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Our proposed method is capable of authenticating the input image is from real user 

or spoofing attack, including paper photograph, digital photograph, and video, using only 
the Red, Green, Blue (RGB) frontal camera of common smart phone, without the help of 
depth camera or infrared thermal sensor. We first capture live faces in each frame of input 
video streams by single shot multi-box detector then feed into our designed convolution 
neural network after certain data augmentation and finally obtain a well-trained spoof face 
classifier. Finally, we compared to Parkin and Grinchuk’s results, using dataset CASIA-
SURF [1], and compare the result of vgg16, InceptionNet, ResNet, DenseNet and Mo-
bileNet in CASIA-SURFT dataset.       
 
Keywords: spoofing attack, single shot multi-box detector, data augmentation, VGG-16, 
stereo matching   
 
 

1. INTRODUCTION 
 

User authentication is a fundamental security mechanism. However, the most widely 
used certificate for authentication, passwords, have widely known drawbacks in security 
and usability: strong passwords are difficult to memorize, whereas convenient ones pro-
vide only weak protection; other certificates also popular, such as keys and cards, are trou-
blesome to bring in hand but hassle-free to lose at anywhere [2]. 

Among biometric recognition, face recognition is the most common and widely used 
biometric features as information from the face can be extracted easily without any physi-
cal contact, and almost all smart phones are equipped with a front-facing camera.  

In contrast with other biometrics (e.g. iris recognition) that are difficult for adversaries 
to acquire and duplicate, human faces can be easily captured and reproduced, which makes 
face authentication systems vulnerable to attacks. Since traditional face recognition sys-
tems do not consider the existence of an adversary, many studies have revealed that these 
systems are vulnerable to spoofing attacks [3]. A well-known example is a 2D spoofing 
attack, which misleads a system by using a 2D facial duplicate of a valid user. Whereas 
multiple cameras can compute disparity and thus depth, single camera cannot distinguish 
between a high-definition replication of a subject picture and the live subject himself. Ge-
ometrically, those two situations are mathematically equivalent from the point of view of 
a single camera [3]. As an image or a video of a person is easily obtainable and highly 
reproducible [4], 2D spoofing attack is one of the most common attacks. There are three 
types of 2D spoofing attacks, namely photo attack, video attack, and mimic mask attack. 
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Photo attack evades the detection by using a picture of a legitimate user on a piece of paper, 
or an electronic screen, while video attack misleads the system by using a video of an 
authorized person on electronic devices [5]. In mimic mask attack, an adversary camou-
flages as an authorized person by wearing a 3D mask [4]. 3D masks are expensive to build 
and are rare in real applications. Hence, in this paper, we focus on 2D presentation attacks 
including prints, photographs, and videos. 

2. RELATED WORK  

2.1 Overview 
 
As far as we reviewed, prior face anti-spoofing works can be categorized into three 

groups: texture-based methods, motion-based methods, and deep learning methods.  
Since most face recognition systems adopt only RGB cameras, using texture infor-

mation has been a natural approach to tackling face anti-spoofing. Texture analysis meth-
ods explore patterns that depict the quality of image data. In [6], Local Binary Patterns 
(LBP) are used for the texture features to analyze unnatural patterns in spoof samples. 
Other common local features that have been used in prior work include HOG, DoG, SIFT 
and SURF [7]. Since the technique is specific to just photos and does not address video 
based or electronic screen attack [8] use Moire patterns generated as the results of recapture 
of videos and photos to discriminate the live face vs a spoof one in a video replay attack 
scenario only.  

Some approaches attempt to leverage the spontaneous face motions. Motion-based 
methods use movement information such as eye blinking and lip movement to distinguish 
a real face from spoof. For example, [9] explores conditional random field to model dif-
ferent stages of eye blinking. The underlying assumption is that real faces show different 
motion patterns compared to a spoof one. Additionally, eye-blinking is one cue proposed 
in [10], to detect spoof attacks such as paper attack. In [11], Kollreider et al. use lip motion 
to monitor the face liveness. Bao et al. [12] present a countermeasure using optical flow 
fields that estimate the difference between 2D photograph attacks and 3D real faces. 

Several other saliency-based methods [13] use attributes to differentiate between the 
3D real face and a 2D fake face for spoofing detection. However advanced masked attacks 
can pose a fake face as a 3D real face and can be very challenging for the salience detection 
schemes to detect. 

Based on two main assumptions that photograph is always flat and a spoof photo is 
always smaller than a real face, [14] proposed an authentication method using frequency 
analysis. Because of the variations of expressions and movements, the frequency compo-
nents of a real face are higher than the spoof photo. Those assumptions however do not 
hold in case of CASIA and REPLAY ATTACK datasets where even the spoof photos are 
of same size as the real face. Further, video attacks and warping eliminate the possibility 
of detecting liveness based on the flatness conditions [15]. 

In addition, some works have combined different concepts together. In [16], texture, 
motion and liveness features are combined together to detect spoofing attacks on PRINT- 
ATTACK database. In [17], it is shown that a combination of spatial and temporal pro-
cessing of videos can amplify subtle variations in the faces sufficient to detect liveness. 
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They propose a multiscale approach, Eulerian-based method, to magnify motion without 
feature tracking or motion estimation.    

Most of the above anti-spoofing techniques concentrate on a particular category of 
attacks and thus the information on the kind of attack is to be inferred in prior. An anti-
spoofing algorithm based on Haralick texture features proposed in [18] addresses 3D 
masks, print attacks and replay attacks but lacks the results of cross-database experiments. 

In the recent, Yaojie proposed to use spatial information of living have more effective 
features than prosthetic [19] and use deep tree learning in an unsupervised fashion [20].   
 
2.2 Stereo Matching for Disparity and Depth 

 
The stereo matching component uses the rectified stereo-image pair and computes 

disparity, error, and confidence images. Using the stereo images, we can calculate the dis-
parity map by estimating the distance moved by a particular point in the left and right 
images.  
 
2.2.1 Local methods 
 

Current FPGA [21] technology offers thousands of small logic blocks embedded in 
the connection matrix. This allows arbitrary computation blocks to be constructed from 
basic computing blocks through parallel circuit connections [22].  

The local methods search for a point by exploiting the surroundings of a point, usually 
done via a block (55, 77 pixels). The whole block is matched with similar sized blocks 
on the horizontal axis of the second image and the block with the greatest similarity pro-
vides us with the point’s location in the two images. Usually many optimization and color 
correlation functions are used for matching the windows. Some of the popular functions 
for matching are Hamming’s Distance [23], computation on Census Transformed images, 
weights windows, adaptive weighted windows. One of the methods with low computation 
time and higher accuracy is the Multi-Block matching [24]. 
 
2.2.2 Global methods 
 

Global methods differ from local ones in that they express the smoothness assumption 
explicitly via a smoothness term. These methods involve an energy function E(D) that 
measures the quality of the disparity map D. Later, the energy function is optimized to find 
the disparity map with the lowest energy and of the highest quality. The optimization of 
the energy function can be done via several ways   dynamic programming, graph cuts, 
message passing, and so on. The algorithms in themselves have high complexity due to the 
high dimensional variable incorporated in the energy function, since each pixel disparity 
value is a variable. The best methods of global matching are approximately 100 times 
slower than those of local matching [25].  
 
2.2.3 Semi-global methods 
 

Semi-Global Matching [26] successfully combines concepts of global and local stereo 
methods for accurate, pixel-wise matching at low runtime. The method reduces the multi-
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dimension approach to one dimension. This reduces the computational complexity of the 
global methods with path-wise optimization many folds while retaining the accuracy of 
the global methods. 

3. METHODOLOGY 

We first collect the regions of interest (ROI) of spoof and real images using SSD face 
detector from input videos through the webcam. After several data augmentation steps, we 
then feed the data into our CNN model derived from VGG16. Finally, we can use this 
model to authenticate images input from the webcam. 
 
3.1 Single Shot Multi-Box Detector (SSD) [27-29] 
 

SSD (Single Shot Multi-Box Detector) is a popular algorithm in object detection. A 
typical CNN [30, 31] network gradually shrinks the feature map size and increases the 
depth as it goes to the deeper layers. The deep layers cover larger receptive fields and 
construct more abstract representation, while the shallow layers cover smaller receptive 
fields. It is a common trick use in YOLO [32] and fast RCNN. 
 
3.1.1 Training 
 

For every feature point, we generate a number of priors, which are then used to match 
ground truth boxes to determine the labels and bounding boxes. 

The loss function is the combination of classification loss and regression loss. The 
regression loss used here is Smooth-L1 loss, which is the same as Faster RCNN and Fast 
RCNN. Pytorch has documentation for Smooth-L1 Loss. 

According to [33], Each training image is randomly sampled by:  
 
1. Entire original input image 
2. Sample a patch so that the overlap with objects is 0.1, 0.3, 0.5, 0.7 or 0.9 
3. Randomly sample a patch 
 
The size of each sampled patch is [0.1, 1] or original image size, and aspect ratio from 1/2 
to 2. After the above steps, each sampled patch will be resized to fixed size and maybe 
horizontally flipped with probability of 0.5, in addition to some photo-metric distortions. 
 
3.1.2 Prediction 
 

Prediction is simple. By feeding an image into the network, every prior will have a 
set of bounding boxes and labels. Remember we boost the number of positive priors by 
matching one object to multiple priors? Now we have multiple priors to predict the same 
object. To remove the duplicates, NMS (Non-Maximum Suppression) [34] used. 
 
3.1.3 The drawbacks 

Shallow layers in a neural network may not generate enough high level features to 
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predict for small objects. Therefore, SSD performs worse for smaller objects than larger 
objects [28]. 

The need of complex data augmentation also suggests it needs a large number of data 
to train. For example, SSD does better for Pascal VOC if the model is pre-trained on Com-
mon Objects in COntext (COCO) [35] dataset so make sure our model is pre-trained on 
big datasets such as Pascal VOC, COCO and Open Images [36] before training it on our 
own data. 
 
3.2 Histogram Equalization 
 

Histogram Equalization [37] is a computer image processing technique used to im-
prove contrast in images.  

Histogram equalization cannot be applied separately to the Red, Green, and Blue 
components of the image as it leads to dramatic changes in the image’s color balance. 
However, if the image is first converted to another color space, like Hue, Saturation, Light-
ness / Hue, Saturation, Value (HSL/HSV) color space, then the algorithm can be applied to 
the luminance or value channel without resulting in changes to the hue and saturation of 
the image [9]. 

The self-quotient [38] image has been proposed as an illumination invariant feature, 
it is another popular preprocessing technique. 

Adaptive histogram equalization [39] differs from ordinary histogram equalization in 
the respect that the adaptive method computes several histograms, each corresponding to 
a distinct section of the image, and uses them to redistribute the lightness values of the 
image. It is therefore suitable for improving the local contrast and enhancing the definitions 
of edges in each region of an image. 
 
3.3 Data Augmentation [40] 
 

The issue we wanted to deal with the most by data augmentation is the illumination 
variation in different situations. We use the function imageDataGenerator() in Keras to 
implement data augmentation. The parameters we set:  

 
rotation_range = 20, zoom_range = 0.15, width_shift_range = 0.2, height_shift_range 

= 0.2, shear_range = 0.15, horizontal_flip = True, fill_mode = “nearest”. 
 
3.4 Neural Network 
 

The remarkable thing about VGG-16 [41] net is that they said, “Instead having so 
many hyper parameters, let’s use a much simpler network where you focus on just having 
convolution [42] layers that are just 3 by 3 filters with stride 1 and always use the SAME 
padding, and make all your max polling layers 2 by 2 with a stride of 2”. 

Our NN is composed of 16 convolution layers, 3 fully connected layer, and a softmax 
[43] layer. We first set the size of kernel to 5 to capture larger features, and then to 3 after 
several layers to capture subtler feature (Fig. 1).  
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Fig. 1. The architecture of our proposed neural network. 

4. EXPERIMENTAL RESULT 

The authenticating system is built on the environment in Table 4.1.  
We use OpenCV to implement most computer vision tasks and employ Keras as our 

deep learning framework to predict the probability of live face.  

Table 4.1. The environment to develop and conduct experiments is shown in this table. 
Operating System Ubuntu 18.04
Central Processing Unit Intel® Core™ i7-8550U CPU @ 1.80GHz × 8 
Programming Language Python with OpenCV 4.0.0
Graphic Processing Unit Nvidia GeForce GTX 1050/PCIe/SSE2
Deep Learning Framework Keras 2.2.4

 

4.1 Evaluation 
 
Fig. 2 is the training loss and accuracy on dataset collected from various scenarios 

including our laboratory, office, classrooms, wild, and so forth.  
Table 4.2 is the testing result of our proposed model. Though the sensitivity and spec-

ificity are not perfect, our proposed model truly do a good job in several usability tests. 

 
Fig. 2. The training loss and accuracy on dataset. 
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Table 4.2. The testing result: percentage (number of frames / number of total frames). 
 Predicted Real Predicted Spoof 
Actual Real 93.73% (= 13,639/14,551) 6.27% (= 912/14,551) 
Actual Spoof 4.79% (= 1,313/27,411) 95.21% (= 26,098/27,411) 

 

4.2 Results and Observations 
 
Compared to Parkin and Grinchuk’s results [1], though our true positive rate (TPR) 

does not achieve 100.00% at 10-2 FPR (their model trained with RGB+IR+Depth); how-
ever, while taking only RGB into consideration, our TPR (Fig. 3) 99.69% outperforms 
their 71.74% at 10-2 FPR (Table 4-3). Result of InceptionV3, ResNet, DenseNet and Mo-
bileNet in CASIA-SURFT dataset (Fig. 4). The result of self-quotient image preprocessing 
(Fig. 5) and the result of original image in SiW-M dataset (Fig. 6). 

 

Table 4.3. TPR at FPR (Parkin and Grinchuk’s result). 

Modality TPR at FPR
10-2 10-3 10-4 

RGB 71.74 22.34 7.85 
IR 91.82 72.25 57.41 

Depth 100.00 99.77 98.40 
RGB+IR+Depth 100.00 100.00 99.87 

 
Fig. 3. Result of our method in CASIA-SURFT dataset. 

 

 
Fig. 4. Result of InceptionV3, ResNet, DenseNet and MobileNet in CASIA-SURFT dataset. 
 

 
Fig. 5. Result of our method in SiW-M dataset. 
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Fig. 6. Result of our method (self-quotient) in SiW-M dataset. 

 

 
Fig. 7. Snapshots of testing results in (a) true positive group; (b) true negative group; (c) miss de-
tection group; (d) false alarm group. 
 

Our proposed model is invariant to perspectives of authenticating live face and what-
ever media (Fig. 7). 

5. CONCLUSION AND FUTURE WORK 

In this paper, we develop a real-time live face authentication system, which can au-
thenticate live face from spoof one in nearly every scenario successfully. The authentica-
tion algorithm can handle general issues, such as the target face is occluded by other person 
or barriers; or brightness and illumination variance. 

However, there are some known drawbacks that our algorithm is not perfect under 
limited data and the difference between training and testing scenario. These issues are 
caused by the difficulty of deriving other perspectives from the original angle and simu-
lating environments that are not in the training data. 
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