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This research employs a new analytical scheme to construct novel traveling wave so-
lutions of the Wick-type stochastic Schamel KdV equation. This equation explains the
electrostatic potential for a particular electron distribution in velocity space. It is also used
to explain the nonlinear interaction of ion-acoustic waves when electron trapping. By using
the Hermite transform, inverse Hermite transforms, and white noise analysis allows us for
applying the modified Khater method to this model. Many novel solutions are obtained and
sketched to discuss more physical properties of the model.

Keywords: Wick-type stochastic Schamel KdV equation, modified Khater method, analyti-
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1. INTRODUCTION

Recently, many vital phenomena are formulated in nonlinear partial differential
equations form [1-8]. These equations explain and discuss more detail of each model
by solving them with analytical or numerical schemes. According to the importance and
effectiveness of this study, many researchers in different fields have been attracted to in-
vestigate more and more of the character of each phenomenon. So that, many analytical
and numerical schemes have been formulated such as the simplest equation method, mod-
ified tanh-function method, B-spline method, iterative method, and other methods [9-25].
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This paper studies the analytical solutions of the Wick-type stochastic Schamel KdV
equation by using the modified Khater method. This equation describes the nonlinear
interaction of ion-acoustic waves when electron trapping is present, and also it governs
the electrostatic potential for a particular electron distribution in velocity space. Our
model is a generalized model of the Schamel-Korteweg-de Vries equation that is given by
[16-18]

ϕt +
(

aϕ
0.5 +bϕ

)
ϕx + cϕxxx = 0, (1)

where ϕ = ϕ(x, t) is unknown function of the space variable (x) and time (t) while a, b, c
are respectively, represent the activation trapping, the convection, and the dispersion co-
efficients. Eq. (1) has various applications in different fields such as plasma physics and
optical fibre. Additionally, the Schamel KdV model is considered as a generalized form
of the generalized KdV model under the following condition [a = 0] [29, 30]. Moreover,
it also incorporates the Schamel equation when [b = 0] [31, 32]. On the other hand, the
Wick-type stochastic Schamel-KdV equation with variable coefficients is one of the most
important stochastic PDEs. This equation is given by [33-35]

ϕt +
[
β1(t) ⊗ ϕ

1
2 +β2(t) ⊗ ϕ

]
⊗ ϕt +β3(3) ⊗ ϕxxx = 0, (2)

where ⊗ is the Wick product on the Kondratiev distribution space (δ )−1 and
β1(t), β2(t), β3(t) are valued functions [36].

The paper is organized as follows: Section (2), applies the modified Khater method
on the suggested model to get novel solitary wave solutions of it [37, 38]. Section (3),
explains the summary of all the steps of our paper is detailed.

2. APPLICATION

Using the Hermite transform with the following wave transformation [ϕ = ϕ(x, t) =
ϕ(℘), ℘= λ

[
x+

∫ t
0 α(x, t)dt

]
+ c] on Eq. (2), leads to

−α ϕ ϕ
′+
[
β1 ϕ

2 +β2 ϕ
3]

ϕ
′+β3 λ

3 [
ϕ ϕ

′′′+3ϕ
′
ϕ
′′]= 0, (3)

where k, c are arbitrary constants. Calculating the balance value between the highest order
derivative term and nonlinear term of Eq. (3), and using the general suggested form of
solutions of the modified Khater method, obtain the general solution of Eq. (3) that is
given by

ϕ(℘) =
n

∑
i=1

aiki f (℘)+
n

∑
i=1

bik−i f (℘)+a0 = a1k f (℘)+a0 +b1k− f (℘), (4)

where a0, a1, b1 are arbitrary constants. Additionally, f (℘) is the solution function of the
following ODE

f ′(℘) =
δ k f (℘)+ρ k− f (℘)+χ

ln(k)
, (5)
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where δ , ρ, χ are arbitrary constants. Substituting Eq. (4) along (5) and its derivatives
into Eq. (3), give a polynomial of k f (℘). Gathering the coefficients of the same power
of [ki f (℘), (i =−3,−2,−1,0,1,2,3)], gives a system of algebraic equations. Solving this
system by using Mathematica 11.3, yields

Case 1:
[

a0 → − 4β1
5β2

,a1 → − 4β1δ

5β2χ
,b1 → − 4β1ρ

5β2χ
,α → − 16β 2

1 (χ2−4δρ)
75β2χ2 ,λ →

− ( 2
5 )

2/3
β

2/3
1

3√3 3
√

β2
3
√

β3χ2/3

]
.

Thus, the solutions of Eq. (2) are given in the following forms:
For [χ2−4δρ < 0&δ 6= 0]

ϕ1(x, t) =−
2β1
(
χ2−4δρ

)
sec2

(
1
2℘
√

4δρ−χ2
)

5β2χ

(
χ−

√
4δρ−χ2 tan

(
1
2℘
√

4δρ−χ2
)) , (6)

ϕ2(x, t) =−
2β1
(
χ2−4δρ

)
csc2

(
1
2℘
√

4δρ−χ2
)

5β2χ

(
χ−

√
4δρ−χ2 cot

(
1
2℘
√

4δρ−χ2
)) . (7)

For [χ2−4δρ > 0&δ 6= 0]

ϕ3(x, t) =−
2β1
(
χ2−4δρ

)
sech2

(
1
2℘
√

χ2−4δρ

)
5β2χ

(√
χ2−4δρ tanh

(
1
2℘
√

χ2−4δρ

)
+χ

) , (8)

ϕ4(x, t) =
2β1
(
χ2−4δρ

)
csch2

(
1
2℘
√

χ2−4δρ

)
5β2χ

(√
χ2−4δρ coth

(
1
2℘
√

χ2−4δρ

)
+χ

) . (9)

For [χ = ρ

2 = κ &δ = 0]

ϕ5(x, t) =−
4β1eκ℘

5β2 (eκ℘−2)
. (10)

For [χ = δ = κ&ρ = 0]

ϕ6(x, t) =
4β1

5β2 (eκ℘−1)
. (11)

For [ρ = 0& χ 6= 0&δ 6= 0]

ϕ7(x, t) =
8β1

5β2 (δe℘χ −2)
. (12)

For [χ = δ = 0&ρ 6= 0]

ϕ8(x, t) =
1
2

(
−
√

k2−4β + k− 2
√

2
℘

)
. (13)
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For [δ = 0& χ 6= 0&ρ 6= 0]

ϕ9(x, t) =
4β1χe℘χ

5β2ρ−5β2χe℘χ
. (14)

For [χ2−4δρ = 0]

ϕ10(x, t) =
2β1
(
4δρ(℘χ +2)2−℘χ3(℘χ +4)

)
5β2℘χ3(℘χ +2)

. (15)

where
[
℘ = − ( 2

5 )
2/3

β
2/3
1

3√3 3
√

β2
3
√

β3χ2/3

[
x +

∫ t
0

(
− 16β 2

1 (χ2−4δρ)
75β2χ2

)
dt
]
+ c, β1 = β1(x, t), β2 =

β2(x, t), β3 = β3(x, t)
]

.

Case 2:
[

a0 → − 4β1
5β2

,a1 → − 4β1δ

5β2χ
,b1 → − 4β1ρ

5β2χ
,α → − 16β 2

1 (χ2−4δρ)
75β2χ2 ,λ →

− (−2)2/3β
2/3
1

3√352/3 3
√

β2
3
√

β3χ2/3

]
.

Thus, the solutions of Eq. (2) are given in the following forms:
For [χ2−4δρ < 0&δ 6= 0]

ϕ11(x, t) =−
2β1
(
χ2−4δρ

)
sec2

(
1
2℘
√

4δρ−χ2
)

5β2χ

(
χ−

√
4δρ−χ2 tan

(
1
2℘
√

4δρ−χ2
)) , (16)

ϕ12(x, t) =−
2β1
(
χ2−4δρ

)
csc2

(
1
2℘
√

4δρ−χ2
)

5β2χ

(
χ−

√
4δρ−χ2 cot

(
1
2℘
√

4δρ−χ2
)) . (17)

For [χ2−4δρ > 0&δ 6= 0]

ϕ13(x, t) =−
2β1
(
χ2−4δρ

)
sech2

(
1
2℘
√

χ2−4δρ

)
5β2χ

(√
χ2−4δρ tanh

(
1
2℘
√

χ2−4δρ

)
+χ

) , (18)

ϕ14(x, t) =
2β1
(
χ2−4δρ

)
csch2

(
1
2℘
√

χ2−4δρ

)
5β2χ

(√
χ2−4δρ coth

(
1
2℘
√

χ2−4δρ

)
+χ

) . (19)

For [χ = ρ

2 = κ &δ = 0]

ϕ15(x, t) =−
4β1eκ℘

5β2 (eκ℘−2)
. (20)

For [χ = δ = κ&ρ = 0]

ϕ16(x, t) =
4β1

5β2 (eκ℘−1)
. (21)
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For [ρ = 0& χ 6= 0&δ 6= 0]

ϕ17(x, t) =
8β1

5β2 (δe℘χ −2)
. (22)

For [χ = δ = 0&ρ 6= 0]

ϕ18(x, t) =
1
2

(
−
√

k2−4β + k− 2
√

2
℘

)
. (23)

For [δ = 0& χ 6= 0&ρ 6= 0]

ϕ19(x, t) =
4β1χe℘χ

5β2ρ−5β2χe℘χ
. (24)

For [χ2−4δρ = 0]

ϕ20(x, t) =
2β1
(
4δρ(℘χ +2)2−℘χ3(℘χ +4)

)
5β2℘χ3(℘χ +2)

. (25)

where
[
℘= − (−2)2/3β

2/3
1

3√352/3 3
√

β2
3
√

β3χ2/3

[
x+

∫ t
0

(
− 16β 2

1 (χ2−4δρ)
75β2χ2

)
dt
]
+ c, β1 = β1(x, t), β2 =

β2(x, t), β3 = β3(x, t)
]

.

Case 3:
[

a0→ −2
5β2

(
β2β1χ√

β 2
2 (χ2−4δρ)

+β1

)
,a1→ −4β1δ

5
√

β 2
2 χ2−4β 2

2 δρ
,b1→ 0,α→ −16β 2

1
75β2

,λ →

− 3
√
− 1

3 (
2
5 )

2/3
β

2/3
1

3
√

4β2β3δρ−β2β3χ2

]
.

Thus, the solutions of Eq. (2) are given in the following forms:
For [χ2−4δρ < 0&δ 6= 0]

ϕ21(x, t) =

2β1

(√
β 2

2 (χ2−4δρ) tan
(

1
2℘

√
4δρ−χ2

)
√

4δρ−χ2
−β2

)
5β 2

2
, (26)

ϕ22(x, t) =

2β1

(√
β 2

2 (χ2−4δρ)cot
(

1
2℘

√
4δρ−χ2

)
√

4δρ−χ2
−β2

)
5β 2

2
. (27)

For [χ2−4δρ > 0&δ 6= 0]

ϕ23(x, t) =

2β1

(√
β 2

2 (χ2−4δρ) tanh
(

1
2℘

√
χ2−4δρ

)
√

χ2−4δρ
−β2

)
5β 2

2
, (28)
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ϕ24(x, t) =

2β1

(√
β 2

2 (χ2−4δρ)coth
(

1
2℘

√
χ2−4δρ

)
√

χ2−4δρ
−β2

)
5β 2

2
. (29)

For [δρ > 0&ρ 6= 0&δ 6= 0& χ = 0]

ϕ25(x, t) =
2
5

β1

−
√

δρ tan
(
℘
√

δρ

)
√

β 2
2 (−δ )ρ

− 1
β2

 , (30)

ϕ26(x, t) =
2
5

β1

√δρ cot
(
℘
√

δρ

)
√

β 2
2 (−δ )ρ

− 1
β2

 . (31)

For [δρ < 0&ρ 6= 0&δ 6= 0& χ = 0]

ϕ27(x, t) =
2
5

β1

√−δρ tanh
(
℘
√
−δρ

)
√

β 2
2 (−δ )ρ

− 1
β2

 , (32)

ϕ28(x, t) =
2
5

β1

√−δρ coth
(
℘
√
−δρ

)
√

β 2
2 (−δ )ρ

− 1
β2

 . (33)

For [χ = 0&ρ =−δ ]

ϕ29(x, t) =
2
5

β1

ρ coth(℘ρ)√
β 2

2 ρ2
− 1

β2

 . (34)

For [χ = δ = κ &ρ = 0]

ϕ30(x, t) =
2
5

β1

κ coth
(

κ℘

2

)√
β 2

2 κ2
− 1

β2

 . (35)

For [ρ = 0& χ 6= 0&δ 6= 0]

ϕ31(x, t) =
2
5

β1

 χ (δe℘χ +2)√
β 2

2 χ2 (δe℘χ −2)
− 1

β2

 . (36)

For [χ = 0&ρ = δ ]

ϕ32(x, t) =
2
5

β1

− 1
β2
− ρ tan(C+℘ρ)√

β 2
2 (−ρ2)

 . (37)
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where
[
℘ = −

3
√
− 1

3 (
2
5 )

2/3
β

2/3
1

3
√

4β2β3δρ−β2β3χ2

[
x +

∫ t
0

(
− 16β 2

1
75β2

)
dt
]

+ c, β1 = β1(x, t), β2 =

β2(x, t), β3 = β3(x, t)
]

.

Case 4:
[

a0 → −2
5β2

(
β2β1χ√

β 2
2 (χ2−4δρ)

+β1

)
, a1 → 0, b1 → −4β1ρ

5
√

β 2
2 χ2−4β 2

2 δρ
, α →

−16β 2
1

75β2
,λ →

− 3
√
− 1

3 (
2
5 )

2/3
β

2/3
1

3
√

4β2β3δρ−β2β3χ2

]
.

Thus, the solutions of Eq. (2) are given in the following forms:
For [χ2−4δρ < 0&δ 6= 0]

ϕ33(x, t) =
2
5

β1

 4δρ√
β 2

2 (χ
2−4δρ)

(
χ−

√
4δρ−χ2 tan

(
1
2℘
√

4δρ−χ2
)) −

β2χ√
β 2

2 (χ2−4δρ)
+1

β2

 ,

(38)

ϕ34(x, t) =
8β1δρ

5
√

β 2
2 (χ

2−4δρ)
(

χ−
√

4δρ−χ2 cot
(

1
2℘
√

4δρ−χ2
)) +

2β1

(
− β2χ√

β 2
2 (χ2−4δρ)

−1

)
5β2

.

(39)

For [χ2−4δρ > 0&δ 6= 0]

ϕ35(x, t) =
2
5

β1

 4δρ√
β 2

2 (χ
2−4δρ)

(√
χ2−4δρ tanh

(
1
2℘
√

χ2−4δρ

)
+χ

) −
β2χ√

β 2
2 (χ2−4δρ)

+1

β2

 ,

(40)

ϕ36(x, t)=
8β1δρ

5
√

β 2
2 (χ

2−4δρ)
(√

χ2−4δρ coth
(

1
2℘
√

χ2−4δρ

)
+χ

)+

2β1

(
− β2χ√

β 2
2 (χ2−4δρ)

−1

)
5β2

.

(41)

For [δρ > 0&ρ 6= 0&δ 6= 0& χ = 0]

ϕ37(x, t) =
2
5

β1

−
√

δρ cot
(
℘
√

δρ

)
√

β 2
2 (−δ )ρ

− 1
β2

 , (42)

ϕ38(x, t) =
2
5

β1

√δρ tan
(
℘
√

δρ

)
√

β 2
2 (−δ )ρ

− 1
β2

 . (43)
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For [δρ < 0&ρ 6= 0&δ 6= 0& χ = 0]

ϕ39(x, t) =
2
5

β1

−
√
−δρ coth

(
℘
√
−δρ

)
√

β 2
2 (−δ )ρ

− 1
β2

 , (44)

ϕ40(x, t) =
2
5

β1

√δ
√

ρ tan
(√

δ℘
√

ρ

)
√

β 2
2 (−δ )ρ

− 1
β2

 . (45)

For [χ = 0&ρ =−δ ]

ϕ41(x, t) =
2
5

β1

−ρ tanh(℘ρ)√
β 2

2 ρ2
− 1

β2

 . (46)

For [χ = ρ

2 = κ &δ = 0]

ϕ42(x, t) =
2
5

β1

− κ (eκ℘+2)√
β 2

2 κ2 (eκ℘−2)
− 1

β2

 . (47)

For [χ = 0&ρ = δ ]

ϕ43(x, t) =
2
5

β1

− 1
β2
− ρ cot(C+℘ρ)√

β 2
2 (−ρ2)

 . (48)

For [δ = ρ0&χ 6= 0& 6= 0]

ϕ44(x, t) =
2
5

β1

− χ (χe℘χ +ρ)√
β 2

2 χ2 (χe℘χ −ρ)
− 1

β2

 . (49)

where
[
℘ = −

3
√
− 1

3 (
2
5 )

2/3
β

2/3
1

3
√

4β2β3δρ−β2β3χ2

[
x +

∫ t
0

(
− 16β 2

1
75β2

)
dt
]

+ c, β1 = β1(x, t), β2 =

β2(x, t), β3 = β3(x, t)
]

.

3. CONCLUSION

In this paper, we studied the electrostatic potential for a particular electron distri-
bution in velocity space that is represented by the Wick-type stochastic Schamel KdV
equation. The modified Khater method was employed to find exact and solitary wave
solutions of this model. The Hermite transform, inverse Hermite transforms, and white
noise analysis were also used to convert the nonlinear partial differential equation form
of this model to nonlinear ordinary differential equation. Many new solitary wave solu-
tions were constructed in different formula such as trigonometric, hyperbolic, and rational
forms.
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