
Journal of Information Science and Engineering 38, 591-603 (2022)

DOI: 10.6688/JISE.202205 38(3).0006

Improving Mini-Shogi Engine Using Self-Play and
Possibility of White’s Advantage∗

Masahiro Shioda and Takeshi Ito
Graduate School of Informatics and Engineering

The University of Electro-Communications
Tokyo, 182-0021 Japan

E-mail: shioda@minerva.cs.uec.ac.jp; taito@mbc.nifty.com

The artificial intelligence (AI) in Shogi has made rapid progress recently,

owing to the recent establishment of a method of learning evaluation via self-

play. In this paper, we applied this method to Mini-Shogi to verify the effect.

Specifically, we used YaneuraOu Shogi engine to develop the Mini-Shogi pro-

gram and trained a neural network-based evaluation function. Our program

won all competitions in which we participated in 2020. Moreover, the experi-

mental results suggest the second-move (White) advantage in Mini-Shogi.

Keywords: artificial intelligence in game, evaluation function, machine learn-

ing, self-play, Shogi

1. INTRODUCTION

Zero-sum games have been the targets of study in the field of artificial intel-
ligence (AI) for a long time. In particular, the study of computer Shogi is very
popular and has been mainly conducted in Japan. Ponanza defeated a professional
Shogi player for the first time in 2013, swept all professionals since 2016, achieving
superhuman performance. One of the reasons is the establishment of a self-play
method of learning evaluation. Mini-Shogi is played on a 5×5 board, and the
state-space is much narrower than that of standard Shogi. There are no experts
in Mini-Shogi, and it is commonly played at competitions where computer engines
compete against each other: UEC-cup Computer Mini-Shogi Tournament is an
event held by the Entertainment and Cognitive Science Research Station since
2007. However, until recently, there has been no evidence to suggest that which
player has an advantage. Although the machine learning method described previ-
ously may also be effective in games similar to Shogi, it has not yet been introduced
to Mini-Shogi. Thus, we expect they will contribute well to the improvement of
Mini-Shogi engine’s strength.

This paper extends a previous work [1], and we applied the described method
to Mini-Shogi, training its neural network-based evaluation function from scratch

Received February 2, 2021; revised March 21 & May 17, 2021; accepted June 25, 2021.

Communicated by Yasufumi Takama.
∗ This work was supported by JSPS KAKENHI Grant No. 18H03347.

591



592 Masahiro Shioda and Takeshi Ito

to make a sufficiently strong Mini-Shogi program. We train an efficiently updat-
able neural network (NNUE) as our conventional evaluation function. NNUE has
contributed to the improvements in strength in both computer Shogi and com-
puter chess, and we believe that its superiority is also reflected in our experiment.
Comparing the strength against leading programs, our program is found to per-
form comparatively well, and it shows high performance for the White side in
particular. We also investigate the bias of win rate between Black and White.

2. MINI-SHOGI

2.1 About Mini-Shogi

Mini-Shogi was invented around 1970 in Japan and is derived from Shogi
(Japanese chess). A board is composed of 25 squares arranged into five rows and
five columns. Each player1 has six pieces (i.e., one king, one rook, one bishop, one
gold general, one silver general, and one pawn). At the beginning of the game,
pieces are placed as shown in Fig. 1. The promotion zone is the last rank farthest
away from each player. The rules of Mini-Shogi are nearly the same as those of
Shogi.

When we calculated the average branching factor and the average game length
from records of the UEC-cup Mini-Shogi Tournament, the results were 21 and 60,
respectively. The game-tree complexity of Mini-Shogi was computed to be 1080;
thus, we estimated that it is larger than Othello (1060) and smaller than chess
(10120).

2.2 Studies Using Mini-Shogi

Mini-Shogi retains the characteristics of Shogi but has a much narrower state-
space. Therefore, Mini-Shogi has been used as a testbed for new game-play and
computer learning techniques, because regular Shogi is too time-consuming and
computationally expensive. Obata et al. utilized Mini-Shogi to test the effective-
ness of the council algorithm for the first time [2]. This work was later applied
to Shogi and chess and was developed into various consultation algorithms [3–5].
Morioka et al. proposed the PGLeaf learning algorithm and verified its effective-
ness in Mini-Shogi games [6].

2.3 Imbalanced Winning Percentage Between Black and White

Because there are few move choices at the beginning of a game, and the initial
actions of both players tend to be identical, it has been suggested that Mini-Shogi
is prone to deadlock. In many tournaments, such as the UEC-cup, a rule has been
adopted to force Black to break. Furthermore, White wins if the same position
repeats four times during the game (i.e., sennichite). However perpetual check is
exceptionally illegal, and the checking player loses the game. It has been suggested
that this rule might increase White’s win rate, but clear evidence has been lacking,
even between top-level programs until 2019. However, at the 12th UEC-cup in

1one Black (the first player) and one White (the second player).



Improving Playing Strength of Mini-Shogi Using Self-Play 593

Fig. 1. Initial position of Mini-Shogi.

2020, we discovered a trend toward a large White advantage in the predecessor
program to this paper and the runner-up program, Fairy-Stockfish. This finding
may be due to the fact that the performance of each engine has far surpassed pre-
vious levels. Hence, we are seeking new insights into this phenomenon.

3. RELATED WORKS

Shogi is a popular game in Japan, and many computer shogi tournaments
have been held. It is difficult to tune a large number of parameters by hand.
Thus, tuning parameters of evaluation functions has been an important issue for
a long time. These techniques for computer Shogi are described in detail in [7].
This section summarizes attempts at machine learning in computer Shogi.

3.1 Learning Method by Bonanza

Bonanza, developed by Kunihito Hoki, won the 16th World Computer Shogi
Championship in 2006. Hoki proposed a method of enabling positional learning
evaluation, which provided an automated learning function for the first time for
computer Shogi [8]. Let P be a set of positions, and let w be the feature weight
vector. The purpose of learning is to find a better w so that the minimax search
matches well with the desired moves for each position in P. This vague goal can
be replaced with an optimization problem by the objective function:

J(P,w) =
∑
p∈P

∑
m∈M ′

p

T (s(p.m,w)− s(p.dp,w)) , (1)

where p.m is the position after move m in position p; dp is the desired move in
position p; M ′

p is the set of legal moves in p excluding dp; s(p,w) is the minimax
value for p; and T (x) = 1/(1 + exp(−ax)), which is a sigmoid function. Hoki
succeeded in adjusting more than 10,000 weights using about 60,000 game records
from professional players and an online Shogi site (i.e., Shogi Club 24). Later, this
method was extended to the Minimax Tree Optimization [9].

Since then, the evaluation function has commonly been used with tens of
millions of parameters in computer Shogi. Kanazawa suggested that the evaluation



594 Masahiro Shioda and Takeshi Ito

function could make value judgment mistakes with positional evaluations, owing to
the lack of training data [10]. To address this issue, Kanazawa proposed a method
similar to reinforcement learning. Supposing that the minimax value under a
fixed depth is the desired value for a given position, the feature weights of the
evaluation function are adjusted so that the result of the quiescence search, which
is an algorithm to extend positional evaluation until a stable node is reached,
approximates the desired value. After applying the method several times, the
strength of Bonanza 6.0 improved by about 150 Elo points.

3.2 Learning by Self-Play

This section illustrates a widely used method of computer Shogi. The aim
of learning is similar to the method proposed by Kanazawa [10]. Let w and w′

be the feature weight vector for self-play and learning, respectively. The first step
of learning is to generate a set of training positions by self-play with w. Self-
play games are mainly conducted under a depth-limited tree search to save time.
Moreover, it is necessary to devise a way to create training positions so that the
learning does not fall into the local minima. For example, a random move will
occasionally be added. The second step includes adjusting weights w′ using the
training positions. We have the minimax value ξ(p,w), gained by self-play and
the result of the quiescence search ξ′(p,w′), where p is a game position. These
evaluation values are converted by a function f , that is both single-valued and
monotonically increasing in the range [0, 1], like a sigmoid function. Let us denote
x = f (ξ(p,w)) and y = f (ξ′(p,w′)) for simplicity. The goal of learning is to bring
y close to x in each position; the objective function is

H(x, y) = −x log y − (1− x) log(1− y). (2)

Takizawa showed that the method using the combination of learning variables
from the evaluation value (as mentioned) and those from the information about
whether the player moved and won corresponded well [11]. A modified objective
function is thus

H(m, y) = −m log y − (1−m) log(1− y), (3)

m = (1− λ)t+ λx, (4)

where λ is a constant, 0 ≤ λ ≤ 1, and t ∈ {0, 0.5, 1} is a variable reflecting whether
a player won from position p in a given record: 1 for a win, 0.5 for a draw, or 0
for a loss.

4. DEVELOPMENT

YaneuraOu2 was developed by Motohiro Isozaki and is one of the strongest
open-source Shogi engines. It was the winning program of the 29th World Com-
puter Shogi Championship in 2019. We modified the following two items and
implemented a Mini-Shogi program based on YaneuraOu version 5.31.

2https://github.com/yaneurao/YaneuraOu, accessed on 01/31/2021.

https://github.com/yaneurao/YaneuraOu


Improving Playing Strength of Mini-Shogi Using Self-Play 595

Fig. 2. Example position that mate1ply misjudges: Black’s turn. White will be check-
mated by a discovered check after +1432KA.

1. Bitboards
Bitboards provide a method of representing the board state using bits. Gen-
erally, one bit is assigned to each square. An advantage of bitboards is that
all squares can be operated in parallel by bitwise operations (e.g., AND, OR,
and XOR). Bitboards speed-up searches by calculating attacks and updating
bitboard statuses. A Mini-Shogi board can be represented with one 32-bit
integer.

2. Mate1ply
Mate1ply is a function used to solve whether the king is checkmated in one
move without a search. We modified YaneuraOu’s mate1ply for Mini-Shogi
and measured the performance. It accurately judged 98% of the positions
that would result in a checkmate in one move. Therefore, some positions
could not be correctly judged as a checkmate; Fig. 2 shows an example
position of them. It seems to be difficult to judge the positions that are
checkmated by a discovered check. Besides, the false positive rate was zero.
The benchmark results showed the nodes per second decreased by about 9%
using mate1ply, compared with not using it. However, we expect that this
function raises the efficiency of the search and improves the playing strength.

4.1 Search

Computer Shogi developers have recently borrowed many techniques from
Stockfish, which is the strongest chess engine in the world. YaneuraOu also ap-
plies Stockfish’s search to Shogi and implements an advanced alpha-beta search
algorithm. In this work, we used the part of YaneuraOu’s search as is.

4.2 Evaluation Function

Nasu proposed a neural network-based evaluation function, the efficiently up-
datable neural network (NNUE) in 2018 [13]. It was mainstream to use evaluation
functions that are a linear combination of weights before then. NNUE performs as
fast as conventional evaluation functions and has impacted both computer Shogi



596 Masahiro Shioda and Takeshi Ito

w1

w3072
000

w1

w3072
000

evaluation
value

12000× 2
input features

256× 2
parameters

32
parameters

32
parameters

256× 12000
weights

32× 512
weights

32× 32
weights

32
weights

Fig. 3. NNUE structure in Mini-Shogi. Each half of the input layer is fully connected
to each half of the first hidden layer. Each output of the first hidden layer is computed
by the same 256 × 12, 000 weights, but it is obtained by the incremental update during
a search. The hidden layers apply a ReLU activation [12].

and computer chess. Stockfish improved more than 100 Elo points after introduc-
ing NNUE in 2020. Fig. 3 shows the network structure of Mini-Shogi. The input
feature (i.e., HalfKP) contains the Boolean values [13].

5. RESULTS AND DISCUSSIONS

5.1 Learning Experiments

This section shows the results of the learning evaluation function. The out-
line of the process of learning is described in Section 3.2. The first step is the
generation of training positions using self-play. We prepared a few game records
in advance and set the start position for self-play at the position after one or two
random moves from the position until the 32nd move in each game record. During
the second step, after removing duplicates from the training positions generated
in the previous step, we tuned the weights of the evaluation function. We iterated
this process 40 times and trained NNUE from scratch. All parameters of NNUE
were zero at first, and the skill level of the initial state of NNUE was nearly the
same as a random-move player. The learning conditions were as follows: 10 million
positions as training data per epoch, a mini-batch size of 1,000, and a learning rate
of 0.1. However, we varied the search depth and λ in Eq. (4), as shown in Table
1, to increase the efficiency of learning. It took about 1 day to complete the entire
learning process using an AMD Ryzen 5950X processor. To measure the perfor-



Improving Playing Strength of Mini-Shogi Using Self-Play 597

Table 1. Values of search depth in self-play and λ in Eq. (4) by epoch.

Epoch Search depth λ

1–10 3 0.00

11–20 6 0.33

21–30 9 0.50

31–40 12 0.50

Table 2. Results of 2,000 games. Each program was given 1 s thinking time
per move. “2,000 – 0” in the first row means that the 10th epoch wins all
2,000 games against 1st epoch.

Match Result Elo difference

10th epoch – 1st epoch 2,000 – 0 +∞
20th epoch – 10th epoch 1,490 – 510 +186

30th epoch – 20th epoch 1,154 – 846 +54

40th epoch – 30th epoch 1,181 – 819 +64

mance of each evaluation function, we conducted matches over 2,000 games at time
controls of 1 s per move. All matches had statistical significance, as shown in Table
2. Hence, these results suggest that there is still room to improve the accuracy,
provided we conduct additional training using greater search-depths. However, the
deeper the search depth of self-play, the more time-consuming generating training
positions becomes.

We also investigated the effect of the search depth during self-play as it per-
tains to learning. Fig. 4 shows the number of learning positions versus Elo rating.
Elo rating was computed from the game results against a single program, and
time controls were set to 1 s per move. Overall, with greater search depth during
self-play, the more improved the playing strength. Note that there were worse
strengths at some points, making it necessary to review some of the learning con-
ditions.

5.2 Comparison with Existing Programs

We participated in some tournaments in 2020, and our program won first place
in all of them (e.g., 12th UEC-cup Mini-Shogi Tournament and the Computer
Olympiad 2020). However, it is necessary to conduct more games to evaluate
whether our program was sufficiently stronger than the others. Thus, in this stu-
dy, our program was matched against the second-to-fourth-place programs of the
12th UEC-cup Mini-Shogi Tournament, including Fairy-Stockfish3, Gasyou, and
Shokidoki, in 300 games with time controls of 10 min per game. Our program ran
using NNUE, as trained in Section 5.1. For Fairy-Stockfish, we obtained the latest
version as of January 2021 from GitHub and compiled it, whereas we used the
same UEC-cup version from the tournaments for the other programs. The results
are shown in Table 3. Our program was stronger than Gasyou and Shokidoki, and

3https://github.com/ianfab/Fairy-Stockfish, accessed on 01/19/2021.

https://github.com/ianfab/Fairy-Stockfish


598 Masahiro Shioda and Takeshi Ito

0 1 2 3 4
Number of Training Positions 1e8

1000

1200

1400

1600

1800

2000

El
o 
R
at
in
g

depth 3
depth 6
depth 9
depth 12

Fig. 4. Elo progression during learning. Elo rating was computed from the results against
a single program, provided that its rating was 2000.

Table 3. Results against three programs in 300 games. Each program was
given 10 min of thinking time per game. The number of wins and losses are
shown from our program’s perspective.

Black White Win Loss

Ours Fairy-Stockfish 19 131

Fairy-Stockfish Ours 150 0

Ours Gasyou 141 9

Gasyou Ours 149 1

Ours Shokidoki 126 24

Shokidoki Ours 150 0

the winning percentage against them exceeded 90%, revealing a high performance
for the White side. On the other hand, our program won 56% of the games against
Fairy-Stockfish, including only 13% of the games on the Black side.

5.3 White’s Advantage

Reviewing the results of Table 3, it is natural to propose that there is a
White’s advantage during gameplay. Under the condition that sennichite is treated
as a draw, we trained the evaluation function by self-play as in Section 5.1 and
conducted games. Unfortunately, each game ended due to draws by repetition,
meaning that neither player found moves that improved their situation. Thus
we posit that White has advantage, owing to the rule that White wins during
sennichite.

To verify this, we used our program using the function trained in Section 5.1
and conducted 300 games. Time controls were set to 10 min per game. As a result,
the winner was strongly biased toward White: White won 296 games and lost 4.
Fig. 5 displays two positions after 8 moves, which was often observed. Fig. 5 (a)



Improving Playing Strength of Mini-Shogi Using Self-Play 599

(a) (b)

Fig. 5. Positions after 8 moves: Black’s turn.

was observed in 183 out of 300 games, and White won 180. Moreover, 91 games
reached the same position as the one shown in Fig. 5 (b). Hence, White won all of
them. From Fig. 5 onwards, there were many games in which Black was completely
defeated. Some of them are shown in Appendix A. We expect that it is difficult
for Black to win from beginning to end, because Black must change one’s move to
avoid sennichite. In contrast, White is not required to do this. When our program
searched for 1 billion nodes and calculated the evaluation value at each position
in Figs. 5 (a) and (b) were 1,078 and 1,030, respectively. The evaluation value are
represented fromWhite’s perspective with the pawn’s value normalized to 100. We
also performed the same experiment using Fairy-Stockfish. Consequently, White
won 254 games and lost 46. In 207 out of 300 games, the position after 8 moves
was identical to that shown in Fig. 5 (b). Hence, White scored 194 wins and 13
losses.

In summary, both the result using our program and those using Fairy-Stock-
fish suggest that White has an advantage, although each of the two programs ran
different evaluation functions. This new insight supports the proposition.

6. CONCLUSION

For this work, we developed a Mini-Shogi program based on YaneuraOu, one
of the strongest Shogi engines. Then, we applied the machine learning method
via self-play, which has been successful in recent computer Shogi to train the
evaluation functions. We experimented against leading programs for more than
300 games. As a consequence, our program performed comparatively well and
showed high performance for the White side in particular. For the evaluation
fuction, we adopted NNUE with a shallow neural network. In computer chess,
NNUE has resulted in the improvement in the Elo rating, and our experiment
also reflected its superiority. After analyzing the game records from our program
and those of Fairy-Stockfish, it seems that White may have an inherent advantage



600 Masahiro Shioda and Takeshi Ito

in Mini-Shogi. Although there is not so many variations in the game records, we
believe the perceived advantage may be caused by a few opening moves influencing
the result.

In a future work, we intend to confirm whether Mini-Shogi is really a game
having a White’s advantage by exploring a wider range of variations in openings.
We used YaneuraOu’s search with little modification in this case. However, Ya-
neuraOu carries out a large amount of pruning because the average branching
factor in Shogi is around 80. Mini-Shogi has a much smaller branching factor,
so we intuitively expect that it will be better to reduce the amount of pruning.
Doing so, especially with the openings, we will continue to identify the must-win
positions early to build a strong opening book.

REFERENCES

1. M. Shioda and T. Ito, “Learning of evaluation functions on mini-shogi us-
ing self-playing game records,” in Proceedings of International Conference on
Technologies and Applications of Artificial Intelligence, 2020, pp. 1-6.

2. T. Obata, M. Hanawa, and T. Ito, “Consultation algorithm in brain game:
Effect of simple majority system,” IPSJ SIG Technical Report, No. 2009-GI-
22, Vol. 2009, 2009, pp. 1-5.

3. T. Sugiyama, T. Obata, K. Hoki, and T. Ito, “Optimistic selection rule better
than majority voting system,” in Proceedings of International Conference on
Computers and Games, 2010, pp. 166-175.

4. T. Obata, T. Sugiyama, K. Hoki, and T. Ito, “Consultation algorithm for
computer shogi: Move decisions by majority,” in Proceedings of International
Conference on Computers and Games, 2010, pp. 156-165.

5. K. Hoki, S. Omori, and T. Ito, “Analysis of performance of consultation
methods in computer chess,” Journal of Information Science and Engineering,
Vol. 30, 2014, pp. 701-712.

6. Y. Morioka and H. Igarashi, “Reinforcement learning algorithm that combines
policy gradient method with alpha-beta search,” in Proceedings of the 17th
Game Programming Workshop, 2012, pp. 1-5.

7. T. Kaneko and T. Takizawa, “Computer shogi tournaments and techniques,”
IEEE Transactions on Games, Vol. 11, 2019, pp. 267-274.

8. K. Hoki, “Optimal control of minimax search results to learn positional eval-
uation,” in Proceedings of the 11th Game Programming Workshop, Vol. 2006,
2006, pp. 78-83.

9. K. Hoki and T. Kaneko, “Large-scale optimization for evaluation functions
with minimax search,” Journal of Artificial Intelligence Research, Vol. 49,
2014, pp. 527-568.

10. Y. Kanazawa, “Refinement of machine learning results generated from insuf-
ficient sample data,” Journal of IPSJ, Vol. 57, 2016, pp. 2382-2391.

11. M. Takizawa and T. Ito, “Computer shogi continues evolving: 2. development
and technology on “elmo” – from winner programmer interview of the 27th



Improving Playing Strength of Mini-Shogi Using Self-Play 601

world computer shogi championship,” IPSJ Magazine, Vol. 59, 2018, pp. 153-
156.

12. “Stockfish NNUE - chessprogramming wiki,” https://www.chessprogramming.
org/Stockfish NNUE, 2021.

13. Y. Nasu, “Efficiently updatable neural-network-based evaluation functions for
computer shogi,” https://github.com/ynasu87/nnue/blob/master/docs/nnue.
pdf, 2018.

A. GAME RECORDS

Table 4. Five games between our programs. Each program was given 10 mi-
nutes of thinking time per game.

Game 1

+2534KA -4132KA +4544KI -2122KI +1525HI -5141HI +3445KA -2221KI

+4433KI -3122GI +3322KI -2122KI +0034GI -0021KI +3544GI -2131KI

+5453FU -3214KA +2524HI -1432KA +4433GI -2233KI +3433GI -0013GI

+2425HI -1322GI +3344GI -3221KA +2524HI -2132KA +0035KI -2213GI

+2425HI -1322GI +2515HI -3221KA +3534KI -2132KA +1525HI -3214KA

+2535HI -1432KA +3515HI -3221KA +3435KI -3132KI +1525HI -4144HI

+3544KI -0043GI +0041HI -4344GI +4144RY -0043KI +0035GI -4344KI

+3544GI -0041HI +0035KI -4144HI +3544KI -0043GI +0041HI -4344GI

+4144RY -0043KI +0035GI -4344KI +3544GI -0042HI +0034KI -4244HI

+3444KI -0043GI +0041HI -4344GI +5544OU -3233KI +4435OU -0043KI

+0055GI -4353KI +4142RY -0034FU +4534KA -3334KI +3534OU -0043KA

+3435OU -4325UM +3525OU -5343KI +4222RY -1122OU +0035KI -0033HI

+0011GI -2211OU +0022KA -1122OU +5544GI -0023HI +0024FU -0034GI

+3534KI -4334KI +2514OU -3424KI

Game 2

+4544KI -4132KA +2534KA -2122KI +1525HI -5141HI +3445KA -3221KA

+4434KI -2232KI +5453FU -3122GI +4554KA -4142HI +2524HI -3231KI

+5421UM -3121KI +0043KA -2131KI +3544GI -4243HI +4443GI -0015KA

+2425HI -1533UM +3433KI -2233GI +0035KA -0022KA +2522HI -3322GI

+0044KA -0025HI +4334GI -2535RY +4435KA -0015KA +0025HI -1542UM

+0052HI -4252UM +5352FU -0032HI +0043KA -3234HI +4334KA -0033KI

+3553KA -3121KI +3445KA -0034GI +0041HI -3425GI +4554KA -0032HI

+4121RY -1121OU +0042KI -0034HI +4232KI -3332KI +0051HI -0031KI

+5545OU -3454HI +4554OU -0043KA +5455OU -2534NG +0041HI -1213FU

+5331UM -2231GI +0011KI -2122OU +4143RY -3243KI +5131RY -2231OU

+0032GI -3132OU +0021KA -3233OU +2143UM -3343OU +0054KI -4352OU

+5443KI -5243OU +1112KI -0044KI

https://www.chessprogramming.org/Stockfish_NNUE
https://www.chessprogramming.org/Stockfish_NNUE
https://github.com/ynasu87/nnue/blob/master/docs/nnue.pdf
https://github.com/ynasu87/nnue/blob/master/docs/nnue.pdf


602 Masahiro Shioda and Takeshi Ito

Game 3

+2534KA -4132KA +4544KI -2122KI +3445KA -3221KA +1525HI -5141HI

+4434KI -2232KI +5453FU -3122GI +4554KA -4142HI +2524HI -3231KI

+5421UM -3121KI +0043KA -2131KI +3544GI -4243HI +4443GI -0015KA

+2425HI -1533UM +3433KI -2233GI +0035KA -0022KA +2522HI -3322GI

+0044KA -0025HI +4334GI -2535RY +4435KA -0015KA +0045HI -0024KI

+3524KA -1524UM +0025KI -2451UM +2535KI -0033KA +5554OU -3315UM

+5455OU -3142KI +3544KI -1524UM +0035HI -2233GI +3433GI -4233KI

+3533HI -5133UM +0031GI -3344UM +4544HI -0025HI +0045KI -0033GI

+4424HI -2524RY +0022KA -3322GI +3122GI -1122OU +0044KA -2232OU

+0033GI -2433RY +4433KA -0054KI +5554OU -0043GI +5455OU -0054HI

+4554KI -4354GI +5554OU -0043GI +5445OU -0054KA +4555OU -0045KI

Game 4

+2534KA -4132KA +4544KI -2122KI +1525HI -5141HI +3445KA -2221KI

+4433KI -3122GI +3322KI -2122KI +0044GI -0021KI +3534GI -2131KI

+4433GI -2233KI +3433GI -0022GI +3344GI -3221KA +0024KI -3132KI

+2434KI -3231KI +5453FU -2132KA +5352FU -3214KA +2535HI -3142KI

+3515HI -1432KA +1525HI -4121HI +4554KA -3254KA +5554OU -4252KI

+0043KA -5243KI +4443GI -0014KA +2524HI -0025KA +0042KI -0041FU

+4232KI -1432KA +4332GI -2534UM +3221NG -1121OU +2434HI -0053KI

+5453OU -0042KI +5344OU -0043GI +4445OU -4334GI +4534OU -4233KI

+3445OU -0043HI +4535OU -3344KI +3524OU -2223GI +2415OU -4434KI

+0035KA -3435KI +0011HI -2111OU +0055KA -0044KA +5544KA -4344HI

+0033KA -0022KA +3322KA -1121OU +2211UM -2111OU +0022KI -1122OU

+0011KA -2211OU +0025GI -3525KI +1525OU -0024KI

Game 5

+4544KI -4132KA +2534KA -2122KI +3445KA -5141HI +1525HI -2221KI

+2515HI -2122KI +4434KI -3243KA +3444KI -3142GI +3524GI -4332KA

+1535HI -3221KA +4534KA -2132KA +3515HI -4151HI +1525HI -3214KA

+2515HI -1432KA +3445KA -5141HI +4434KI -3221KA +2423GI -4233GI

+2322GI -3322GI +1525HI -0033GI +3435KI -2143KA +2515HI -4321KA

+1514HI -1213FU +1415HI -2112KA +4512KA -1112OU +0045KA -0023KA

+5453FU -2345UM +3545KI -0023KA +4535KI -1314FU +1525HI -2334KA

+3534KI -3334GI +2522HI -1222OU +0044KA -2212OU +0023GI -3423GI

+0022KI -1213OU +2223KI -1323OU +0045KA -2313OU +4435KA -0024GI

+3524KA -1324OU +0033GI -2433OU +0034GI -3342OU +5544OU -0022KA

+4435OU -0044GI +3524OU -0013KI +2425OU -0015HI



Improving Playing Strength of Mini-Shogi Using Self-Play 603

Masahiro Shioda received his bachelor’s degree from
the University of Electro-Communications in 2020 and is
currently a master’s student at the same university. His re-
search interests include artificial intelligence and computer
games.

Takeshi Ito has been working as an Assistant Pro-
fessor at the University of Electro-Communications since
1994, and an Associate Professor since 2018. He received his
Ph.D. from Nagoya University graduated schools in Aichi,
Japan in 1994. His research interests include human cog-
nitive processes and learning processes in playing thinking
games or solving difficult problems.


