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Products come from different lines with the same facility are tested under comparative
life tests which known with the jointly censoring scheme. In this paper, two sets of products
under the same facility have Weibull lifetime distributions are selected to test under Type-
I generalized hybrid censoring scheme (GHCS). The observed censoring data are used to
build the maximum likelihood (ML) estimators as well as approximate confidence intervals
for the model parameters. Also, Bayes estimators with the help of MCMC methods are
discussed. The analysis of simulated data set with Monte Carlo simulation study is used
to illustrate and compare the theoretical results. Finally, a brief comment is summarized in
concluding section.

Keywords: joint Type-I generalized hybrid censoring, Weibull distributions, maximum like-
lihood estimation, Bayesian estimation, MCMC

1. INTRODUCTION

The data obtained from the life tests experiments, may be complete or censored.
When the exact failure time of all units in the experiment can be obtained then, the data
called complete data. But, under consideration time and cost when failure time of some
units don’t observe until the end of the experiment, censoring data is applied. The com-
mon censoring scheme in life testing experiments is called Type-I and Type-II censoring.
In Type-I censoring scheme, the test time is constant and the number of failures is random
may be zero see, [1] but in Type-II censoring scheme, number of failures is constant and
the test time is random may be very large. Hybrid censoring scheme (HCS) is a mixture
of Type-I and Type-II censoring schemes which at the prior of the experiment the fixed
integer m and fixed time τ are determined. The experiment is terminated when the num-
ber m of failures or time τ has been reached. In Type-I HCS, the experiment is terminated
at min (Tm, τ), see in more detail [2, 3]. In Type-II HCS, the experiment is terminated at
max (Tm, τ), see in more detail [4]. In the two types of censoring, Type-I HCS and Type-
II HCS number of failure units may be very few or even no failures or experiment has
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long period of time, respectively see [5]. Generalized hybrid censoring scheme (GHCS)
is applied to overcome of this problem see [6].

Type-I GHCS scheme described as follows, suppose n units are put on a life test
experiment and two fixed integer k, m such that 1 ≤ k < m ≤ n and time τ ∈ (0, ∞) is
determined. If Tk < τ the experiment is terminated at min (Tm, τ) but if Tk > τ , the exper-
iment is terminated at Tk. Therefore, in Type-I GHCS experiment satisfies the minimum
number k of failures. Then, the data come from Type-I GHCS were summarized as

t =

 Case 1: If tk;n > τ, then t = (t1;n < t2;n < ... < tk;n),
Case 2: If tk;n < τ, then t = (t1;n < t2;n < ... < tk;n < ... < tr;n) at tm;n > τ,

t = (t1;n < t1;n < ... < tm;n) at tm;n < τ,

(1)

where different cases of censoring with Type-I GHCS are summarized in Fig. 1 below,

Fig. 1. Different cases of Type-I GHCS.

then the joint density function of Type-I GHCS given the parameters vector θ is given by

f1,2,...,m (t|θ) = n!(1−F(C))n−D

(n−D)!

D

∏
i=1

f (ti), (2)

where Case 1: D = k and C = tk at tk;n > τ,
Case 2: D = r, k < r < m and C = τ at tm;n > τ,

D = m and C = tm at tm;n < τ.
(3)

Studying the reliability of manufactured products to determine and measure the relative
merits of two life products through the competing duration has considerable in the last
view years. For more precise, we consider a manufactured products come from the two
different lines Φ1 and Φ2 are putted under the same conditions. The two independent
samples of size M and N are choosed from Φ1 and Φ2, respectively, to placed together
under test. Then, the experimenter may be terminated for consideration of cost and time
after fixed number of failures occur. The two failure times and it is types will be recorded.
Different author discussed this type of censoring scheme see [7, 8]. Also, for the compar-
ing of the exact likelihood inference with bootstrap technique see [9]. And for progressive
Type-II censoring see [10, 11] . Recently, for the two Rayleigh lifetime distributions see
[12], for Accelerate life test of Rayleigh life time distribution see [13] and for compound
Rayleigh lifetime distributions see [14].
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A short development times for products in present time make some time limitations
over reliability tests, which impulse that joint censoring scheme need some modification
which save time and give a suitable number of failure which serve statistical inference.
Therefore, Type-I GHCS introduce a new scheme where save time and minimum number
that needing in statistical inference. Then, our objective in this paper present inferences
for important lifetime Weibull distribution under Type-I GHCS scheme, then problem of
parameters estimation of two weibull distributions when Type-I GHCS samples is avail-
able. Then, maximum likelihood as well as Bayes estimation are used to present the esti-
mation of unknown model parameters. Different estimators are discussed and compared
through simulation experiments and numerical example based on Type-I GHCS.

This paper is summarized as follows: The model formulation and main concepts
are discussed in Section 2. The maximum likelihood, the point and approximate intervals
estimators for the unknown parameters are derived in Section 3. Bayes estimators under
the concepts of MCMC method for point and credible interval estimation are presented
in Section 4. The analysis of simulated data sets exposed in Section 5. Reported some
of numerical results are discussed through simulation study in Section 6. Finally, a brief
comments about the obtaining numerical results are constructed in Section 7.

2. MODEL

Suppose we have two line of production, say Φ1 and Φ2 has produce the same prod-
uct under the same facility. Let two independent samples of sizes M and N are selected
from the lines Φ1 and Φ2 which has independent and identical distributed (i.i.d) lifetimes
X1, X2, ..., XM and Y1, Y2, ..., YN , respectively. The two lifetime samples has a populations
with probability density functions (PDFs) and cumulative distribution functions (CDFs)
given respectively by f j(.) and Fj(.), j = 1, 2. Let, k and m are prior integers and ideal
test time τ are determined, then, the ordered lifetime sample (T1, T2, ..., TD) which is
constructed from the sample {X1,X2, ...,XMD , Y1, Y2, ...,YND} with D = MD +ND and D is
defined by Eq. (3) to be k, m or integer such that k < D < m is called joint Type-I GHS
sample. Hence, for each random lifetime in the joint Type-I GHSC is described with time
and type (T, η). Then, T =((T1,η1), (T2,η2), ..., (TD,ηD)) with 1≤ D≤M+N and the

value of ηi take the value (1 or 0) depends on X or Y failure. Let D1 =
D
∑

i=1
ηi denoted to

the number of units fails from the line Φ1 and D2 =
D
∑

i=1
(1–ηi) denoted to the number of

units fails from the line Φ2. Then, the joint likelihood function of the observed sample
t =((t1,η1), (t2,η2), ..., (tD,ηD)) is given by

L(t) =
M!N!

(M−D1)!(N−D2)!

[
D

∏
i=1

[ f1(ti)]
ηi [ f2(ti)]

1−ηi

]
[S1(C)]M−D1 [S2(C)]N−D2 ,

(4)

where S j(.), j = 1, 2 denoted to reliability functions and C is tk, tm or tD corresponding to
the value of D given in Eq. (3).
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Under considerations that, the PDFs of the experimental unit come from lines Φ1
and Φ2 is Weibull distributed with PDFs is given by

f j(t) = α jβ jtα j−1 exp(−β jtα j) , t > 0, α j, β j > 0, j = 1, 2. (5)

And CDFs, reliability functions S j(.), and hazard rate functions H j(.) of the Weibull
distributions are given, respectively, by

Fj(t) = 1− exp(−β jtα j) , (6)

S j(t) = exp(−β jtα j) , (7)

and

H j(t) = α jβ jtα j−1. (8)

3. MAXIMUM LIKELIHOOD ESTIMATION

For the joint Type-I GHS data T =((T1,η1), (T2,η2), ..., (TD,ηD)), the likelihood
function (4) with Weibull lifetime distributions in Eqs. (5) and (6) is reduced to

L(α1,β1,α2,β2|t) ∝ (α1β1)
D1(α2β2)

D2 exp

{
(α1−1)

D

∑
i=1

ηi log ti−β1

D

∑
i=1

ηitα1
i

+ (α2−1)
D

∑
i=1

(1−ηi) log ti−β2

D

∑
i=1

(1−ηi)tα2
i

− (M−D1)β1Cα1 − (N−D2)β2Cα2} . (9)

The likelihood function under the natural logarithm is reduced to

`(α1,β1,α2,β2|t) = D1 log(α1β1)+D2 log(α2β2)+(α1−1)
D

∑
i=1

ηi log ti

− β1

D

∑
i=1

ηitα1
i +(α2−1)

D

∑
i=1

(1−ηi) log ti−β2

D

∑
i=1

(1−ηi)tα2
i

− (M−D1)β1Cα1 − (N−D2)β2Cα2 . (10)

3.1 Point Estimation

MLE is a commonly used method for parameters estimation, more detail see [16-
18]. The likelihood equations are obtained from Eq. (10) by equating the first partial de-
rivatives respect to parameters vector Ψ = (α1, β1, α2, β2) to zero, then

∂`(α1,β1,α2,β2|t)
∂β j

= 0, j = 1, 2,
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are reduced to

β1 =
D1

D
∑

i=1
ηitα1

i +(M−D1)Cα1

, (11)

and

β2 =
D2

D
∑

i=1
(1−ηi)tα2

i +(N−D2)Cα2

. (12)

Also,

∂`(α1,β1,α2,β2|t)
∂α j

= 0, j = 1, 2,

are reduced to

D1

α1
+

D

∑
i=1

ηi log ti−β1

D

∑
i=1

ηitα1
i log ti− (M−D1)β1Cα1 logC = 0, (13)

and

D2

α2
+

D

∑
i=1

(1−ηi) log ti−β2

D

∑
i=1

(1−ηi)tα1
i log ti− (N−D2)β2Cα2 logC = 0. (14)

Then, the likelihood equations are reduced to two nonlinear Eqs. (13) and (14) which
solve with any iteration method such as Newton Raphson or fixed point to obtain α̂1 and
α̂2 and hence, the maximum likelihood estimates of β1 and β2 are obtained by substituting
in Eqs. (11) and (12).
Remark: Eqs. (11)-(12) showed that under consideration of D1 = 0 then α1 and β1 do
not exist. Also, D2 = 0 then α2 and β2 do not exist. Also, The exact distributions for
estimators Ψ̂ = ( α̂1, β̂1, α̂2, β̂2) is difficult to obtain see [15].

3.2 Approximate Interval Estimation

The approximate confidence intervals for the model parameters Ψ = (α1, β1, α2, β2)
under the large sample approximation can be obtain from approximate Fisher information
matrix of the parameters Ω = −E

(
∂ 2`(α1,β1,α2,β2|t)

∂Ψi∂Ψ j

)
, i, j = 1, 2, 3, 4. In different cases

the minus expectation of second partially derivative of log-likelihood function cant be
obtain. Hence, we can replace it by the estimate Ω0(α̂1, β̂1, α̂2, β̂2) . Then, the interval
estimation of the parameters α1, β1, α2 and β2 can be presented by the asymptotic normal-
ity distribution of α̂1, β̂1, α̂2 and β̂2 with mean (α1,β1,α2,β2) and variance covariance
matrix Ω

−1
0 (α̂1, β̂1, α̂2, β̂2) as

(α̂1, β̂1, α̂2, β̂2)→ N
(
(α1,β1,α2,β2) ,Ω

−1
0 (α̂1, β̂1, α̂2, β̂2)

)
, (15)
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where Ω0 (α1, β1, α2, β2) is considered as observed information matrix presented by

Ω0 (α1, β1, α2, β2) =


− ∂ 2`(α1,β1,α2,β2|t)

∂α2
1

− ∂ 2`(α1,β1,α2,β2|t)
∂α1∂β1

− ∂ 2`(α1,β1,α2,β2|t)
∂β1∂α1

− ∂ 2`(α1,β1,α2,β2|t)
∂β 2

1

− ∂ 2`(α1,β1,α2,β2|v)
∂α2∂α1

− ∂ 2`(α1,β1,α2,β2|t)
∂α2∂β1

− ∂ 2`(α1,β1,α2,β2|t)
∂β2∂α1

− ∂ 2`(α1,β1,α2,β2|v)
∂β2∂β1

− ∂ 2`(α1,β1,α2,β2|t)
∂α1∂α2

− ∂ 2`(α1,β1,α2,β2|t)
∂α1∂β2

− ∂ 2`(α1,β1,α2,β2|t)
∂β1∂α2

− ∂ 2`(α1,β1,α2,β2|t)
∂β1∂β2

− ∂ 2`(α1,β1,α2,β2|t)
∂α2

2
− ∂ 2`(α1,β1,α2,β2|t)

∂α2∂β2

− ∂ 2`(α1,β1,α2,β2|t)
∂β2∂α2

− ∂ 2`(α1,β1,α2,β2|t)
∂β 2

2


at (α̂1,β̂1,α̂2,β̂2)

(16)

Where

∂ 2`(α1,β1,α2,β2|t)
∂β 2

j
=
−D j

β 2
j
, j = 1,2, (17)

∂ 2`(α1,β1,α2, t|t)
∂α1∂β1

=
∂ 2`(α1,β1,α2,β2|t)

∂β1∂α1
=−

D

∑
i=1

ηit
α1
i log ti− (M−D1)Cα1 logC,

(18)

∂ 2`(α1,β1,α2,β2|t)
∂α1∂α2

=
∂ 2`(α1,β1,α2,β2|t)

∂α2∂α1
= 0, (19)

∂ 2`(α1,β1,α2,β2|t)
∂α1∂β2

=
∂ 2`(α1,β1,α2,β2|t)

∂β2∂α1
= 0, (20)

∂ 2`(α1,β1,α2,β2|t)
∂α2

1
=
−D1

α2
1
−β1

D

∑
i=1

ηitα1
i (log ti)

2−(M−D1)β1Cα1 (logC)2 , (21)

∂ 2`(α1,β1,α2,β2|t)
∂α2

2
=
−D2

α2
2
−β2

D

∑
i=1

(1−ηi)tα2
i (log ti)

2−(N−D2)β2Cα2 (logC)2 ,

(22)

and

∂ 2`(α1,β1,α2, t|t)
∂α2∂β2

=
∂ 2`(α1,β1,α2,β2|t)

∂β2∂α1

= −
D

∑
i=1

(1−ηi)tα2
i log ti− (N−D2)Cα2 logC. (23)

Then, the 100(1–2γ)% approximate confidence intervals for α1, β1, α2 and β2 respec-
tively given by
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α̂1∓ zγ

√
q11

β̂1∓ zγ

√
q22

α̂2∓ zγ

√
q33

β̂2∓ zγ

√
q44

, (24)

where the diagonal of the covariance matrix Ω
−1
0 present the values q11, q22, q33 and q44

and the value zγ is the percentile of the normal (0,1) with right-tail probability γ .

4. BAYESIAN MCMC ESTIMATION

In this section, we discuss Bayes estimators for the unknown parameters as well as
the corresponding credible intervals under joint Type-I GHCS. This problem needs some
assumptions about the form of the prior distributions for the unknown model parameters
Ψ = (α1, β1, α2, β2), the informative gamma prior densities are considered for each
parameters as follows

π
∗
i (Ψi) ∝ Ψ

ai−1
i exp(−biΨi), Ψi > 0, (ai, bi > 0), i = 1,2,3,4, (25)

where Ψ1 = α1, Ψ2 = β1, Ψ3 = α2, and Ψ4 = β2. Hence, the joint prior density presented
by

π
∗(α1,β1,α2,β2) ∝

4

∏
i=1

Ψ
ai−1
i exp(−biΨi). (26)

From the likelihood function (9) and prior density (26) the joint posterior density function
π(α1,β1,α2,β2|t) can be built by

π(α1,β1,α2,β2|t) =
π∗(α1,β1,α2,β2)L(α1,β1,α2,β2|t)∫

Ψ
π∗(α1,β1,α2,β2)L(α1,β1,α2,β2|t)dα1dβ1dα2dβ2

. (27)

Also the Byes estimtors for any function of the parameters g(α1,β1,α2,β2) under squared
error loss function (SEL) is given by

ĝB = Eπ(α1,β1,α2,β2|t)(g(α1,β1,α2,β2))

=
∫

Ψ

g(α1,β1,α2,β2)π(α1,β1,α2,β2|t)dα1dβ1dα2dβ2. (28)

Eq. (28) has a ratio of two integral which can be approximate with different methods
such as numerical integration and Lindely approximation. One of the most important
methods which can be applied is MCMC method describe as follows.

MCMC Approach
Since, the variety types of MCMC schemes, the formulation of posterior distribu-

tion determine the type of MCMC schemes which is applied. From the different avil-
able schemes of MCMC method, the important sub-class of them is Gibbs algorithms or
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in general Metropolis Hasting (MH) under Gibbs. When compare MCMC method with
MLEs, it has advantage of obtaining a reasonable interval estimate of the unknown model
parameters from empirical posterior distribution. This property is also true of any real
function of the model parameters

The joint posterior density function of α1, β1, α2, and β2 can be written as

π(α1,β1,α2,β2|t) ∝ α
a1+D1−1
1 β

a2+D1−1
1 α

a3+D2−1
2 β

a4+D2−1
2 exp{−b1α1−b2β1

− b3α2−b4β2(α1−1)
D

∑
i=1

ηi log ti−β1

D

∑
i=1

ηitα1
i

+ (α2−1)
D

∑
i=1

(1−ηi) log ti−β2

D

∑
i=1

(1−ηi)tα2
i

− (M−D1)β1Cα1 − (N−D2)β2Cα2} . (29)

From the joint posterior distribution in Eq. (29), the conditional posterior PDF’s of model
parameters are defined as follows

β1|(α1,α2,β2, t)→ Gamma(a2 +D1,U1), (30)

β2|(α1,α2,β1, t)→ Gamma(a4 +D2,U2), (31)

where

U1 = b2 +
D

∑
i=1

ηitα1
i +(M−D1)Cα1 , (32)

and

U2 = b4 +
D

∑
i=1

(1−ηi)t
α2
i +(N−D2)Cα1 , (33)

α1|(β1,α2,β2, t) ∝ α
a1+D1−1
1 exp

{
−b1α1 +α1

D

∑
i=1

ηi log ti

− β1

D

∑
i=1

ηitα1
i − (M−D1)β1Cα1

}
, (34)

and

α2|(α1,β1,β2, t) ∝ α
a3+D2−1
2 exp

{
−b3α2 +α2

D

∑
i=1

(1−ηi) log ti

− β2

D

∑
i=1

(1−ηi)tα2
i − (N−D2)β2Cα2

}
. (35)

The two conditional distribution of parameters α1 and α2 given by Eqs. (34) and (35) are
more similar to normal populations. Then, the operation of generate data from these dis-
tributions are built with MH algorithms see Metropolis et al. [19] under normal proposal
distributions as follows.
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MCMC algorithms (MH under Gibbs sampling)

Step 1: Put the initial vector Ψ(0) = (α̂1, β̂1, α̂2, β̂2) and the indicator ρ = 1.

Step 2: From equations (30) and (31) two values β
(ρ)
1 and β

(ρ)
2 are generated from condi-

tional gamma densities.

Step 3: Under normal proposal distributions of two values α
(ρ)
1 and α

(ρ)
2 are generated with

MH algorithms.

Step 4: Then, the vector Ψ(ρ) = (α
(ρ)
1 , β

(ρ)
1 , α

(ρ)
2 , β

(ρ)
2 ) is constructed.

Step 5: Put ρ = ρ +1.

Step 6: Steps from 2−5 are repeted S times.

Step 7: If S∗ is the MCMC number that is needing to achieved the stationary distribution
(burn-in), then the Bayes MCMC point estimate of Ψ is given by

Ψ̂B = E(Ψ|t) = 1
S−S∗

S

∑
i=S∗+1

Ψ
(i), (36)

and the corresponding posterior variance of Ψ is given by

V̂ (Ψ|t) = 1
S−S∗

S

∑
i=S∗+1

(
Ψ

(i)− Ψ̂B

)2
. (37)

Step 8: After arrang the vector Ψ in aseding order, the corsponding 100(1−2γ)% credible
interval of Ψ is given by(

Ψγ(S−S∗),ϕ(1−γ)(S−S∗)
)
, (38)

where Ψ = ( α1, β1, α2, β2).

5. ILLUSTRATIVE EXAMPLE

Different threoritical results devolped in this artical are discussed through this section
with a simulated data set as follows. Under given the prior parmeters ai, bi, i = 1, 2, 3,
4 generate a sample of size 100 and the true parameter is selected to be the mean of this
samle. Hence, for the given (a1 = 5, b1 = 3) and (a2 = 1, b2 = 3) the true parameters
values are selected to be α1 = 1.73 and β1 = 0.39. Also, for given (a3 = 5, b3 =2), and
(a4 = 4, b4 = 4) the true parameters values are selected to be α2 = 2.7 and β2 = 0.7. Then
with the parameter vector Ψ = (1.73, 0.39, 2.7, 0.7) and given M = N = 30, (k, m) = (20,
30) and τ = 1.0

From Weibull distribution with parameters (α1, β1) = (1.73, 0.39) generate a sample
of size M = 30 as follows (data from line Φ1)
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X={0.4974, 0.5250, 0.5741, 0.6362, 0.6377, 0.7313, 0.7571, 0.7919, 0.8199, 0.9143, 1.1239,
1.1522, 1.2628, 1.3187, 1.3874, 1.4449, 1.4733, 1.5024, 1.5264, 1.5781, 1.6429, 1.8642, 1.9706,
2.1925, 2.3227, 2.4023, 2.4113, 2.4515, 2.8872, 2.9222}.

Also, from Weibull distribution with parameters (α2, β2) = (2.7, 0.7) generate a
sample of size M = 30 as follows (data from line Φ2)

Y ={0.2585, 0.3766, 0.6252, 0.8052, 0.8102, 0.8430, 0.8543, 0.8586, 0.8758, 0.8909, 0.8942,
0.9236, 0.9687, 0.9962, 1.0057, 1.0332, 1.0540, 1.1154, 1.1213, 1.1668, 1.1697, 1.2849, 1.2971,
1.3847, 1.4399, 1.5787, 1.6376, 1.6382, 1.6981, 1.8230}.

Table 1. The joint Type-I GHS data with (k, m) = (20, 30) and τ = 1.
d = 24

0.2585 0.3766 0.4974 0.5250 0.5741 0.6252 0.6363 0.6377 0.7313 0.7571

0 0 1 1 1 0 1 1 1 1

0.7919 0.8052 0.8102 0.8199 0.8430 0.8543 0.8586 0.8758 0.8909 0.8942

1 0 0 1 0 0 0 0 0 0

0.9143 0.9236 0.9687 0.9962

1 0 0 0

Table 2. The point and 95% confidence intervals (ACIs and CIs) of MLEs Bayes estimates.
Pa.s (.)ML (.)BMCMC 95% ACIs Length 95% CIs Length
α1 =1.73 2.8985 2.3629 (1.2118, 4.5851) 3.3732 (1.3842, 3.5626) 2.1785
β1 =0.39 0.4216 0.4012 (0.1582, 0.6849) 0.5267 (0.1982, 0.6765) 0.4783
α2 =2.70 3.9742 4.6326 (1.9875, 5.9609) 3.9734 (1.2056, 9.5594) 8.3538
β2 =0.70 0.6065 0.6718 (0.2857, 0.9273) 0.6416 (0.3939, 1.0412) 0.6473

Then from two samples with value (k, m) = (20, 30) and τ = 1.0, the observed joint
Type-I GHC data given in Table 1. From the data given in Table 1 the point MLE and
Bayes MCMC estimate are given in Table 2. Also, the corresponding 95% approximate
and credible intervals are given in Table 2. Figs. 2-5 show simulation number of the model
parameters generated by MCMC method and the corresponding histogram. This figures
show that the convergence in generation data from the posterior distribution under MCMC
algorithms.

6. SIMULATION STUDIES

The theoretical results of two ML and Bayes estimates developed in this article are
compared and assessed by building Monte Carlo simulation studies. In this problem, we
measure the effect of change sample sizes (M, N), affect sample size and time (k, m, τ)
and parameters values. The two terms average (AVG) and mean square error (MSE) are
used to measure the validity of the point estimates as follows
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Fig. 2. Simulation number of α1 and the corresponding histogram generated by MCMC method.

Table 3. The AVGs and MSEs of estimates with (α1, β1, α2, β2) = (2.0, 0.3, 3.0, 0.5).
(M,N) (k,m,τ) Pa. ML BMCMCprior0 BMCMCprior1

AVGs MSEs AVGs MSEs AVGs MSEs

(30, 30) (20, 30, 1.0) α1 2.2045 0.4607 2.2029 0.4625 2.1949 0.4007

β1 0.3330 0.0510 0.3311 0.0502 0.3372 0.0444

α2 3.3062 0.9151 3.3178 0.9124 3.2464 0.7261

β2 0.5331 0.0812 0.5312 0.0801 0.5771 0.0744

(30, 30) (30, 50, 1.0) α1 2.2039 0.3633 2.1002 0.3600 2.1789 0.3432

β1 0.3311 0.0422 0.3397 0.0402 0.3256 0.0351

α2 3.1268 0.7892 3.1285 0.7872 3.1005 0.5812

β2 0.5221 0.0582 0.5201 0.0573 0.5251 0.0493

(30, 30) (20, 30, 1.5) α1 2.1974 0.3875 2.1944 0.3876 2.1973 0.3669

β1 0.3365 0.0667 0.3344 0.0657 0.3705 0.0361

α2 3.2872 0.8274 3.2852 0.8476 3.2908 0.6215

β2 0.5321 0.0589 0.5210 0.0622 0.5261 0.0553

(30, 30) (30, 50, 1.5) α1 2.142 0.3532 2.1212 0.3501 2.1222 0.3234

β1 0.3213 0.0418 0.3295 0.0404 0.3201 0.0320

α2 3.1281 0.7512 3.1244 0.7570 3.1135 0.5412

β2 0.5157 0.0552 0.5231 0.0553 0.5209 0.0413

(50, 50) (40, 60, 1.0) α1 2.1354 0.4341 2.1472 0.4312 2.1777 0.3707

β1 0.3231 0.0492 0.3241 0.0482 0.3241 0.0412

α2 3.2145 0.8053 3.2174 0.8100 3.2400 0.6560

β2 0.5232 0.0752 0.5214 0.0743 0.5222 0.0581

(50, 50) (50, 70, 1.0) α1 2.1221 0.3213 2.1404 0.3337 2.1421 0.2841

β1 0.3124 0.0601 0.3114 0.0597 0.3095 0.0251

α2 3.2130 0.707 3.1882 0.6976 3.1158 0.5115

β2 0.5121 0.0519 0.5109 0.0502 0.5111 0.0453

(50, 50) (40, 60, 1.5) α1 2.1884 0.3772 2.1774 0.3772 2.1883 0.3462

β1 0.3361 0.0655 0.3320 0.0614 0.3700 0.0354

α2 3.2869 0.8271 3.2844 0.8466 3.2888 0.6209

β2 0.5312 0.0578 0.5203 0.0608 0.5242 0.0511

(50, 50) (50, 70, 1.5) α1 2.1051 0.3011 2.1312 0.3124 2.1055 0.2229

β1 0.3039 0.0582 0.3099 0.0527 0.3017 0.0223

α2 3.2110 0.7040 3.1771 0.6612 3.1113 0.5007

β2 0.5022 0.0491 0.50188 0.0422 0.5221 0.0402
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Fig. 3. Simulation number of β1 and the corresponding histogram generated by MCMC method.

Fig. 4. Simulation number of α2 and the corresponding histogram generated by MCMC method.

AVG = Ψ =
1
κ

κ

∑
i=1

Ψ̂
(i) and MSE=

1
κ

κ

∑
i=1

(
Ψ̂

(i)−Ψ

)2
(39)

where Ψ = ( α1, β1, α2, β2) denoted to populations parameters. Also, two terms
average interval length (AL) and probability coverage (PC) are used to measure the valid-
ity of the each approximate confidence intervals and credible intervals. Hence, two sets
of populations parameters are selected (α1, β1, α2, β2) ={(2.0, 0.3, 3.0, 0.5), (0.6, 1.0,
0.8, 1.2)}. The prior parameters are selected to be E(Ψi)' ai

bi
, where (Ψ1 = α1, Ψ2 = β1,

Ψ3 = α2, Ψ4 = β2) .For the prior information, we consider two cases, the first case in
which the joint posterior distribution is proportional with likelihood function, called non-
informative priors, priors0. The second case is informative prior information, we consider
prior1: (a1 = 4, a2 = 3, a3 = 3, a4 = 2, b1 = 2, b2 = 5, b3 = 1, b4 = 1) for the first set
of parameters, prior2: (a1 = 1.5, a2 =3.0, a3 = 2, a4 = 2.0, b1 = 3.0, b2 = 3.0 , b3 = 2.0,
b4 = 2.5) for the second set of parameters. The Bayes estimate considered under squared
error loss function, also the Bayes point and interval estimates computed with 11000 itera-
tion of MCMC with 1000 is considered as burn-in. The simulation process is constructed
with 1000 times and the corresponding AG, MES, AL and PC values of estimates are
computed in results are reported in Tables 3-6.
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Fig. 5. Simulation number of β2 and the corresponding histogram generated by MCMC method.

Table 4. The CPs and ALs for the interval estimates with (α1, β1, α2, β2) = (2.0, 0.3, 3.0, 0.5).
(M,N) (k,m,τ) Pa. ML BMCMC0:prior BMCMC1:prior

PCs ALs PCs ALs PCs ALs

(30, 30) (20, 30, 1.0) α1 0.91 3.2722 0.90 3.2710 0.92 3.1142

β1 0.90 1.4520 0.90 1.4534 0.92 1.2255

α2 0.92 5.6522 0.92 5.4448 0.92 4.1282

β2 0.92 2.3922 0.96 2.3892 0.96 2.1477

(30, 30) (30, 50, 1.0) α1 0.93 3.1472 0.92 3.1120 0.93 3.0084

β1 0.92 1.4109 0.93 1.4213 0.96 1.2001

α2 0.91 5.6231 0.91 5.4217 0.93 4.1002

β2 0.93 2.3832 0.94 2.3621 0.92 2.1274

(30, 30) (20, 30, 1.5) α1 0.91 3.2701 0.91 3.2699 0.93 3.1133

β1 0.92 1.4503 0.93 1.4517 0.92 1.2240

α2 0.92 5.6501 0.92 5.4432 0.94 4.1269

β2 0.91 2.3900 0.92 2.3885 0.91 2.1466

(30, 30) (30, 50, 1.5) α1 0.94 3.1444 0.95 3.1120 0.94 3.0012

β1 0.92 1.4089 0.93 1.4188 0.96 1.1985

α2 0.92 5.6201 0.92 5.4175 0.95 4.0894

β2 0.94 2.3807 0.94 2.3512 0.93 2.1150

(50, 50) (40, 60, 1.0) α1 0.93 3.1212 0.94 3.1004 0.94 2.8512

β1 0.93 1.4012 0.93 1.4004 0.95 1.1650

α2 0.93 5.6120 0.93 5.4122 0.95 4.0610

β2 0.94 2.3611 0.92 2.3411 0.92 2.1066

(50, 50) (50, 70, 1.0) α1 0.92 3.1001 0.93 3.0821 0.95 2.8320

β1 0.93 1.3964 0.93 1.3754 0.95 1.1410

α2 0.94 5.6002 0.94 5.4001 0.94 4.0390

β2 0.94 2.3312 0.93 2.3098 0.93 2.0874

(50, 50) (40, 60, 1.5) α1 0.93 3.1202 0.94 3.0952 0.94 2.8500

β1 0.92 1.4001 0.96 1.3952 0.94 1.1638

α2 0.93 5.6107 0.93 5.4101 0.95 4.0590

β2 0.95 2.3591 0.94 2.3399 0.93 2.1042

(50, 50) (50, 70, 1.5) α1 0.92 2.875 0.93 3.0741 0.96 2.8115

β1 0.92 1.3900 0.94 1.3702 0.95 1.1350

α2 0.94 5.5963 0.94 5.329 0.94 4.0352

β2 0.95 2.3225 0.94 2.3045 0.92 2.0819
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Table 5. The AVGs and MSEs of estimates with (α1, β1, α2, β2) at (0.6, 1.0, 0.8, 1.2).
(M,N) (k,m,τ) Pa. ML BMCMCprior0 BMCMCprior2

AVGs MSEs AVGs MSEs AVGs MSEs

(30, 30) (20, 30, 0.5) α1 0.8541 0.2473 0.8334 0.2128 0.8017 0.1352

β1 1.3540 0.5421 1.3112 0.5289 1.2471 0.4165

α2 1.0042 0.5437 0.9892 0.5178 0.9088 0.3215

β2 1.4242 0.5847 1.4124 0.5669 1.3124 0.4665

(30, 30) (30, 50, 0.5) α1 0.8312 0.1245 0.8289 0.1154 0.8201 0.0998

β1 1.2345 0.2143 1.2118 0.2054 1.2000 0.1009

α2 0.9872 0.1542 0.9749 0.1507 0.8521 0.0984

β2 1.3985 0.2415 1.3777 0.2311 1.3421 0.1328

(30, 30) (20, 30, 1.3) α1 0.8332 0.2408 0.8278 0.2099 0.8118 0.1307

β1 1.3475 0.5364 1.3077 0.5203 1.2321 0.4081

α2 09872 0.5345 0.9799 0.5103 0.8562 0.3041

β2 1.4211 0.5745 1.4090 0.5559 1.3021 0.4598

(30, 30) (30, 50, 1.3) α1 0.8285 0.1188 0.8145 0.1100 0.8197 0.0908

β1 1.2302 0.2078 1.2095 0.2004 1.1745 0.0999

α2 0.9801 0.1399 0.9701 0.1498 0.8489 0.0900

β2 1.3785 0.2332 1.3705 0.2217 1.3111 0.1231

(50, 50) (40, 60, 0.5) α1 0.8154 0.1099 0.8103 0.1024 0.8104 0.0889

β1 1.2231 0.1987 1.2124 0.1990 1.1321 0.0910

α2 0.9321 0.1012 0.9001 0.1008 0.8401 0.0897

β2 1.3124 0.2012 1.3231 0.2008 1.2410 0.1124

(50, 50) (50, 70, 0.5) α1 0.7542 0.0954 0.7401 0.0934 0.7123 0.0742

β1 1.2119 0.1231 1.2001 0.1124 1.1002 0.0864

α2 0.8632 0.0997 0.8547 0.0994 0.8307 0.0795

β2 1.274 0.1872 1.3112 0.1822 1.2245 0.1002

(50, 50) (40, 60, 1.3) α1 0.8001 0.1014 0.7992 0.0999 0.7404 0.0812

β1 1.2124 0.1754 1.2004 0.1840 1.1119 0.0890

α2 0.9124 0.0989 0.9012 0.0997 0.8320 0.0874

β2 1.3078 0.1872 1.3090 0.1784 1.2210 0.1088

(50, 50) (50, 70, 1.3) α1 0.7274 0.0872 0.7211 0.0824 0.6821 0.0700

β1 1.1745 0.1019 1.1721 0.1002 1.1121 0.0810

α2 0.8452 0.0875 0.8385 0.0861 0.8185 0.0707

β2 1.211 0.1521 1.2012 0.1487 1.2009 0.0997

7. CONCLUDING REMARKS

The problem of determine the relative merits of products in the competing duration
with different lines of production has occupy important position in the last view years. In
this section, we discussed this problem under ML and Bayesian estimations, for the un-
known model parameters of two Weibull lifetime distributions under joint Type-I GHCS.
Numerical results was conducted to assess and compare the performance our proposed
methods. Then from this results we can see the following.
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Table 6. The CPs and ALs for the interval estimates with (α1, β1, α2, β2) at (0.6, 1.0, 0.8, 1.2).
(M,N) (k,m,τ) Pa. ML BMCMCprior0 BMCMCprior2

PCs ALs PCs ALs PCs ALs

(30, 30) (20, 30, 0.5) α1 0.90 2.5214 0.91 2.4124 0.96 2.2147

β1 0.92 4.6527 0.92 4.5784 0.92 4.1245

α2 0.91 3.2157 0.92 3.2008 0.92 3.0189

β2 0.92 5.2364 0.90 5.2108 0.91 5.0024

(30, 30) (30, 50, 0.5) α1 0.92 2.254 0.93 2.2104 0.94 2.0587

β1 0.93 4.4122 0.92 4.3201 0.92 3.9850

α2 0.91 3.0017 0.94 3.0174 0.94 2.8752

β2 0.93 5.0241 0.90 5.0001 0.93 4.7854

(30, 30) (20, 30, 1.3) α1 0.93 2.5019 0.91 2.4002 0.93 2.2011

β1 0.93 4.6325 0.93 4.5524 0.95 4.1009

α2 0.96 3.2008 0.96 3.1897 0.94 2.9981

β2 0.94 5.2128 0.93 5.1842 0.94 4.8974

(30, 30) (30, 50, 1.3) α1 0.93 2.2219 0.94 2.1874 0.95 2.0241

β1 0.93 4.3894 0.92 4.2985 0.92 3.9547

α2 0.96 2.8990 0.92 2.8892 0.95 2.8425

β2 0.93 4.8752 0.90 4.8521 0.95 4.7426

(50, 50) (40, 60, 0.5) α1 0.94 2.2110 0.93 2.1624 0.96 2.0102

β1 0.92 4.3624 0.93 4.2745 0.93 3.9324

α2 0.93 2.8741 0.95 2.8632 0.95 2.8245

β2 0.91 4.8533 0.93 4.8324 0.93 4.7221

(50, 50) (50, 70, 0.5) α1 0.95 2.0478 0.94 2.0004 0.95 1.8922

β1 0.91 4.124 0.96 4.0175 0.93 3.7451

α2 0.96 2.6124 0.93 2.6542 0.94 2.4210

β2 0.94 4.6523 0.93 4.6415 0.94 4.3217

(50, 50) (40, 60, 1.3) α1 0.94 2.2032 0.93 2.1421 0.97 2.0001

β1 0.95 4.3421 0.93 4.2524 0.93 3.9123

α2 0.93 2.8524 0.95 2.8478 0.95 2.8001

β2 0.91 4.8336 0.94 4.8300 0.96 4.7099

(50, 50) (50, 70, 1.3) α1 0.94 2.0233 0.95 1.9904 0.93 1.8524

β1 0.94 4.1009 0.96 4.1007 0.93 3.7218

α2 0.96 2.6003 0.95 2.6326 0.95 2.4013

β2 0.95 4.6234 0.93 4.6207 0.94 4.3101

1. Tables 3-6 show that, using the joint Type-I GHCS for lifetime Weibull products
are more acceptable.

2. For two methods of estimation, Bayes method perform better than ML method.
3. The results of MLE are closed to one Bayes estimates under non-informative prior.
4. At the effective sample size (k, m) are increases, results of the MSEs and interval

length are reduce.
5. The results perform better for the large value of test time τ.

6. Results of simulation study is more better for two cases of the parameters values.
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