenient access to authorized users is an important problem.

P2P Systems: P2P systems can be divided into two types: structured and unstructured.

Structured systems adopt a specific rule topology which provides better search efficiency

at the cost of reduced fault tolerance. Unstructured systems use a random mesh topology,

which is more fault tolerant, providing a higher search rate but with reduced efficiency. In

his study of unstructured P2P systems, Doulkeridis et al., [5] proposed a self-organizing

P2P method to transform unstructured P2P networks into a super-peer architecture to im-

prove search efficiency. In the study of structured P2P systems, Genesan et al. [11] and

Zhao et al. [12] used a distributed hash table (DHT) to convert files into values and publish

them to the responsible node, and to guide them to specific nodes during the search process

to improve efficiency. Liu et al., [13] combined a trust mechanism and Q-learning method

(i.e., SMITQ), which can not only improve P2P search efficiency, but can also be applied

to Internet-based routing aware designs.

Received February 7, 2023; revised May 27, 2023; accepted July 27, 2023.

Communicated by Raylin Tso.
* This work is partially supported by the National Science and Technology Council under Grant NSTC 112-

2221-E-182-007-MY2 and by the CGMH project under Grant BMRPB46.

SHIN-YAN CHIOU

1116

Verifiable File Search on the P2P system: Verification of file search results is an im-

portant issue for P2P systems. These research efforts can be divided into two categories

[2]: P2P storage auditing and encrypted keyword search. Of these categories: P2P storage

auditing mechanisms [7, 9, 10] can ensure the integrity of outsourced data, and encrypted

keyword search mechanisms [8, 21-31] provide protection for user privacy by encrypting

data outsourced to the P2P. Chin et al. proposed a basic protocol to implement a verifiable

P2P file search function [4] and further proposed a fully-fledged protocol [2]. Section 2

provides a detailed introduction to the complete protocol.

Query Authentication: Large-scale storage services on storage services can be unre-

liable and vulnerable to various internal and external threats. Chandrasekhar and Singhal

[18] proposed a query authentication for P2P-based storage systems with multiple data

sources based on multi-trapdoor hash functions, allowing clients to efficiently verify the

authenticity and integrity of the retrieved data. In advance, Xu et al. [19] proposed an ac-

cess-policy-preserving (APP) signature to provide both query authentication and access

control. The APP signature is used to derive customized signatures for unauthorized users

to achieve the zero-knowledge confidentiality.

Secure Deletion on P2P Storage: In addition to search efficiency [18, 20], secure pro-

cessing of P2P files (including secure file encryption, search and deletion) is a critical

consideration. Yu et al., [6] proposed a valid protocol for secure deletion on P2P storage,

using a key established on the user device and a P2P-based hash table to allow for the safe

and efficient deletion of P2P-based files.

Partial Filename Queries on P2P system: Lee et al., [1] proposed a P2P-based partial

filename search method. In the context of structured P2P systems and DHT architectures,

the partition of filename and the calculation of the filename key are used to be capable of se-

arch for P2P-based partial filenames (the complete method [1] is introduced in Section 2.1).

Multi-Keyword Search over Encrypted Data on P2P system: However, in the real

world, user-submitted keywords may be akin to a synonym rather than an exact match.

Existing search methods for encrypted filenames only support precise matches, and this

lack of tolerance for synonym substitutes reduces search efficiency and accuracy. There-

fore, Krishna et al., [3] proposed a synonym-based fuzzy multi-keyword ranked search

method that sorts the keyword search results according to degree of relevance and is auto-

matically corrected. This approach can be used to achieve privacy of P2P-based encrypted

files.

Other methods related to file search: Zhao et al. [32] present a verifiable and privacy-

preserving ranked multi-keyword search (VPS) scheme based on the difficulty of factori-

zation on large integers. Ge et al. [33] designed an accumulative authentication tag (AAT)

based on the symmetric-key cryptography, and proposed a new secure index composed by

a search table ST based on the orthogonal list and a verification list VL containing AATs.

Xu et al. [34] designed a multi-keyword verifiable searchable symmetric encryption sch-

eme based on blockchain, which provides an efficient multi-keyword search and fair veri-

fication of search results. Chenam and Ali [35] proposed a concept called dmCLPAECKS

(a designated cloud server-based multi-user certificateless authenticated encryption with

conjunctive keyword search scheme), supporting conjunctive keyword search. The same

document (or e-mail) is only encrypted once and can be retrieved by different recipients.

Liu et al. [36] proposed a privacy preserving keyword search scheme with full verifiability

and forward security. Their scheme provides Forward Secure Accumulative Authentica-

PARTIAL-FILENAME SEARCH MECHANISM FOR ENCRYPTED FILENAMES IN P2P

1117

tion Tag (FSAAT) with incremental property. Zhao et al. [37] proposed a forward privacy

multi-keyword search scheme based on the classic MRSE scheme. Their scheme makes

the cloud cannot obtain the actual match results of the past query with the newly updated

files by adding the well-chosen dummy elements to the original index and query vectors.

Gan et al. [38] presented an efficient VSSE (verifiable Searchable symmetric encryption)

scheme, building on OXT protocol (Cash et al., CRYPTO 2013), for conjunctive keyword

queries with sublinear search overhead. Their VSSE scheme is based on a privacy-preserv-

ing hash-based accumulator, by leveraging a well-established cryptographic primitive,

symmetric hidden vector encryption (SHVE).

Proposed Partial-filename Search Mechanism for Encrypted Filenames on P2P Sys-

tem: Although the method proposed in [1] can perform partial filename searches for P2P

data, and method [3] can provide synonym search of encrypted data, they are unable to

perform partial filename search and search verification for P2P-encrypted filenames. This

paper proposes a partial filename search mechanism for P2P-encrypted filenames which

can perform partial filename search for encrypted filenames and files, and while still pro-

tecting user privacy and data authentication.

Overview of Results: This article proposes a method for searching for partial file-

names of encrypted file and filenames. In the data upload phase, the file and associated

filename are encrypted, ensuring privacy. In the data search phase, the file and filename

are kept encrypted to ensure privacy during search execution. Finally, during the filename

receiving phase, after the data owner receives the P2P server result, the data owner can

calculate the correct filename from the received files using his/her private key, thus ensur-

ing filename privacy, data confidentiality, and filename validation. It can be used in any

centralized or decentralized P2P-based file storage, which is public, insecure, and need to

be protected.

Paper Contribution: This paper proposes a novel, efficient and secure mechanism for

searching remote encrypted filenames via partial-filename input while maintaining secu-

rity properties: anonymity, filename privacy and confidentiality, resistance to asynchro-

nous attacks and tracking attack, and filename privacy-preserved storage and search. Se-

curity analyses, formal proofs, and feature comparisons are conducted, and the results

showed that our scheme is secure and has better features and performance. Finally, the pro-

posed system was implemented on a personal computer and an android smartphone to sim-

ulate encrypted filename search in a P2P-based environment, which show that our scheme

can be easily applied to a P2P-base storage system. To the best of our knowledge, this is

the first work done on partial-filename search for encrypted filenames.

Paper structure: This paper is divided into six sections. Section two reviews the rele-

vant literature to explain and analyze the referenced schemes. Section three describes the

proposed system’s contents and structures. Section four analyze the proposed of seven

system requirements and seven security requirements. Section five describes an actual im-

plementation using Android phone and section six draws a conclusion.

2. RELATED WORKS

This section provides an in-depth introduction and discussion on the partial filename

search method proposed by Lee et al., [1], and the verification method for remote filename

search proposed by Chen et al. [2, 4].

SHIN-YAN CHIOU

1118

Table 1. Notations.

Notation Description

f a filename

s a query phrase

p the length of filename

d the dimension in the mapping function

nr the number of characters on the right of “*”

nl the number of characters on the left of “*”
()+ n n continuous ‘+’ (e.g. +(5) means “+++++”)

tX the extracted current time of X

ithT the ith time threshold

r the range in each dimension

ai the ith character

l the max. limitation of filename length

a the total amount of filename set

n+
 the total amount of ‘+’ in query

IS index sequence

Hs set of index values

F partial filename sequence

S query phrase

Z the total amount of filename and partial filename

IDX the ID of X

SIDX the pseudo ID of X

BSIDX the backup pseudo ID of X

h() hash function

HMAC() HMAC function

EK()/DK() symmetric encryption/decryption using key K

2.1 Partial Filename Query

In 2012, Lee et al., [1] proposed a method for partial filename search in P2P systems,

including the File Publishing and Query Processing phases. The steps are described in de-

tail below.

(1) File Publishing

When the data owner is in the file publishing stage, the filename is first divided into

several fragments. When then calculate the Keys for these individual fragments, and finally

upload the filename and these index values (i.e. the Keys) to the P2P system for storage.

Table 1 defines the symbols and parameters used, and the steps are described in detail below:

Step 1 (Filename fragmentation): The data owner selects the length d, and divides the

file name f = (a0, a1, a2, …, ap-1) with length p into p − d + 1 segments (ai, ai+1, …, ai+d-

1) with length d, 0  i  p − d + 1, where ai represents the i + 1 character of the filename f.

Step 2 (Index values computation): Data owner computes index sequence IS = {ISj}

using Eqs. (1) and (2),

 () , if ' ', 0 1
()

random value from 0 -1, if ' '
i i

i
i

h a r a i p
f a

to r a
 +   −

=
= +

, (1)

PARTIAL-FILENAME SEARCH MECHANISM FOR ENCRYPTED FILENAMES IN P2P

1119

ISj = (f(aj), f(aj+1), …, f(aj+d-1)), 0  j  p − d (2)

and calculate the index value Key(ISj) via Eq. (3),

1

0

() (()),0 .
d

i

j j i

i

Key IS f a r j p d
−

+

=

=    − (3)

Step 3 (Index value upload): The data owner then uploads the filename and the (p − d

+ 1) index values Key(ISj) to the P2P server.

Step 4 (Table construction): The P2P server then creates a comparison table from the

received filename and index value Key(ISj).

(2) Query Processing

In the search processing stage, the user first enters the query term, which is then divided

into several segments using the sliding window partition method. He/she then analyzes and

selects the most suitable segment, and calculates its individual index values, which are then

uploaded to the P2P server. The P2P server then compares them using the database’s

comparison table before returning the result to the user. The steps are explained in detail as

follows:

Step 1 (Filename segmentation): The user enters the query term with a length p, which

is then divided using the sliding window partition method into p − d + 1 segments with a

length d, and the most suitable segment is used to execute Step 2.

Step 2 (Index value calculation): The user applies Eqs. (4) and (5) to calculate the qu-

ery phrase QP,

() mod , if ' '
()

1, if ' '

i i

i

i

h s r s
m s

s

 +
= 

− = +
 (4)

QP = m(s0), m(s1), …, m(sd-1) (5)

and the index value Key(QP) of the partial filename is calculated using Eq. (6).

0 1 -1

1 -1() ()* ()* ... ()* d

i i dKey QP m s r m s r m s r+= + + (6)

(The symbol “+” in the query denotes the search for a single unknown word.)

Step 3 (Index value upload): The user uploads the partial filename’s index value Key

(QP) to the P2P server.

Step 4 (Filename search): The P2P server compares the received index value Key(QP)

to the database comparison table to obtain the search result (one filename, multiple file-

names, or no result).

Step 5 (Return results): The P2P server then returns the search results to the user.

2.2 Verifiable File Search (Basic Protocol)

Chen et al., [4] proposed a basic protocol for implementing a verifiable P2P file-

name search function using a key to achieve filename verification.

SHIN-YAN CHIOU

1120

This protocol assumes that the data owner, user and P2P server all know all the file-

names. The protocol is executed in the following order: (1) Key generation; (2) Outsource;

(3) Query; (4) Search; and (5) Verify. However, this protocol does not protect filename

privacy. Table 1 defines the symbols and parameters used. The steps are described in detail

as follows,

Step 1 (Key Generation): Data owner generates key K.

Step 2 (Outsource): The data owner then uses all possible filename f from a predeter-

mined alphabet, applying Eq. (7) with a specified filename length limit l, to calculate the

“existing filename set F1” and the “non-existing filename set F2”,

 1

2

(, (,), file content)
,

(, (,), null)
F f HMAC f K
F f HMAC f K
=
=

 (7)

and then F1 and F2 are uploaded to the P2P server for storage in the comparison table, where

HMAC() is the message authentication code function.

Step 3 (Query): The user then transfers the filename f to be queried to the P2P server.

Step 4 (Search): The P2P server then compares the received filename f to the comparison

table and returns a query result (f, HMAC(f, K)), file content) or (f, HMAC(f, K), null) to

the user.

Step 5 (Verify): The user obtains the search result (f, HMAC(f, K), file content) or (f,

HMAC(f, K), null) from the P2P server, and uses the key K and the filename f to calculate

HMAC(f, K), and then compares the received data HMAC(f, K) to verify its integrity.

2.3 Verifiable File Search (Fully-Fledged Protocol)

Chen et al., [2] further proposed a fully-fledged protocol for implementing verified

P2P file search using two keys to achieve filename verifiability, filename privacy and user

differentiation. In this protocol, the data owner has two keys K1 and K2, where K1 is gen-

erated by the data owner, and K2 is a key shared by the P2P server and the Data owner.

The protocol flow proceeds through five steps: (1) Key Generation; (2) Outsource; (3)

Query; (4) Search; and (5) Verify, and uses K1 and K2 to achieve filename verification and

filename privacy. The steps are described in detail as follows:

Step 1 (Key Generation): The Data owner generates the keys K1 and K2.

Step 2 (Outsource): Then, the Data owner uses all possible filename f from a preset al-

phabe, based on Eq. (8) the specified filename limit l, to calculate “existing filename set

F1” and “non-existent filename set F2”. F1 and F2 are then uploaded to the P2P server for

storage in the comparison table.

1 2 2 1

2 2 2 1

((,), ((,),), file content)

((,), ((,),), null)

F HMAC f K HMAC HMAC f K K

F HMAC f K HMAC HMAC f K K

=


=

 (8)

Step 3 (Query): The user then splits the filename f to be queried into all possible filename

beginning with fi, and calculates HMAC(fi, K2) which is then sent to the P2P server for

searching, where i = 1, 2, …, p + 2.

Step 4 (Search): The P2P server then receives the HMAC(fi, K2) from the database com-

PARTIAL-FILENAME SEARCH MECHANISM FOR ENCRYPTED FILENAMES IN P2P

1121

parison table and returns the search result (HMAC(f, K2), HMAC(HMAC(f, K2), K1), file

content) or (HMAC(f, K2), HMAC(HMAC(f, K2), K1), null) to the user.

Step 5 (Verify): The user then obtains the search result from the P2P server, and uses K1

and the HMAC(fi, K2) returned from the P2P server to calculate HMAC(HMAC(f, K2), K1),

which is then compared with HMAC(HMAC(f, K2), K1) from the P2P server to verify the

integrity of the data.

3. PROPOSED SCHEME

This section introduces a mechanism of partial-filename search for encrypted file-

names on P2P storage (PSEF), which can perform a partial filename search function for

encrypted files, with all user data executed in the encrypted state, and achieve user privacy,

data authentication, and filename privacy. This section first lists the requirements (includ-

ing system requirements, attacker model, and security requirements), and then details the

proposed scheme (including registration phase, initial phase, outsourcing phase and query

phase).

3.1 Scheme Requirements

This section explains the system requirements and the detailed scheme of the pro-

posed system.

3.1.1 System requirement

System requirements of the proposed system are described as Definition 1.

Definition 1 (System requirements): The proposed scheme should meet the following

conditions.

(1) Only data owners are allowed to search their files.

(2) Only data owners can obtain complete filenames.

(3) Encrypted filenames are searchable.

(4) Partial filenames can be used for filename search.

(5) The symbol “+” can be used to search for single unknown words.

(6) The symbol “#” can be used to search for zero or one unknown words.

(7) The symbol “*” can be used to search for zero, one, or more than one unknown words.

3.1.2 Attacker model

In our scheme, any identity communicates with each other via an insecure public

channel, offering adversaries opportunities to intercept. In the following, we present the

assumptions of the attacker model.

(1) An adversary may eavesdrop on all communications between protocol actors over the

public channel.

(2) An attacker can modify, delete, resend and reroute the eavesdropped message.

(3) An attacker can be a legitimate user.

(4) An attacker cannot be a legitimate Server.

(5) The attacker knows the protocol description, which means the protocol is public.

SHIN-YAN CHIOU

1122

3.1.3 Security requirement

The security requirements of the proposed system are described as Definition 2.

Definition 2 (Security requirements): The proposed scheme should meet the following

conditions.
(1) Anonymity: Aside from the server, the user’s and identity should not be disclosed to

anyone from eavesdropped information.

(2) Filename privacy: Attackers cannot disclose any filename or partial-filename infor-

mation from eavesdropped information.

(3) Filename confidentiality: The Server (or an attacker) cannot disclose any filename or

partial-filename information (from stolen database information).

(4) Resistance to asynchronous attacks: Attackers cannot block data transmissions,

causing the server or users to be unable to synchronously update, and thus undermining

the following authentication iteration.

(5) Resistance to tracking attack: Attackers cannot access information from the mes-

sages transmitted through the protocol to determine which users are involved a given

communication session.

(6) Filename privacy-preserved storage: Filenames cannot be disclosed in the procedure

that P2P server stores filenames.

(7) Filename privacy-preserved search: Filenames cannot be disclosed in the procedure

that P2P server compares matching tables in database.

3.2 Proposed Scheme

The proposed scheme entails four phases: registration phase, initial phase, file-pub-

lishing phase, and query phase.

3.2.1 Registration phase

User U uses IDU to register on the Server. From the first key field Key, the Server

then selects a shared key KSU, which is then transmitted through a secret channel to U.

Finally, both sides calculate SIDU  h(IDU, KSA, 0) (Fig. 1). The secret channel can be a

hypertext transfer protocol secure (https) protocol, a Short Message Service (SMS), a con-

cealed Pin-Letters, or other methods.

(, ,0)U U SUSID h ID K

UID

SUK
chooses

(, ,0)

SU

U U SU

K

SID h ID K





Key

Server (S)User (U)

Fig. 1. Registration phase.

3.2.2 Initial phase

From the second key field Key 2, the user U then selects a symmetrically encrypted

PARTIAL-FILENAME SEARCH MECHANISM FOR ENCRYPTED FILENAMES IN P2P

1123

private key KU, using symmetric encryption methods such as AES [15] (or DES [16]).

3.2.3 Outsourcing phase

This phase entails four steps: filename segmentation, upload, storage and return, and

identifier update (Fig. 2). Notations are shown in Table 1 and the algorithm is shown in

Table 2. The steps are described in detail as follows.

1

2

gets filename

{ }, 0,1, ...,

extracts current time

 = ()

 = ()

 { (,)}

SA

A

i

A

K A

K

s SA i

f

F f i p d

t

c E t

c E f

H HMAC K f

= = −

=
1 2, , , ,A s At c c H SID

3c
3

?

 = ()

(1)

(, ,)

SAA K

A A

A A SA A

t D c

t t

SID h ID K t



 = +



1 2

1

?

2

3

extracts current time

checks

extracts and via

(from SID or BSID table)

 = ()

(, ,)

stores and in FI table

 = (1)

SA

SA

S

th S A th

A SA A

A K

A A

A A

A A SA A

s

K A

t

T t t T

ID K SID

t D c

t t

BSID SID

SID h ID K t

H c

c E t

 − 



 =





+

Owner (A)Server (S)

, , ,A A SA AID SID K K

ID Key SID BSID

...

ASID
ABSID

UBSID
USIDSUKUID

SAKAID

Fig. 2. Outsourcing phase.

Step 1 (filename segmentation): Data owner A enters a filename f = (a0, a1, a2, …, ap-1)

with a filename length p, selects a segmentation length d, and produces segmented file-

name sequence F = {fi} with a sequence length of max(1, p − d + 1) where a{a, b, …,

z} indicating that the (i + 1) component of f, the sequence length indicates the number of

elements in the sequence, and fi is calculated using Eq. (9) as follows,

  1 1... , 0,1,2,..., , if
 , 0, if

i i i d
i

a a a i p d p d
f

f i p d
+ + − = − 

=
= 

. (9)

Examples are shown in Table 3.

SHIN-YAN CHIOU

1124

Step 2 (filename upload): A obtains the current tA, and then calculates c1 = EKSA(tA), c2 =

EKA(f), and Hs = {HMAC(KSA, fi)}, and then uploads tA, c1, c2, Hs and SIDA to P2P server S

(Fig. 2).

Step 3 (storage and return): S obtains the current time tS and verifies the establishment

of Tth1 < tS − tA < Tth2, and then uses SIDA to search for IDA and KSA. If SIDA cannot be found

in the SID field, then it searches BSID. Next, calculate tA = DKSA(c1) and determine whether

tA ≟ tA is established. Then update BSIDA  SIDA and SIDA  h(IDA, KSA, tA). Finally, Hs

and c2 are stored in the File Index table (Table 4), and c3 = EKSA(tA + 1) is returned to the

Data owner.

Table 2. Outsourcing algorithm.

Algorithm Outsourcing

Input:

 f: filename

 d: dimension

Procedure Publish(f, d)

1: Compute EKSA(f)

2: if (f.length >= d)

3: for (int i = 0; i <= f.length − d; i++)

4: fi = substring (f, i, i+d−1)

5: Compute HMAC(KSA, fi)

6: Upload EKSA(f), {HMAC(KSA, fi)} and SIDA to P2P Server

7: else // f.length < d

8: Compute HMAC(KSA, f0)

9: Upload EKSA(f), HMAC(KSA, fi) and SIDA to P2P Server

10: end

Table 3. Example of filename partition in outsourcing phase.

Filename Partition result (d = 4)

dog dog

book book

apple appl, pple

message mess, essa, ssag, sage

Table 4. Filename index table.

SID Encrypted filename (c2) index (Hs)

SIDA EKA(f
1) {HMAC(KSA, fi

1)}

SIDA EKA(f
2) {HMAC(KSA, fi

2)}

SIDA EKA(f
n) {HMAC(KSA, fi

n)}

Step 4 (ID update): A calculates tA = DKSA(c2) and determines whether tA ≟ (tA + 1) is

established before updating SIDA  h(IDA, KSA, tA).

3.2.4 Query phase

This phase includes two parts: symbol transformation and detail steps.

PARTIAL-FILENAME SEARCH MECHANISM FOR ENCRYPTED FILENAMES IN P2P

1125

Part 1. Symbol transformation

Our scheme can use symbols (“*”, “#” or “+”) in unknown-word search to make

search results more precise, where “+” means exactly one unknown word, “#” means zero

or one un-known words, and “*” means zero, one, or more than one unknown words. When

the user inputs query S = (s0, s1, …, sb-1) including any symbol, it triggers a symbol trans-

formation.

A. Symbol  transformation T

S = (s0, s1, …, sb-1) is transformed to S# via “Symbol  transformation” T:

()

()

(1)

"# ", if 0

('* ' | , , ,) "# ", if 0

"# ", if 0 & 0

r

l

d n

l
d n

i r l r
d

l r

n

s d n n S n

n n



−

−

−

 =


= = =
  

 (10)

T uses d, nr, nl and S = (s0, s1, …, sb-1) to transform “” to one or more “#”, where “#(a)”

indicates continuous a #(e.g., “#(3)” indicates “###”), nr indicates the number of letters

between cthis and cright, and nl indicates the number of letters between cthis and cleft, and cthis

means the current character, cright indicates the first symbol (i.e. ‘*’, ‘#’, or ‘+’) on the right

of cthis (if a symbol exists) or the final letter sb-1 (if it does not exist), and cleft indicates the

first symbol (i.e. ‘*’, ‘#’, or ‘+’) on the left of cthis (if a symbol exists) or the first letter s0

(if it does not exist). The calculation of nr and nl is based on three scenarios depending on

where “” appears in the term:

(1) Prefix: when ‘’ appears in the first character of the search term (i.e., s0 = ‘’), calcu-

late

 1 2 1

1 2 1

min{ } | ('* ', 0), if '* ' (, ,...,)

1, if '* ' (, ,...,)
j b

r
b

j s j s s s
n

b s s s
−

−

=  
=

− 
,

and then ‘’ is transformed to d − nr ‘’. (Note: nl = 0 in this scenario.)

(2) Mid-term: when ‘*’ is in the middle of the search term (i.e., si = ‘’, i[2, b − 2],

directly transform ‘*’ as d − 1 ‘#’. (Note:

 1 2 -1

1 2 -1

min{ } | ('* ',), if '* ' (, ,...,)

1, if '* ' (, ,...,)
j i i b

r
i i b

j i s j i s s s
n

b i s s s
+ +

+ +

− =  
=

− − 
,

 0 1 -1

0 1 -1

max{ } 1| ('* ',), if '* ' (, ,...,)

, if '* ' (, ,...,)
j i

l
i

i j s j i s s s
n

i s s s

− − =  
=


.

(3) Suffix: when ‘’ is at the end of the search term (i.e., sb-1 = ‘’), calculate

 0 1 -2

0 1 -2

max{ } 2 | ('* ',), if '* ' (, ,...,)

1,if '* ' (, ,...,)
j b

l
b

b j s j i s s s
n

b s s s

− − =  
=

− 
,

and then ‘*’ is transformed to d − nl ‘#’. (Note: nr = 0.)

B. Symbol # transformation T#

Then QC is transformed to QP+
i via symbol # transformation T#:

SHIN-YAN CHIOU

1126

() ()('# ' |) { , , ,..., }.n n

iq QC = = + ++ + (11)

T# uses QC = (qc0, qc1, …, qcd-1) to transform ‘#’ to all possible ‘+’s.

C. Symbol + transformation T+

Then QP = (q0, q1, …, qd-1) is transformed to IND via symbol + transformation T+:

(' ' |) { , , ,..., , }iq QP a b y z = + = . (12)

T+ uses QP = (q0, q1, …, qd-1) to transform ‘+’ to all possible letters.

Part 2. Detailed Steps

The process includes five steps: (1) Symbol processing and filename segmentation;

(2) filename upload; (3) ID update; (4) message return; and (5) filename encryption (Fig.

3). The examples shown in Table 5 and the algorithm is shown in Table 6.

4, , ,U U qt c SID H

5c
5

?

(||)= ()

(1)

(, ,)

(),

SU

U

U K

U U

U U SU U

U

j K j j

t Res D c

t t

SID h ID K t

f D c c Res

 

 = +



  = 

1 2

4

?

2

5

extracts current time

checks

extracts and via

(from SID or BSID table)

 = ()

(, ,)

{ } { }

gets { } or from { }

{ }

SU

SU

S

th S U th

U SU U

U K

U U

U U

U U SU U

j

q q s

U j

q

K

t

T t t T

ID K SID

t D c

t t

BSID SID

SID h ID K t

h H H

Res c h

c E



 − 



 =





= 

=

= ((1) ||)Ut Res+

User (U)Server (S)

, , ,U U SU UID SID K K

ID Key SID BSID

...

ASID ABSID

UBSIDUSIDSUKUID

SAKAID

4

gets query

extracts current time

 = ()

{ (,)}

SU

U

K U

q SU i

Q

t

c E t

H HMAC K ind=

Fig. 3. Query phase.

PARTIAL-FILENAME SEARCH MECHANISM FOR ENCRYPTED FILENAMES IN P2P

1127

T
a

b
le 5

. E
x

a
m

p
le o

f file p
a

rtitio
n

 in
 Q

u
ery

 p
h

a
se

 (d
 =

 4
).

Q
u

e
ry

 p
h

-

ra
se

 (S
)

P
o

sitio
n
 o

f “*
”

n
l

n
r

T
*

T
* resu

lt (S
#)

P
S

#

Q
C

Q

P
+i

T
+

T

+ resu
lt (IN

D
)

m
ess+

N

/A

−

−

N
/A

m

ess+

m
ess,

ess+

m
ess

m
ess

N
/A

m

ess

+
o

o
k

N
/A

−

−

N

/A

+
o

o
k

+
o

o
k

+
o

o
k

+
o

o
k

(+

, Q
P

1)
ao

o
k
,

b
o

o
k
,

…
,

zo
o

k

*
g
e

s
0

0

2

(s
0 |4

,2
,0

,S
)

#
#

g
e

#
#

g
e

#
#

g
e

g
e

||

+
g
e

||

+
+

g
e

(+
, Q

P
1)

(+
, Q

P
2)

g
e ||

ag
e, b

g
e, …

, zg
e ||

aag
e,

ab
g
e,

…
,

zzg
e

d
*

s
1

1

0

(s
1 |4

,0
,1

,S
)

d
#

#
#

d
#

#
#

d
#

#
#

d
 || d

+

|| d
+

+

|| d
+

+
+

(+
, Q

P
1)

(+
, Q

P
2)

(+
, Q

P
3)

d
 || d

a, d
b

, …
, d

z ||

d
aa, d

ab
, …

, d
zz ||,

d
aaa,

d
aab

,
…

,

d
zzz

a*
s+

s

1
1

1

(s

1 |4
,1

,1
,S

)
a#

#
#

s+

a#
#

#
,

#
#

#
s

#
#

s+

#
#

s+

s+

||

+
s+

||

+
+

s+

(+
, Q

P
1)

(+
, Q

P
2)

(+
, Q

P
3)

sa, sb
, …

, sz || asa,

asb
, …

, zsa || a
asa,

aasb
, zzsz

m
*
s+

g
e

s
1

1

1

(s
1 |4

,1
,1

,S
)

m

#
#

#
s+

g
e

m
#

#
#

,

#
#

#
s,

#
#

s+
,

#
s+

g
,

s+
g
e

s+
g
e

s+
g
e

sag
e,

sb
g
e,

…
,

szg
e

*
s*

g
e

s
0

0

1

 (s
0 |4

,1
,0

,S
)

#
#

#
s*

g
e,

#
#

#
s,

#
#

s#
,

#
s#

#
,

s#
#

#
,

#
#

#
g
,

#
#

g
e

#
#

g
e

g
e

||

+
g
e

||

+
+

g
e

(+
, Q

P
1)

(+
, Q

P
2)

g
e ||

ag
e, b

g
e, …

,

zg
e

||
a
ag

e,

ab
g
e, …

, zzg
e

s
2

1

2

(s
2 |4

,2
,1

,S
)

*
s#

#
#

g
e

s
0
 &

 s
2

−

−

−

#
#

#
s#

#
#

g
e

SHIN-YAN CHIOU

1128

Table 6. Search algorithm.

Algorithm Search

Input:

 S: query
 d: dimension
 KSU: key
Procedure Search(S, d)
1: for (int i = 0; i < S.length; i++)
2: if(char(i) = *)
3: S = ‘*’transfer
4: for (int i = 0 ; i < S.length ; i++)
5: if(char(i) = #)
6: S = ‘#’ transfer

7: for (int i = 0; i < S.length ; i++)
8: if (char(i) = #)
9: S = ‘+’ transfer
10: Compute {HMAC(KSU, S)}
11: Send {HMAC(KSU, S)} to P2P server
12: end

Step 1 (Symbol transformation and filename segmentation): user U inputs a search

term S = (s0, s1, …, sb-1) with a length b. If S includes a symbol “*”, “#” or “+”, then first

perform Eqs. (10)-(12) to execute symbol processing (examples shown in Table 5). The

process includes the following steps:

(1) Symbol “*” transformation T*: If S includes the symbol “*”, then use Eq. (10) to

transform S to S#. If S does not contain “*” or “#”, then S# = S. (See Table 5 for example.)

(2) Filename segmentation: If the length of S# exceeds d, use the sliding window partition

method to segment s into p − d + 1 partial filename sequence PS# with a length d. If the

length of S# is less than or equal to d, then PS# = S#.

(3) Select search term: If the number of the elements in PS# is 1, then select the search

term QC = PS#. If the element number in PS# is greater than 1, then select the smallest

number of components “#” as QC. If the number of “#” is the same, then select the com-

ponent “#” on the left side or in the middle as QC.

(4) Symbol “#” transformation T#: If QC includes the symbol “#”, then use Eq. (11) to

transform QC to QPi. If QC does not include “#”, then QPi = QC.

(5) Symbol “+” transformation T+: If QP+
i includes the symbol “+”, then use Eq. (12) to

transform QP+
i to IND = {indi}. If QP+

i does not include “+”, then IND = QP+
i.

Step 2 (Filename upload): U obtains current time tU, calculates c4 = EKSU(tU), Hq = {HMAC

(KSU, indi)}, and uploads tU, c4, Hq and SIDU to P2P server S.

Step 3 (ID update): S obtains the current time tS to verify the establishment of Tth1 < tS −

tU < Tth2, and then uses SIDU to search for IDU and KSU. If it can’t be found in the SID field,

then search BSID. Next, calculate tU = DKSU(c4) and determine tU = tU. Once tU and tU are

confirmed to be identical, update BSIDU  SIDU and SIDU  h(IDU, KSU, tU).

Step 4 (Result return): S then compares the received Hq to the comparison table Hs. If a

suitable filename {c
U
2} is found, then Res = {c

U
2}. Otherwise, Res = null. Next, transmit c5

= EKSU((tU + 1)||Res) to the user.

Step 5 (Filename encryption): U calculates DKSU(c5) to obtain tU and Res. Determine tU

≟ (tU + 1). Confirm tU and (tU + 1) are identical and then calculate fU = DKU(Res) and

update SIDU  h(IDU, KSU, tU).

PARTIAL-FILENAME SEARCH MECHANISM FOR ENCRYPTED FILENAMES IN P2P

1129

4. COMPARISON AND SECURITY ANALYSIS

This section analyses and compares the properties and securities including the seven

system requirements in Definition 1 and the seven security requirements in Definition 2.

Table 7 summarizes the comparison of the properties and securities for the proposed

method and those schemes proposed by Lee et al. [1], Chen et al. [2], Chen et al. [4] and

Yu and Choi [6].

Table 7. Comparison of features and security properties.

 Lee et al. [1] Chen et al. [2] Chen et al. [4] Choi [6] Ours

(1-1)    
(1-2)  
(1-3)  
(1-4)  
(1-5)  
(1-6) 
(1-7)  
(2-1)     
(2-2)   
(2-3) 
(2-4) 
(2-5)   
(2-6)   
(2-7)     

4.1 Property Analysis

Our proposed system provides seven major properties.

(1) (1-1) Only data owners are allowed to search their files: In addition to the segment

length d, each Data owner U can possess a different key KU, thus identical filenames

for files belonging to different users will calculate different index HS, and only the

Data owner using key KU can search successfully.

(2) (1-2) Only data owners can obtain complete filenames: Since the complete filename

is encrypted using key KU, only the Data owner can use KU to decrypt and obtain the

complete filename.

(3) (1-3) Encrypted filenames are searchable: On the P2P server, the file index table can

be used to search for encrypted filenames.

(4) (1-4) Partial filenames can be used for filename search: The user can search for a

filename from a partial filename query using the outsourcing algorithm, symbol trans-

formation, and search algorithm.

(5) (1-5) The symbol “+” can be used to search for single unknown words: The user can

enter the character “+” which can be transformed using T+ in Eq. (12) to search for

exactly one unknown word.

(6) (1-6) The symbol “#” can be used to search for zero or one unknown words: The uses

can enter the character “#”, which can be transformed to “+” using T# in Eq. (11) to

search for zero or one unknown words.

SHIN-YAN CHIOU

1130

(7) (1-7) The symbol “*” can be used to search for zero, one, or more than one unknown

words: The user can input the character “*”, which can be transformed to “#” using T*

in Eq. (10) to search for zero, one, or more than one unknown words.

4.2 Security Analysis

By using the proof concept [39, 40], we analyze the security of our protocols according

to the requirements defined in Definition 2 as follows.

4.2.1 Anonymity

Because () (1)(, ,),i i

U U SA USID h ID K t −= an attacker may eavesdrop ()i

USID and (1)i

Ut
− to try to

evaluate IDU. However, IDU is not able to be evaluated because the hash function is irre-

versible, thus the proposed method achieves anonymity. Theorem 1 proves the property of

anonymity from Definition 3.

Definition 3 (Partial hash problem): Let a, b, c  Z and h1 = h(a, b, c). If a can be eval-

uated from given c and h1, then we say the partial hash problem is solved. (The probability

of solving this problem is denoted as Pr(a | h1, c) = 1.)

Theorem 1 (Anonymity): In our scheme, if an attacker can evaluate IDU from SIDU, then

the partial hash problem can be solved.

Proof. In our scheme, assume an adversary tries to compute IDU from two-round eaves-

dropped ()i

USID and (1) ,i

Ut
− where ()i

USID stands for the current-round SIDU, (1)i

Ut
− means the

previous-round tU, and () (1)(, ,).i i

U U SA USID h ID K t −= Let RO1 be a random oracle: input ()i

USID

and (1)i

Ut
− to output IDU (i.e. (1) ()

1(,)i i

U U URO t SID ID− →). In Definition 3, let (1)i

Ut c−  and
()

1

i

USID h be input parameters of RO1 and obtain output IDU. Let a  IDU then a is

evaluated. Therefore, () (1)Pr(,)i i

U U UID SID t −│  Pr(a | h1, c) = 1, which means the partial hash

problem can be solved if RO1 exists.

4.2.2 Filename privacy

Only c2 = EKA(f) can be eavesdropped in the outsourcing phase. Therefore, an attacker

(or the P2P server) is not able to disclose the filename f without key KA, thus the proposed

method achieves filename privacy. Theorem 2 proves the property of filename privacy

from Definition 4.

Definition 4 (Symmetric decryption problem): Let xZ and c = EK(x) stands for a sym-

metric encryption (e.g. AES) of x using key K. If x can be evaluated from given c, then we

say the Symmetric decryption problem is solved. (The probability of solving this problem

is denoted as Pr(x | c) = 2.)

Theorem 2 (Filename privacy): In our scheme, if an attacker can evaluate f from eaves-

dropped c2 = EKA(f), then the Symmetric decryption problem can be solved.

PARTIAL-FILENAME SEARCH MECHANISM FOR ENCRYPTED FILENAMES IN P2P

1131

Proof: In our scheme, assume an adversary tries to evaluate f from eavesdropped c2 = EKA(f).

Let RO2 be a random oracle: input c2 to output f (i.e. RO2(c2) → f.) In Definition 4, Let c2 

c be input parameters of RO2 and obtain output f. Let x  f then x is evaluated. Therefore,

Pr(f | c2)  Pr(x | c) = 2, which means the Symmetric decryption problem can be solved if RO2

exists.

4.2.3 Resistance to synchronous attacks

In our scheme, both user and server have SID Table and BSID Table. If an attacker

tries to block SIDA and makes the updates of SIDA out of sync., server can still use the BSID

Table to identify user identities. Therefore, our scheme can achieve synchronized attack

resistance.

4.2.4 Resistance to tracking attack

Only SIDU
(n)

, SIDV
(m)

, tU
(n-1)

 and tV
(m-1)

 can be eavesdropped from continuous three- or

four-round query-phase procedure. Because SIDA  h(IDA, tA) is altered with tA in each

communication, Therefore, it is unable to identify whether ()n

USID and ()m

VSID are the same

user, thus the proposed method achieves resistance to tracking attack. Theorem 3 proves

the property of resistance to tracking attack from Definition 4.

Definition 5 (Partial pre-hashed-message tracking problem): Let a1, a2, b1, b2, c1, c2 

Z, h1 = h(a1, b1, c1) and h2 = h(a2, b2, c2). If isEqual(a1, a2) can be evaluated from given h1,

h2, c1, and c2, then we say the partial pre-hashed-message tracking problem is solved,

where c1  c2 and isEqual(a1, a2) is 0 (if a1  a2) or 1 (if a1 = a2). (The probability of solving

this problem is denoted as Pr(isEqual(a1, a2)| h1, h2, c1, c2) = 3).

Theorem 3 (Resistance to tracking attacks): In our scheme, if an attacker can evaluate

the value of isEqual(IDU
(n)

, IDV
(m)

) from eavesdropped SIDU
(n)

, SIDV
(m)

, tU
(n-1)

 and tV
(m-1)

, then the

partial pre-hashed-message tracking problem can be solved, where SIDU
(n)

/ SIDV
(m)

 stands

for the n/mth-round SIDU / SIDV, tU
(n-1)

/ tV
(m-1)

 means the (n − 1)/(m − 1)th-round tU/tV, SIDU
(n)

= h(IDU, KSU, tU
(n-1)

), SIDV
(m)

 = h(IDV, KSU, tV
(n-1)

), isEqual(x, y) is 0 (if x  y) or 1 (if x = y),

and t1  t2.

Proof: In our scheme, assume an adversary tries to track a user A from eavesdropped SIDU
(n)

,

SIDV
(m)

, tU
(n-1)

 and tV
(m-1)

. Let RO3 be a random oracle: Input SIDU
(n)

, SIDV
(m)

, tU
(n-1)

 and tV
(m-1)

 to output

isEqual(IDU
(n)

, IDV
(m)

). (i.e. RO3(SIDU
(n)

, SIDV
(m)

, tU
(n-1)

 and tV
(m-1)

) → isEqual(IDU
(n)

, IDV
(m)

).) In

Definition 5, let SIDU
(n)  h1, SIDV

(m)  h2, tU
(n-1)

  c1 and tV
(m-1)  c2 be input parameters of

RO3 and obtain output isEqual(IDU
(n)

, IDV
(m)

). Let isEqual(a1, a2)  isEqual(IDU
(n)

, IDV
(m)

), then

isEqual(a1, a2) is evaluated. Therefore, Pr(isEqual(IDU
(n)

, IDV
(m)

)|SIDU
(n)

, SIDV
(m)

, tU
(n-1)

, tV
(m-1)

) 

Pr(isEqual(a1, a2) | h1, h2, c1, c2) = 3, which means the partial pre-hashed-message tracking

problem can be solved if RO3 exists.

4.2.5 Filename privacy-preserved search

Only c5 = EKSU((tU + 1)||Rec) and Hq = {HMAC(KSU, indi)} can be eavesdropped in the

query phase. Therefore, an attacker (or the P2P server) is not able to disclose the query

SHIN-YAN CHIOU

1132

result Rec or query information indi, thus the proposed method achieves filename privacy-

preserved search. Theorem 4 proves the property of filename privacy-preserved search

from Definition 6.

Definition 6 (Partial symmetric decryption problem): Let a, x  Z and c = EK(a || x)

stands for a symmetric encryption (e.g. AES) of a || x using key K. If x can be evaluated

from given c, then we say the Partial symmetric decryption problem is solved. (The prob-

ability of solving this problem is denoted as Pr(x|c) = 4.)

Theorem 4 (Filename privacy-preserved search): In our scheme, if attacker can evaluate

Rec when server search filename c5 = EKSU((tU + 1)||Rec), then the Partial symmetric decryp-

tion problem can be solved.

Proof: In our scheme, assume an adversary tries to evaluate Rec from eavesdropped c5 =

EKSU((tU + 1)||Rec). Let RO4 be a random oracle: input c5 to output Rec (i.e. RO4(c5) → Rec.)

In Definition 6, Let c5  c be an input parameter of RO4 and obtain output Rec. Let x  Rec

then x is evaluated. Therefore, Pr(Rec | c5)  Pr(x | c) = 4, which means the Partial symmetric

decryption problem can be solved if RO4 exists.

4.2.6 Filename privacy-preserved storage

Only c2 = EKA(f) and Hs = {HMAC(KSA, fi)} can be eavesdropped in the outsourcing

phase. Therefore, an attacker is not able to disclose the information of filename f or partial

filenames fi, thus the proposed method achieves filename privacy-preserved storage. The-

orem 5 proves the property of filename privacy-preserved storage from Definition 7.

Definition 7 (Joint HMAC and symmetric decryption problem): Let x  Z, c = EK1(x)

stands for a symmetric encryption (e.g. AES) of q-length x using key K1, and H = {HMAC

(K2, yi)} means the set of HMAC value of K2 and yi, where x = (b0, b1, …, bq-1) and yi = (bi,

bi+1, …, bi+d-1), i = 0, 1, 2, …, q − d . If yj can be evaluated from given d , c and H, then we

say the Joint HMAC and symmetric decryption problem is solved, where j = 0, 1, 2, …, q

− d . (The probability of solving this problem is denoted as Pr(yj | d , c, H) = 5).

Theorem 5 (Filename privacy-preserved storage): In our scheme, if attacker can evaluate

fi from eavesdropped c2 = EKA(f), and Hs = {HMAC(KSA, fi)}, then the Joint HMAC and sym-

metric decryption problem can be solved.

Proof: In our scheme, assume an adversary tries to evaluate fi from c2 = EKA(f), d and Hs =

{HMAC(KSA, fi)}. Let RO5 be a random oracle: input d, c2 and Hs to output fi (i.e. RO5(d, c2,

Hs) → fi.) In Definition 7, Let d  d , c2  c and Hs  H be input parameters of RO5 and

obtain output fi. Let yj  fi then yj is evaluated. Therefore, Pr(fi | d, c2, Hs)  Pr(yi | d , c, H) =

5, which means the Joint HMAC and symmetric decryption problem can be solved if

RO5 exists.

4.2.7 Filename confidentiality

Only c2 = EKA(f), and Hs = {HMAC(KSA, fi)}can be obtained from database. Therefore,

PARTIAL-FILENAME SEARCH MECHANISM FOR ENCRYPTED FILENAMES IN P2P

1133

the Server (or an attacker) is not able to disclose the information of filename f or partial

filenames fi from database, thus the proposed method achieves filename confidentiality.

Theorem 6 proves the property of filename confidentiality from Definition 7.

Theorem 6 (Filename confidentiality): In our scheme, if attacker can evaluate fi from da-

tabase-stolen c2 = EKA(f), and Hs = {HMAC(KSA, fi)}, then the Joint HMAC and decryption

problem can be solved.

Proof: In our scheme, assume an adversary tries to evaluate fi from c2 = EKA(f), d and Hs =

{HMAC(KSA, fi)}. Let RO5 be a random oracle: input d, c2 and Hs to output fi (i.e. RO5(d, c2,

Hs) → fi). In Definition 7, Let d  d , c2  c and Hs  H be input parameters of RO5 and

obtain output fi. Let yj  fi then yj is evaluated. Therefore, Pr(fi | d, c2, Hs)  Pr(yj |d, c2, H) =

5, which means the Joint HMAC and symmetric decryption problem can be solved if

RO5 exists.

Table 8. Comparison of computation cost in outsourcing phase.

 [1] [2] [4] [6] Ours

No. of Key p − d + 1 2 1 2 2

No. of filename partition p − d + 1 0 0 0

Hash d(p − d + 1) 0 0 3 0

HMAC 0
1

2 !
l

a

i

i

C i
=

 
1

!
l

a

i

i

C i
=

 1 1p d− +

Multiplication d(p − d + 1)+ d − 1 0 0 0 0

Addition (d−1)(p − d + 1) 0 0 0 0

Encryption 0 0 0 1 1

Table 9. Comparison of computation cost in query phase.

 [1] [2] [4] [6] Ours

No. of Key 1p d− + 2 1 1 1

No. of filename partition 1p d− + 0 0 0 1p d− +

hash (1)d p d− + 0 0 1 0

HMAC 0 2(2)p + 2p + 1 1p d− +

Multiplication (1) 1d p d d− + + − 0 0 0 0

Addition (1)(1)d p d− − + 0 0 0 0

Table 10. Comparison of server pairing cost in outsourcing phase.

Conditions [1] [2] [4] [6] Ours

Without Symbol (1)Z * p - d + (2)Z * n + (2)Z * n + Z (1)Z * p - d +

With Symbol 27n+ N/A N/A N/A 27n+

SHIN-YAN CHIOU

1134

Table 11. Average search time for 500-record database (d = 4).

 n(+) n(#) n(*) Position Condition Example Time

1 0 0 0 N/A N/A computer 485

2 1 0 0 back 3ln = com+ 568

3 1 0 0 back 2ln = co+ 572

4 0 1 0 back 3ln = com# 581

5 0 1 0 back 2ln = co# 586

6 0 0 1 front 3rn = *ter 578

7 0 0 1 front 2rn = *er 2699

8 0 0 1 back 3ln = com* 594

9 0 0 1 back 2ln = co* 2702

10 0 0 1 middle 3r ln n= = com*ter 597

11 0 0 1 middle 2r ln n= = co*er 2717

12 1 0 1 front & back * 3, 3r ln n+= = *ute+ 601

n(x): number of symbol x; Time unit: millisecond (ms)

4.3 Computation Cost Analysis

In this section, we analyze the computation and communication performance of our

proposed method from four aspects: computation cost in outsourcing phase (Table 8), com-

putation cost in query phase (Table 9), Server pairing cost in filename-search phase (Table

10), and communication times (Table 11), where l is the maximum limitation of filename

length and a stand for the total amount of filename sets F1 and F2 in Eq. (7).

5. IMPLEMENTATION

This section presents the implementation of the proposed scheme. We use one per-

sonal computer and one android phone to implement a P2P server and a personal user

respectively. The personal computer implementation used Windows 10 with an Intel (R)

core (TM) i7-7700HQ CPU @ 2.80GHz and 16G RAM. Android phone implementation

used HTC U11 based on Android 7.11 and Qualcomm S835 2.45GHz. They communicate

to each other through wireless networks such as 3G, 4G or WiFi. Moreover, the hash func-

tion used is SHA-512 [14], the symmetric encryption algorithm is DES [16]. Table 11

shows the average search time of ten queries for 500-record database in each condition,

with the network connection upload speed 15.62Mbps, and the download speed 92.7Mbps.

In our implementation, we assume that the system time of the server and the Android

smartphone are synchronized. However, the system times on the server and the Android

smartphone are difficult to be synchronized. Fortunately, the experience in implementation

shows that the system time difference between the server and the phones is within mil-

liseconds. By assuming the maximum system time difference between the server and

phones is 1000 milliseconds and the value tS − tM is between 10 ms and 30 ms, we suggest

to set Tth1 and Tth2 to −990 ms and 1030 ms, respectively. (In real situation, the value tS −

tM is suggested to be measured again for much accuracy.) The application flowchart is

shown in Fig. 4.

PARTIAL-FILENAME SEARCH MECHANISM FOR ENCRYPTED FILENAMES IN P2P

1135

2.Start

User

按鈕
Press button
OUTSOURCE

按鈕
Press button

QUERY

Outsource
or Query

Input filename f
 and length d

Length(f)
 d ?

outsource query

Segment f

Yes

Compute index
value Hs

No

c2 = Encrypt f

Transmit c2 and Hs
to Server

(Port:10024)
1

Input query S
and length d

S# = T*(S)

PS# = segment S#

(if it's length > d)

QC = selected PS#

QPi = T#(QC)

IND = T+(QPi)

Upload Hq =
{HMAC(KSU, indi)}

(Port:10025)
2

Server
1.Start

Listening (Port:
10024 and 10025)

Received
data from
which port

1002510024

Receive c2 and Hs Receive Hq

21

Wait for response

Received
response

End

No

3

Verify correction
and update SID

Wait for response

Received
response

4

Yes

Verify correction,
obtain filename =
decrypt(Res'), and

Update SID

No

Verify correction,
update SID, and
store c2 and Hs

Return c3 to User

Finish

3

End

Yes
No

Verify correction,
update SID, and

compare Hq to Hs

Return result Res
to User

4

Yes

Fig. 4. Application flowchart.

6. CONCLUSION

P2P-based computing is becoming more popular, with users increasingly storing and

backing up files on P2P networks. In addition to security consideration for filename en-

cryption, users are also concerned with searching for files using partial filenames. The

present study proposes a P2P-based search function in which an encrypted filename can

be searched for successfully using a partial filename while simultaneously providing con-

venience and security. The proposed protocol provides seven types of functionality and

seven types of security. The proposed system was implemented in a mobile device to

demonstrate feasibility. Future work will seek to provide private partial filenames search

in multi languages, and improve search performance to further facilitate P2P-based appli-

cations.

SHIN-YAN CHIOU

1136

REFERENCES

1. G. Lee, S. L. Peng, Y. C. Chen, and J. S. Huang, “An efficient search mechanism for

supporting partial filename queries in structured peer-to-peer overlay,” Peer-to-Peer

Networking and Applications, Vol. 5, 2012, pp. 340-349.

2. F. Chen, T. Xiang, X. Fu, and W. Yu, “User differentiated verifiable file search on the

cloud,” IEEE Transactions on Services Computing, Vol. 11, 2018, pp. 948-961.

3. C. R. Krishna and S. A. Mittal, “Privacy preserving synonym based fuzzy multi-key-

word ranked search over encrypted cloud data,” in Proceedings of International Con-

ference on Computing, Communication and Automation, 2016, pp. 1187-1194.

4. F. Chen, T. Xiang, X. Fu, and W. Yu, “Towards verifiable file search on the cloud,”

in Proceedings of IEEE Conference on Communications and Network Security, 2014,

pp. 346-354.

5. C. Doulkeridis, K. Nørvåg, and M. Vazirgiannis,“Peer-to-peer similarity search over

widely distributed document collections,” in Proceedings of ACM Workshop on Large-

Scale Distributed Systems for Information Retrieval, 2008, pp. 35-42.

6. J. W. Yu and H. K. Choi, “Efficient protocol for searchable encryption and secure

deletion on cloud storages,” in Proceedings of IEEE International Conference on Con-

sumer Electronics, 2017, pp. 444-447.

7. A. Juels and B. S. Kaliski Jr, “PORs: Proofs of retrievability for large files,” in Pro-

ceedings of the 14th ACM Conference on Computer and Communications Security,

2007, pp. 584-597.

8. N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-keyword

ranked search over encrypted cloud data,” IEEE Transactions on Parallel and Distri-

buted Systems, 2014, pp. 222-233.

9. B. Wang, B. Li, and H. Li, “Panda: Public auditing for shared data with efficient user

revocation in the cloud,” IEEE Transactions on Services Computing, Vol. 8, 2015, pp.

92-106.

10. H. Wang, “Identity-based distributed provable data possession in multicloud storage,”

IEEE Transactions on Services Computing, Vol. 8, 2015, pp. 328-340.

11. P. Ganesan, Q. Sun, and H. Garcia-Molina, “Yappers: A peer-to-peer lookup service

over arbitrary topology,” in Proceedings of the 22nd Annual Joint Conference of

IEEE Computer and Communications, 2002, pp. 1250-1260.

12. B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz,

“Tapestry: A resilient global-scale overlay for service deployment,” IEEE Journal on

Selected Areas in Communications, Vol. 22, 2004, pp. 41-53.

13. H. L. Liu, G. X. Chen, Y. Chen, and Q. B. Chen, “A trust-based P2P resource search

method integrating with Q-learning for future Internet,” Peer-to-Peer Networking and

Applications, Vol. 8, 2015, pp. 532-542.

14. P. Gallagher and A. Director, “Secure Hash Standard (SHS),” FIPS PUB, Vol. 180,

1995, p. 183.

15. J. Daemen and V. Rijmen, The Design of Rijndael: AES − The Advanced Encryption

Standard, ISC, Vol. 196, Springer Berlin, Heidelberg, 2002.

16. W. Diffie and M. Hellman, “Exhaustive cryptanalysis of the NBS data encryption

standard,” IEEE Computer Society Technical Committee on Security and Privacy, Vol.

76, 1997, pp. 72-84.

PARTIAL-FILENAME SEARCH MECHANISM FOR ENCRYPTED FILENAMES IN P2P

1137

17. N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, Vol. 48,

1987, pp. 203-209.

18. S. Chandrasekhar and M. Singhal, “Efficient and scalable query authentication for

cloud-based storage systems with multiple data sources,” IEEE Transactions on Ser-

vices Computing, Vol. 10, 2017, pp. 520-533.

19. C. Xu, J. Xu, H. Hu, and M. H. Au, “When query authentication meets fine-grained

access control: A zero-knowledge approach,” in Proceedings of International Con-

ference on Management of Data, 2018, pp. 147-162.

20. Y. Zhang, G. Cui, S. Deng, F. Chen, Y. Wang, and Q. He, “Efficient query of quality

correlation for service composition,” IEEE Transactions on Services Computing, Vol.

14, 2018, pp. 695-709.

21. X. Ge, J. Yu, C. Hu, H. Zhang, and R. Hao, “Enabling efficient verifiable fuzzy key-

word search over encrypted data in cloud computing,” IEEE Access, Vol. 6, 2018, pp.

45725-45739.

22. T. Peng, Y. Lin, X. Yao, and W. Zhang, “An efficient ranked multi-keyword search

for multiple data owners over encrypted cloud data,” IEEE Access, Vol. 6, 2018, pp.

21924-21933.

23. D. Wu, Q. Gan, and X. Wang, “Verifiable public key encryption with keyword search

based on homomorphic encryption in multi-user setting,” IEEE Access, Vol. 6, 2018,

pp. 42445-42453.

24. L. Zhang, Y. Zhang, and H. Ma, “Privacy-preserving and dynamic multi-attribute con-

junctive keyword search over encrypted cloud data,” IEEE Access, Vol. 6, 2018, pp.

34214-34225.

25. Q. Zhang, Q. Liu, and G. Wang, “PRMS: A personalized mobile search over encrypted

outsourced data,” IEEE Access, Vol. 6, 2018, pp. 31541-31552.

26. Y. Zhang, R. H. Deng, J. Shu, K. Yang, and D. Zheng, “TKSE: Trustworthy keyword

search over encrypted data with two-side verifiability via blockchain,” IEEE Access,

Vol. 6, 2018, pp. 31077-31087.

27. C. Guo, R. Zhuang, C.-C. Chang, and Q. Yuan, “Dynamic multi-keyword ranked

search based on bloom filter over encrypted cloud data,” IEEE Access, Vol. 7, 2019,

pp. 35826-35837.

28. C. Hu, P. Liu, R. Yang, and Y. Xu, “Public-key encryption with keyword search via

obfuscation,” IEEE Access, Vol. 7, 2019, pp. 37394-37405.

29. C. Hu, X. Song, P. Liu, Y. Xin, Y. Xu, Y. Duan, and R. Hao, “Forward secure con-

junctive-keyword searchable encryption,” IEEE Access, Vol. 7, 2019, pp. 35035-

35048.

30. J. Sun, L. Ren, S. Wang, and X. Yao, “Multi-keyword searchable and data verifiable

attribute-based encryption scheme for cloud storage,” IEEE Access, Vol. 7, 2019, pp.

66655-66667.

31. Y. Wu, J. Hou, J. Liu, W. Zhou, and S. Yao, “Novel multi-keyword search on en-

crypted data in the cloud,” IEEE Access, 2019, Vol. 7, pp. 31984-31996.

32. M. Zhao, L. G. Liu, Y. Ding, Y. Wang, H. Liang, S. Tang, B. Wen, and W. Liang,

“Verifiable and privacy-preserving ranked multi-keyword search over outsourced data

in clouds,” in Proceedings of IEEE 15th International Conference on Big Data Science

and Engineering, 2021, pp. 95-102.

SHIN-YAN CHIOU

1138

33. X. Ge, J. Yu, Jia H. Zhang, C. Hu, Z. Li, Z. Qin, and R. Hao, “Towards achieving

keyword search over dynamic encrypted cloud data with symmetric-key based verifi-

cation,” IEEE Transactions on Dependable and Secure Computing, Vol. 18, 2019, pp.

490-504.

34. W. Xu, J. Zhang, Y. Yuan, X. Wang, Y. Liu, and M. I. Khalid, “Towards efficient

verifiable multi-keyword search over encrypted data based on blockchain,” PeerJ

Computer Science, Vol. 8, 2022, p. e930.

35. V. B. Chenam and S. T. Ali, “A designated cloud server-based multi-user certificate-

less public key authenticated encryption with conjunctive keyword search against

IKGA,” Computer Standards & Interfaces, Vol. 81, 2022, p. 103603.

36. Y. Liu, J. Yu, M. Yang, W. Hou, and H. Wang, “Towards fully verifiable forward

secure privacy preserving keyword search for IoT outsourced data,” Future Genera-

tion Computer Systems, Vol. 128, 2022, pp. 178-191.

37. S. Zhao, H. Zhang, X. Zhang, W. Li, F. Gao, and Q. Wen, “Forward privacy multi-

keyword ranked search over encrypted database,” International Journal of Intelligent

Systems, Vol. 37, 2022, pp. 7356-7378.

38. Q. Gan, J. K. Liu, X. Wang, X. Yuan, S. F. Sun, D. Huang, C. Zuo, and J. Wang,

“Verifiable searchable symmetric encryption for conjunctive keyword queries in cloud

storage,” Frontiers of Computer Science, Vol. 16, 2022, pp. 1-19.

39. M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for designing

efficient protocols,” in Proceedings of the 1st ACM Conference on Computer and

Communications security, 1993, pp. 62-73.

40. S.-Y. Chiou and Z.-Y. Liao, “A real-time, automated and privacy-preserving mobile

emergency-medical-service network for informing the closest rescuer to rapidly sup-

port mobile-emergency-call victims,” IEEE Access, Vol. 6, 2018, pp. 35787-35800.

Shin-Yan Chiou (邱錫彥) received the Ph.D. degree in Elec-

trical Engineering from National Cheng Kung University, Taiwan,

in 2004. From 2004 to 2009, he worked at Industrial Technology

Research Institute as an RD Engineer. Since 2009, he joined the

faculty of the Department of Electrical Engineering, Chang Gung

University, Taoyuan, Taiwan, where he is currently a Professor. He

has published a number of journals and conference papers in the

areas of information security, social network security and mobile

security. His research interests include information security, cryp-

tography, social network security, and secure applications between

mobile devices.

