
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 261-287 (2018)
DOI: 10.6688/JISE.2018.34.1.16

261

Concurrency Control of Real-Time Web Service Transactions

DE-PENG DANG1, XUE JIANG1, NAN WANG1,

YING-TING YAO1 AND WEN-BIN YAO2
1College of Information Science and Technology

Beijing Normal University
Beijing, 100875 P.R. China

2Beijing Key Laboratory of Intelligent Communication Software and Multimedia
Beijing, 100875 P.R. China

E-mail: ddepeng@bnu.edu.cn; jiangxue@ustb.edu.cn; xiao_wangnan@163.com;
yyingting@126.com; yaowenbin@bupt.edu.cn

Transactional property is crucial to the success of web service composite applica-

tions. In the dynamic and open web service environment, maintaining consistency is a
new challenge. In this study, we propose a flexible web service transaction model Fle-
WeSeT, which supports replaceability and compensation. We expand the WS-Frame
framework and add various components to support the transaction-dependence detection
for transactions in FleWeSeT. Furthermore, we propose the optimistic verified concur-
rency control protocol ACoDe based on the transaction-dependence detection. Finally,
we establish a randomly colored Petri net model and perform analysis and evaluation of
the ACoDe protocol. This study’s experimental results indicate that the protocol can help
more transactions meet their deadlines and significantly improve the average response
time of transactions and the success rate of the web service.

Keywords: web service transaction, transaction framework, concurrency control, perfor-
mance evaluation, service computing

1. INTRODUCTION

The number of web services posted on the Internet is growing rapidly. Especially
with the explosive development in the fields of e-commerce and e-government, inter-
enterprise and Internet-based service composition has become a prevailing trend [1-3].
The beneficiaries of web service composition are not only value-added service providers
who exploit new customized services through the composition of some existing services,
but also service consumers who receive on-demand services or benefit from web service
composition systems by combined services. Conversely, Service is regarded as the “link”
and “binder” between infrastructure capabilities and ubiquitous user experiences [6, 7].
The operation mode “Anything as a Service,” which supports consumption and utiliza-
tion of resources for users, is a way of “using rather than owning” and pay-on-demand.
Therefore, in the future of the Internet, there will be a phenomenon of “sea serving,” that
is, simple services that read-write on data objects and complex services such as journey
reservation [8-10]; vast numbers of equivalent services provide rich selections for users
by using different service quality indicators. Moreover, a flexible service invocation
model can call the most appropriate service as needed on the Internet [10, 11].

However, web services are faced with a widely distributed and heterogeneous envi-
ronment, and relying only on these basic functions, it is still difficult to accurately char-

Received April 7, 2016; revised October 16, 2016 & February 4 & March 1, 2017; accepted March 9, 2017.
Communicated by Haiying Shen.

DE-PENG DANG, XUE JIANG, NAN WANG, YING-TING YAO AND WEN-BIN YAO

262

acterize complicated business processes; most real-world business processes require co-
operative work to achieve a specific target [5, 6]. We urgently need to composite existing
web services to build a value-added web service software structure [7, 8]. Because of
stateless calls among web services (i.e., there is no conversation among web services),
the process of web service transactions has become the key to the composition of web
service applications [9, 10, 12].

Actually, many modern web service systems are dynamic and real-time. Meeting
time constraints is very important in some business processes [9, 13], such as burst exi-
gency-based service systems (i.e., ice disasters, earthquakes, and security) [14, 15]; bat-
tlefield information management and command service systems [16, 17]; traffic infor-
mation management and scheduling service systems [8, 18]; location-related query ser-
vice systems [8, 18]; (mobile) stock trading service systems [14, 18]; (mobile) auction-
based service systems [18, 19]; (mobile) e-commerce [9, 21]; (mobile) e-health systems
[22-24] and so on. If stock exchange requests from users cannot be completed before the
deadline, severe financial losses may result. Moreover, data involved in these systems,
such as the stock price, auction bidding and test data, are valid only within a certain
range of time, and decisions or inferences are meaningless over time. Services requested
in these systems require access to the latest and consistent data at all times and places;
otherwise, wrong judgments and decisions will ensue [21, 25].

For software application systems based on web service composition, concurrent ex-
ecution of web services with multiple granularities and timely updates of the data are
required. This contributes to reliable and consistent service [26, 27]. Existing web ser-
vices cannot take effective measures to alternate and concurrently execute web service
transactions, and this has become a serious obstacle to the development of web service
technology [27, 28].

Concurrency control of real-time web service transactions is a new problem. In this
paper, we propose a flexible web service transaction model called FleWeSeT, which
supports the replaceability and compensation of web service transactions, and extend the
WS-Frame framework by adding various components to support transaction-dependence
detection for transactions in FleWeSeT. Furthermore, to achieve alternative and com-
pensatory operations for web service transactions, we propose the optimistic verified
concurrency control protocol ACoDe. Finally, we establish a randomly colored Petri Net
model and undertake analysis and evaluation for the ACoDe protocol. Experimental re-
sults indicate that ACoDe performs better than WS-BA in the aspects of average re-
sponse time and success rate of web service transactions.

Section 2 reviews some related work. In Section 3, we describe our web service
transaction model called FleWeSeT and our extended framework called WS-Ultimate. In
section 4, we discuss our web service transaction concurrency control protocol called
ACoDe, which can help concurrent transactions globally obtain access to serializability.
In section 5, we describe our simulation model based on colored Petri Nets and compare
our performance with WS-BA. Section 6 presents the study’s conclusions.

2. RELATED WORK

Existing research studies about concurrency control of real-time web service trans-

CONCURRENCY CONTROL OF REAL-TIME WEB SERVICE TRANSACTIONS 263

actions originally came along with the development of real-time transaction processing.
However, this processing was first used in databases and later developed for web ser-
vices. In 1993, K. Ramamritham first clearly introduced the application background of
research on real-time transaction management, the features of real-time transactions and
the key problem of real-time transaction processing [30, 31]. In the new century, a boom
of research on distributed real-time databases and transactions emerged [32, 33].

However, these studies focused on short-lived database transactions in tightly-cou-
pled environments, which are composed of data operations. To ensure reliability and
consistency, these methods for database transactions adopt centralized decision-making,
restrain each other strictly and require all participants to be active and obedient; however,
they are unacceptable for autonomous web services in loosely coupled environments. If a
web service system adopts these protocols, it will lead to long periods of continuous
waiting for a large number of transactions and cause fatal damage to the system. The
web service environment needs new forms of transactions and management mechanisms
that do not need to strictly follow the ACID property of transactions.

With the development of web service transactions, the composition of real-time web
service transactions for complex business transactions has become a study hotspot. Mark
Little said: “Only are the basic services combined to form new, composite web services
integrated with more functions, web service technology can play its role in the practical
application actually. The key problem is to ensure the reliability and consistency of the
result conducted by multiple web services. It’s impossible to meet the complex business
demand of composite web service applications without the transaction capacity.” [35]

Research institutions have started research projects on web service composition.
They are focusing on automatic service composition based on business flow, AI planning
and program combination, and they explore these regarding various aspects, such as ser-
vice description, service matching, service selection, service quality, service security and
composition validation and test [36-42]. However, all of the research studies are concen-
trated on how to rapidly find appropriate existing services and design a composite ser-
vice to meet the demand of a single user. They do not take the time constraint and the
consistency issues into account. When plenty of users are requesting various composite
web services on the Internet, a vast number of composite services will call services on
the lower layer to execute in parallel within the deadline, which poses a large challenge
for consistency.

The composition of real-time web service transactions is a new problem that has
appealed to many researchers. References [43-47] have studied the modeling, formation,
arrangement and infrastructure of real-time web service composition based on time con-
straints, but they have not involved transactions. References [48-51] have studied mod-
eling, formation, arrangement, combination formal modeling and accuracy verification
based on transactional constraints, which were not real-time. Research studies in these
two areas have just focused on the specification of real-time and transactional constraints
in the design of web service composition, and the concurrent execution of real-time web
service transactions is not given attention.

Academia and industry have put forward some coordination specifications of trans-
action operations that are suitable for the web service environment: BTP [51], WS-C/T
[52], WS-CAF [53] and the standard specification WS-TX approved by OASIS (includ-
ing WS-Coordination, WS-AT, and WS-BA) [29]. Reference [29] analyzed transactional

DE-PENG DANG, XUE JIANG, NAN WANG, YING-TING YAO AND WEN-BIN YAO

264

requirements in SOC and provided an integrated framework for service and WS-TX.
References [54-57] raised extended proposals for the WS-TX framework, and references
[58-61] studied the cascade compensation in the distributed and P2P environment, which
did not consider the need of real-time. It is still necessary to build particular applications
or services to deal with concurrency control and recovery [54-57].

Therefore, our concern is more related to the concurrency control of real-time web
service transactions within deadlines.

In the Internet, message transmission and the network are unreliable. It is a tough
challenge to effectively manage and control complex behaviors of real-time web service
composition. However, the replaceability and compensation of web service transactions
make it possible to improve the performance of real-time web service transactions. By
replaceability between equivalent services, we can eliminate conflicts between web ser-
vice transactions and implement compensatory measures, which can undoubtedly help
more web service transactions meet their real-time requirements.

3. WEB SERVICE TRANSACTION MODEL AND FRAMEWORK

We propose a flexible web service transaction model called FleWeSeT in the form
of a transaction tree based on replaceability. The model contains two types of nodes, as
shown in Fig. 1. Non-leaf nodes represent composite web service transactions, leaf nodes
represent basic transactions, and the edge between two nodes denotes a parent-child rela-
tionship. In this model, the root node (such as WST in Fig. 1) represents the entire busi-
ness transaction. Additionally, each node has a set of alternative transactions for its own
sub-transactions. As shown in the dashed-line circle in Fig. 1, WS6 and WS7 are the
alternative transactions for WS1, which guarantees that WST11 can commit the request
for the execution of other alternative sub-transactions through the index when WS1
breaks down within the deadline. For each non-leaf node, the degree and depth are both
dependent on functional logic, the service composition process and alternative service
flexibility. According to the functional logic and the service composition, the parent-
child relationship between two nodes can be confirmed, and an edge can be added be-
tween the two nodes. As the process goes on, a transaction tree can be established. Each
sub-transaction has corresponding alternative and compensatory transactions, which may
also be a transaction tree. Therefore, the depth of a non-leaf node can be computed along
the path from the node to the root node, and the degree implies the sum of child nodes it
owns. Moreover, because of alternative transactions offered by different providers with
the same function and similar performance, the implementation of the entire business
transaction varies in different paths, which influences the degree and depth of a non-leaf
node as well.

A flexible web service transaction model satisfies the request for the deadline and
allows flexible web service composition, recovery and concurrency in granularity. Each
sub-transaction possesses an independent submission right, compensates for failure
transactions, and significantly adapts the characteristics of the autonomy and isomerism
of the web service. To improve concurrency, the results of the submitted sub-transactions
are available for other concurrent executions of sub-transactions.

CONCURRENCY CONTROL OF REAL-TIME WEB SERVICE TRANSACTIONS 265

Fig. 1. Flexible web service transaction model based on alternates.

3.1 Transaction Dependency

In the process of a web service transaction, according to the transaction tree based
on function logic, composition and alternatives, each web service has a set of alternative
transactions and local relevant compensatory services. That is, once a transaction breaks
down, the relevant transaction node searches the list of compensatory services by the
current service id and requests compensatory operation. Considering replacement and
compensation, there may be four dependency relationships: logic dependency, resource
dependency, alternate dependency and compensation dependency.

Definition 0 Transaction dependency Suppose there are two web service transactions
T1 and T2; if the outcome of transaction T2 can be affected by transaction T1, we call
the relationship between them transaction dependency. In this case, transaction depend-
ency can be described as T2T1, while T2 is a parent node and T1 is a child node.

Definition 1 Logic dependency In a web service transaction flow, the outcome of the
parent transaction is affected by the sub-transaction, namely, the parent transaction needs
to wait until all of the sub-transactions have been submitted. We call the dependency
relationship between the parent and sub-transactions logic dependency, in which the
child transaction dominates the transaction and the parent transaction is dependent on the
transaction. For example, there is a logic dependency between an online payment service
and online bank services in an online ticketing system. The online payment service can-
not confirm an order until the online bank service is submitted. That is to say, an online
payment service logically depends on online bank services.

Definition 2 Resource dependency When two web service transaction flows request
the same sub-transaction, because of the semantic relationship between the various oper-
ations of the sub-transaction, there must be a certain order for the two transactions. We
refer to this dependency relationship as resource dependency. For example, in an online
ticketing system, when two users are operating on the same ticket resource, transaction A
is refunding a ticket and transaction B is booking the ticket. Transaction B should be
performed after transaction A is submitted. That is to say, there is an order between the
two transactions, so transaction B depends on transaction A for resources.

DE-PENG DANG, XUE JIANG, NAN WANG, YING-TING YAO AND WEN-BIN YAO

266

Fig. 2. Dependency graph. Fig. 3. Two web service transaction with dependency.

Definition 3 Alternate dependency Alternate dependency is a relationship based on
replaceability. A new alternative transaction keeps some original dependency relation-
ships of the replaced one, such as the logic dependency relationship between the parent
and the sub-transaction, so there is an alternate dependency between the alternate trans-
action and the original transaction. For example, for an online ticketing system, the al-
ternative service of the online service in bank A is the online service in bank B, so there
is an alternate dependency between online services in bank A and bank B.

Definition 4 Compensation dependency Considering two sub-transactions that have a
logic dependency or resource dependency relationship (no matter whether they belong to
the same or different business transaction flow); when one sub-transaction needs to be
compensated, another one also needs to trigger the compensation transaction, and we
refer to the relationship between these two transactions as compensation dependency.
Transactions with compensation dependency can belong to the same web service trans-
action flow or different transaction flows. It is reasonable that compensation dependency
can be caused by either logic dependency or resource dependency. For example, there
are two business flows that separately handle deposits and withdrawals to the same ac-
count, and deposit compensation is performed after withdrawal compensation to avoid
system mistakes caused by deposit compensation.

To facilitate the expression of dependency, we adopt a dependency graph in the
transaction process. A dependency graph is a directed graph in which nodes represent
transactions and edges represent the transaction dependency between nodes. Each edge is
depicted from dependent transaction to dominated transaction. The dependency graph is
updated correspondingly when a new transaction enters or leaves the system. Fig. 2 in-
dicates that transaction T1 depends on T2 and T3.

In a transaction flow, the parent and child transactions are predetermined, so logic
dependency belongs to global dependency and static dependency, which can be reflected
in the global dependency graph. Resource dependency depends on the transactions that
dynamically go through the service site, so it belongs to local and dynamic dependency.
Compensation dependency is caused by either logic dependency or resource dependency,
so the compensation sequence is determined by the two dependency relationships when
triggering a compensation transaction. Nevertheless, an essential alternate dependency is
the newly added relative logic dependency or resource dependency. Therefore, we main-
ly consider the detection of the logic dependency and resource dependency among sub-
transactions when processing the concurrency control and the submission. Both depend-
ency relationships can possibly cause a dependency cycle among sub-transactions in a
practical process. Fig. 3 shows two web service transactions with dependency, wherein

V3

V4

D4

V1

V2

D3

D2

D1

D5

T1 T2

CONCURRENCY CONTROL OF REAL-TIME WEB SERVICE TRANSACTIONS 267

transactions T1 and T2 are nested transactions and a solid line represents a parent-child
relationship with logic dependency. In other words, the parent transaction depends on the
sub-transactions. A dashed line denotes resource dependency between two sub-transac-
tions. For example, there are resource dependencies between V1 and V3, V4 and V1,
and V2 and V3. There are two cases where a dependency cycle may occur. First, for V1,
V2 and V3, we assume that logic dependency D3 and resource dependency D2 exist, and
then it is impossible for resource dependency D1 to exist. That is because resource de-
pendency is a dependency relationship formed by requests to the same service or sub-
transactions from two transactions. The establishment of D2 means that V2 and V3 sub-
mit a request to the same service or sub-transaction simultaneously; likewise, the estab-
lishment of D1 means that V1 and V3 submit a request to the same service or sub-tran-
saction. However, there is a parent-child transaction relationship between V1 and V2, in
which resource dependency does not occur considering the division and combination of
services in the practical applications. Therefore, under the circumstance of D1 and D2,
D3 does not exist. One case that should be considered is the dependency cycle D2, D4,
D3, and D5. In the context of the establishment of D2, D3 and D4, if D5 exists, resource
dependency and logic dependency will constitute a dependency cycle. When there is a
dependency cycle of sub-transactions, a circular wait for submission will occur. Because
the dependent transaction has to wait for the submission of its dominated transactions,
permanent waiting for multiple transactions will be caused. Therefore, dependency de-
tection of sub-transactions is a crucial problem for the concurrency control of nested web
service transactions.

3.2 Extended Framework WS-Ultimate

OASIS has proposed the WS-Coordination, WS-Atomic Transaction and WS-Busi-

ness Activity protocol as a service transaction framework. To maintain web service con-
sistency, we extend the web service transaction standard framework and rename the ex-
tended framework to WS-Ultimate. WS-Ultimate can implement the concurrency control
of web service transactions, support transaction dependency detection and alternate op-
eration. The extended WS-Ultimate framework is shown in Fig. 4.

Fig. 4. WS-Ultimate extended framework.

Transaction Sub-Transaction

Business Level
Interactions

Participants

SC1

Sub-Coordinators

P1 P2 P3
Coordinator

WS -Alternator

Dependence Test
Service

Alternate
Service

Alternate
Service

WS -Alternator

Coordination
Messages

Activate Service

Register Service

Protocol Service

Activate Service

Register Service

Protocol Service

Business Logic
Layer

Transaction
Management Layer

Dependence Test
Service

DE-PENG DANG, XUE JIANG, NAN WANG, YING-TING YAO AND WEN-BIN YAO

268

The WS-Ultimate framework adds WS-Alternator components in the coordinator
end and participant end. In addition, because of the characteristics of the web service
transaction, in this model, participants in the original standard framework also play a
coordinator role for the subordinate transaction. Therefore, the web service end is ex-
tended into the sub-transaction end. Besides participants, we also add a sub-coordinator
to allow web service participants to act as the subordinate coordinator and call sub-tran-
sactions. Therefore, in the WS-Ultimate framework, a coordinator plays two roles, the
parent coordinator and the sub-coordinator. Although the two roles correspond to the
same component, the different roles’ tasks differ. The extended framework also retains
the three component services of the standard framework: activate service, registration
service and protocol service.

Newly added WS-Alternator components are responsible for the two ends transfer-
ring messages and two services, which are the Dependence Detection Service and Alter-
native Service.

 Dependence Detection Service

Sub-coordinator end (also known as subordinate coordinator): The Dependence
Detection Service located at the sub-coordinator end maintains a local resource depend-
ency graph. When the WS-Alternator in the sub-coordinator end receives a submission
request from the coordinator end, the Dependence Detection Service can detect whether
the submission request can be submitted immediately, namely, whether there exists a
dominated transaction, and then report the detection result to the Alternative Service.

Coordinator end (also known as superior coordinator): The Dependence Detection
Service located at the coordinator end has the same function as described above when
playing the role of sub-coordinator, namely, to receive a submission request from the
superior coordinator, conduct dependence detection and determine whether to enable the
submission. In the structure of the transaction, besides the root node, the coordinator of
the transaction node always works as both sub-coordinator and parent coordinator at the
same time, which means it needs to send and receive requests. The Dependence Detec-
tion Service will not be enabled when acting as the parent coordinator.

 Alternative Service

Sub-coordinator end: The Alternative Service located at the sub-coordinator end is
responsible for receiving messages from the local Dependence Detection Service and
sending them to the coordinator end.

Coordinator end: The Alternative Service located at the coordinator end receives
messages from the sub-coordinator end, requests an alternative transaction for the current
sub-transaction in the waiting state, registers and performs an alternative transaction, and
notifies the sub-transaction participant to stop waiting.

All coordination messages from the coordinator or reply messages from the sub-co-
ordinator should be received or processed by WS-Alternator before being transferred.
For example, when WS-Alternator receives a submission message from the coordinator,
it should check whether the transaction can be submitted before transferring the message
to the corresponding sub-coordinator. Therefore, all different web service statuses (such
as submission, compensation, suspension, etc.) defined by WS-Business Activity are
stored in WS-Alternator.

CONCURRENCY CONTROL OF REAL-TIME WEB SERVICE TRANSACTIONS 269

The benefit of importing WS-Alternator is that the sub-coordinator end can obtain
the coordination context of different transactions that request the same sub-transaction,
so it can detect potential transaction dependencies and handle them appropriately to pre-
vent circular dependency.

3.3 Representation and Detection of the Transaction Dependency

Because all the web service states in different contexts defined by WS-Business Ac-

tivity are saved in WS-Alternator, the maintenance of the dependency detection and de-
pendency relationship can be implemented by the WS-Alternator components of the ex-
tended WS-Ultimate framework.

3.3.1 Resource dependency

For the resource dependency among transactions mentioned in section 3.1, we use

the method of a conflict matrix to detect it. In this paper, a conflict matrix is established
and updated by the sub-transaction or service provider and accessed by WS-Alternator.

The conflict matrix is a matrix of nn, wherein n is the number of operations in the
web service at the service provider end. Whether there are conflicts between operations
is defined by the semantics of these operations. These operation conflicts can reflect the
interaction relationship when they perform. Here is the definition of operation conflicts:
if the order of two operations changes, it may lead to a different final state, and these two
operations have a semantic conflict. The conflict matrix is established by a sub-transac-
tion provider before providing a web service while designing sub-transactions, because
only the service provider understands the conflict relationship among operations. It also
can help WS-Alternator detect a potential transaction dependency while transactions are
running.

The conflict matrix is determined by the attributes of the operation, and it is static
and determined. Logic dependency and compensation dependency are always dynamic
and depend on the actual business flow.

3.3.2 Logic dependency

For the logic dependency mentioned in section 3.1, we use a logic dependency tree

to represent and maintain the logic dependency relationship. A logic dependency tree is
created in the process of establishing the transaction. Each sub-transaction node main-
tains its own parent and sub-transactions that have a call and called relationship and es-
tablish a local logic dependency tree, which is maintained by each corresponding coor-
dinator. Specifically, we usually adopt a multi-tree. Therefore, a logic dependency tree
can be a good description of the overall transaction structure and preserve logic depend-
ency.

The coordinator determines the logic of transaction submission according to the
nodes’ parent-child relationships on the logic dependency tree. When the current node
needs to be submitted, we check whether the sub-transaction of the current node is al-
lowed to be submitted based on the local logic dependency tree and report the infor-
mation to the superior coordinator.

DE-PENG DANG, XUE JIANG, NAN WANG, YING-TING YAO AND WEN-BIN YAO

270

3.3.3 Compensation dependency

For the compensation dependency mentioned in section 3.1, we use the list of com-

pensation to describe and store the compensation dependency relationship. Because the
compensation dependency relationships of transactions are determined by both logic
dependency and resource dependency, the process of establishing a compensation list is
dynamic. The compensation list is maintained by the coordinator when building and ex-
ecuting transactions, and it is represented by a linked list. According to the definition of
compensation dependency in section 3.1, the child node is a dominated transaction, and
the corresponding parent node is a dependent transaction. That is to say, parent nodes
can trigger child nodes’ compensation. Therefore, in the compensation linked list, parent
nodes are the predecessor nodes of compensation.

In addition, for resource dependency, we take the dependency relationship we get
from the resource dependency graph into consideration to determine which one is the
dominated transaction. Similarly, dependent transactions are predecessor nodes in the
compensation list.

The representation and detection of these three dependency relationships can con-
tribute to the transaction modeling, transaction submission and concurrency control,
which we mention in section 4.

4. CONCURRENCY CONTROL PROTOCOL OF WEB SERVICE
TRANSACTIONS: ACODE

An extended web service transaction framework with WS-Alternator can detect
transaction dependence in a concurrent process. The concurrency control protocol pro-
posed in this paper is based on the nested web service transactions and the new extended
framework. After detecting resource dependence, we alternate the current waiting sub-
transaction to submit within the deadline, thus breaking the wait state of the entire trans-
action requested for submission and creating a new transaction execution path that can
effectively avoid circular wait.

The ACoDe protocol maintains the dependence graph of the transaction. While en-
suring that the graph does not contain any cycles, the protocol guarantees that concurrent
transactions obtain access to serializability globally. We also integrate ACoDe into our
WS-UItimate framework, in which each Dependence Detection Service component in
WS-Alternator maintains partial views of the global dependence graph. Partial views
preserve the dependence relationships among transactions when calling local sub-tran-
sactions. Each WS-Alternator ensures that its partial dependence subgraph is without
cycles by requesting replaceability through the Alternative Service and applies the Com-
mit-Order strategy to control the order of committing concurrent transactions. Commit-
Order is an optimistic concurrency control strategy that allows the immediate acceptance
of concurrent access to local services and a consistency check at the time of submission.
Therefore, deadlock and circular wait never appear in experiments. WS-Alternator ap-
plies the following three rules to ensure the consistency of transactions:

 A transaction can be submitted only when all its dominated transactions are submitted
within the deadline.

CONCURRENCY CONTROL OF REAL-TIME WEB SERVICE TRANSACTIONS 271

Fig. 6. Transaction state transition of the non-leaf nodes.

 When a transaction is aborted or compensates local activities, the local activities of all
its dependent transactions should be compensated automatically.

 When a transaction is in a waiting state for dependence problems or in an unfinished
state for faults, transaction replaceability should be considered.

The result of the first rule is that the submission request of any dependence transac-

tions should be delayed until dominated transactions are submitted. For the dependence
transactions that are delayed to submit, the coordinator can decide whether to start trans-
action replaceability or not according to the waiting time.

Fig. 5 shows the transaction state transition of the leaf nodes in the web service
transaction tree, and Fig. 6 shows the transition graph of the non-leaf nodes. In the model

Fig. 5. Transaction state transition of leaf nodes.

Active Completing Complete

Exiting

Canceling

Closing

CompensatingWaiting

Ended

Alternating

Faulting

NotCompleting

Coordinator generated Participant generated

Complete Completed Close Closed

Exit Exited

Cancel Canceled

Wait Completed

Fault

Compensated

Compensate

Fault
Faulted

NotCompletedCannotCompleted

Alternate

Alternated

Fault

Compensate

Alternate

DE-PENG DANG, XUE JIANG, NAN WANG, YING-TING YAO AND WEN-BIN YAO

272

of the web service transaction tree, the transaction state transition of the non-leaf nodes
is determined by the process of the sub-transaction state transition, whereas the state
transition of the leaf nodes is triggered by the result of the web service.

We first demonstrate the transaction state transition of leaf nodes, as shown in Fig.
5. Dashed arrows represent trigger messages from participants, while solid arrows repre-
sent trigger messages from coordinators. The text on the arrows indicates the messages.

We add two new states into WS-Business Activity, i.e., the waiting state and the alter-
nating state, which are represented as two dark ovals in Fig. 5. We define three new types
of messages, i.e., Wait, Alternate and Alternated, which are imported into the protocol.

 Wait Message

WS-Alternator manages communications between participants and coordinators,
including sending a Wait message to notify them that their requests have to be delayed
due to consistency problems and then changing the state transition from Completing to
Waiting. WS-Alternator traces the current state of the current concurrent participants and
the context of the transactions. Once realizing the submission of all transactions domi-
nated by the waiting transactions, the delayed submission request will be sent to the web
service, and then coordinators will receive a Completed message, which changes the
state from Waiting to Complete.

 Alternated and Alternated Message

When a transaction is in the Waiting state, the coordinator sends an Alternate mes-
sage to notify the participant that the alternative service is successfully registered, but it
can also choose to continue waiting. At this time, the transaction state changes from
Waiting to Alternating. If the new alternative service is submitted successfully, the coor-
dinator sends an Alternated message to notify the original participant to cancel the cur-
rent waiting submission, which changes the state from Alternating to Complete. It indi-
cates that the alternative service for the delayed submission has been performed suc-
cessfully. However, in a service with no replaceability, transactions have to wait until all
dominated transactions are submitted within the deadline. Then, the delayed submission
requests are sent to the web service, and coordinators receive a Completed message in
the end.

The role of participants is played by sub-coordinators for the web service transac-
tions of non-leaf nodes. Therefore, the transaction state transition of non-leaf nodes, as
shown in Fig. 6, is triggered by the sub-transaction state transition. The corresponding
relations between every message sent by participants in Fig. 5 and the state transition
processes of the sub-transactions are shown in Table 1.

A submission request (e.g., Completed message) from the superior coordinator is
received by WS-Alternator as a representation of the subordinate coordinator. Then, the
Dependence Detection Service inspects its partial dependence graph to decide whether
there is an outgoing edge of the transaction. In Fig. 7 (a), the submission request is re-
ceived when WS-Alternator finds that the transaction node has no outgoing edges and is
sent directly to the appropriate subordinate coordinator. Upon receiving all of the Com-
pleted messages from all subordinate coordinators within the deadline, WS-Alternator
deletes the transaction node in the dependence graph and sends a Complete message to
the superior coordinator.

CONCURRENCY CONTROL OF REAL-TIME WEB SERVICE TRANSACTIONS 273

Messages sent by
sub-coordinators

Sub-transaction state transition

Exit

Completed

Wait

Fault

Cannot

Completed

Compensated

Closed

Cancelled

Exiting Ended
Exited

Exit

Active

Completing

Exit

Complete
Alternated

Completing

Alternating

Completed

Completing

WaitingWait

FaultingFault

NotCompleting
CannotCompleted

Faulting Ended
Faulted

NotCompleting Ended
NotCompleted

Compensated
Compensating Ended

Closing Ended
Close

Canceling Ended
Canceled

Table 1. The corresponding relations between the message.

DE-PENG DANG, XUE JIANG, NAN WANG, YING-TING YAO AND WEN-BIN YAO

274

Table 2. Simulation parameters.
Parameter Value

The number of coordinators 2
The network packet loss rate 20%
Registration success rate of alternating sub-transactions 80%
Submission success rate of alternating sub-transactions 90%
The alternating probability for failing sub-transactions 49%

Compensation success rate of sub-transactions 49%

Error rate of sub-transactions 10%

Unfinished rate of sub-transactions 10%

Growth coefficient of transaction dependence with concurrent degree 0.1

Dependence detection delay 49

Network transmission delay 49

Submission delay of sub-transactions 49

Waiting delay of sub-transactions 100

Registration delay of alternate sub-transactions 200

Submission delay of alternate sub-transactions 49

MinSlack 2

In Fig. 7 (b), WS-Alternator finds an outgoing edge of the transaction node and de-
lays the submission until all dominated transactions are submitted. That is, WS-Alterna-
tor temporarily does not send a Complete message to the subordinate coordinator but
returns a Wait message to the superior coordinator.

At the same time, the superior coordinator is retrieving an alternative transaction for
the waiting sub-transaction. Once an alternative transaction is available and registered
successfully (Procedure 4), the superior coordinator sends an Alternate message to the
participant (Procedure 5) to notify the subordinate coordinator of the completion of the
transaction replacement. At this point, the superior coordinator can continue to be in the
waiting state. After the alternative transaction is submitted successfully within the dead-
line (Procedure 6), the superior coordinator sends an Alternated message (Procedure 7)
to the subordinate coordinator. Once WS-Alternator receives the Alternated message, it
will send a Cancel message (Procedure 8) to the original subordinate coordinator, which
stops waiting and aborts the submission, while the transaction is removed from the de-
pendence graph by WS-Alternator. Thus, the sub-transaction in the waiting state is re-
leased by executing alternative transactions.

Fig. 7 (c) describes the compensatory process of web service transactions. For sub-
mitted sub-transactions (Procedure 6), the superior coordinator sends a Compensate
message (Procedure (7)) and then the subordinate coordinator sends a Compensate mes-
sage as well (Procedure 7). After the compensation of the subordinate coordinators is
over, the Compensated message carrying compensation information is returned to the
superior coordinator in turn (Procedure 9, 10, (10)), which receives all Compensated
messages from all its subordinate coordinators, and the compensation succeeds within
the deadline.

CONCURRENCY CONTROL OF REAL-TIME WEB SERVICE TRANSACTIONS 275

(a) (b)

(c)

Fig. 7. The process of how WS-Alternator carries out a replacement transaction to solve resource
dependence and compensation.

5. PROTOCOL SIMULATION AND PERFORMANCE EVALUATION

5.1 ACoDe Simulation Based on a Colored Petri Net

In this study, we establish a concurrency control model of web service transactions

based on a randomly colored Petri Net (CPN), which can describe concurrent behaviors
accurately and concisely, to simulate the ACoDe protocol in the new WS-Ultimate
framework. We then compare the model with the standard framework protocol Business
Agreement With Coordinator Completion (the WS-BA protocol for short) in two aspects,
the transaction success rate (i.e., the ratio of the number of transactions successfully
submitted within the deadline and the total number of transaction requests) and the av-
erage response time (i.e., the response time for transactions that are completed within the
deadline is the actual time they execute, even with many restarts; however, for transac-
tions that are not completed before the deadline, the response time is the time from the
start to the deadline; the average response time equals the total response time in both
situations of success and failure divided by the total number of transaction requests).

Sub - Coordinator i

WS - Alternator Participant i

1 . Complete
6 . Completed

3. Complete
4. Completed

5. Remove
node

Local Dependency Graph

Coordinator

(6)Completed (7) Compensate

2 . Check
Dependency

7 . Compensate

8.Compensate
9.Compensated

10 .Compensated

(10)Compensated

Sub-Coordinator i

WS-Alternator

3.Wait

Participant i
1. Complete

2. Check
Dependency

Local Dependency Graph

Participant j 4. Register

5.Alternate

8.Cancel

6. Completed
11.Cancelled

10. Remove node

9.Cancelled

7.Alternated

Coordinator

(6) dComplete(3)Wait

Sub - Coordinator i

WS - Alternator Participant i

1 . Complete

2 . Check
Dependency

6 . Completed
3 . Complete
4 . Completed

5 . Remove node

Local Dependency Graph

Coordinator
(6) Completed

DE-PENG DANG, XUE JIANG, NAN WANG, YING-TING YAO AND WEN-BIN YAO

276

5.1.1 Experimental model and parameters

The simulation model contains a superior coordinator and a subordinate coordinator.

The superior coordinator simultaneously sends transaction submission requests to the
subordinate coordinator through the network, which receives these requests and returns
processing results to the superior coordinator according to the situations of the transac-
tion submission requests. Drawing on the experience of parameter setting in reference
[46, 47], the system simulation parameters are shown in Table 2 (time in ms). We then
adopt the parameter values in Table 2 to model the ACoDe protocol in the WS-Ultimate
framework and the Business Agreement with Coordinator Completion protocol (WS-BA)
in the standard framework. The constituent elements of an arrival transaction include the
transaction ID, message contents and deadline. The deadline is (current time + slack fac-
tor* time taken), where the slack factor is uniformly distributed in [MinSlack, MaxSlack].
In our model, we define two enumerated types of color sets to represent different mes-
sage types between the superior coordinator and the subordinate coordinator. To facili-
tate the expansion and reuse of the model, we adopt a hierarchical Petri Net, including
one parent page (WS-Alternator) and two subpages (Alternator_A and Alternator_B),
which contain the dependence detection module, the alternate processing module, and
other transaction processing modules, respectively.

In the Petri Net model, the first step is to set color sets. The color set Coormess de-
fines message types from the superior coordinator. In the protocol proposed above, the
superior coordinator can send a Complete message, a Compensate message, an Alternate
message and an Alternated message to the subordinate coordinator when in search of
alternate sub-transactions. Additionally, the superior coordinator can also actively send
Cancel, Close and End messages and respond to Exited, Faulted and NotCompleted
messages from the subordinate coordinator.

Similarly, the color set PartiMess defines message types from the subordinate coor-
dinator. In particular, the subordinate coordinator can send a Wait message to make sub-
transactions enter the delayed submission state. There are also Completed, Compensated,
Cancelled, and Closed messages.

Furthermore, the color sets TIDxCoorMessxWSTime and TIDxPartiMessxWSTime
define the token type received by libraries A, B, C, and D in the parent page, respectively.
This type is a triple, consisting of the TID (transaction ID), CoorMess/PartiMess (corre-
sponding message type) and WSTime (time taken by the sub-transaction).

To improve the reliability of the experimental data, the system remains running for
5000s, continuously, to ensure that our system runs in a stable state, and we start to col-
lect the results after 1000s.

5.1.2 Simulation model construction based on the petri net

In this section, we will describe the modeling process based on the Petri Net in de-

tail.

ACoDe simulation in the WS-Ultimate framework
The simulation model of the parent page is shown in Fig. 8, in which the two alter-

native transmissions Alternator_A and Alternator_B correspond to the Alternator_A and

CONCURRENCY CONTROL OF REAL-TIME WEB SERVICE TRANSACTIONS 277

Alternator_B subpages, respectively. As a component in the superior coordinator, Alter-
nator_A is in charge of receiving and handling coordination messages from the subordi-
nate coordinator Alternator_B in library D and sending processed messages to library A.
Similarly, Alternator_B, as a component in the subordinate coordinator, is in charge of
receiving and handling coordination messages from the superior coordinator Alterna-
tor_A in library B and sending processed messages to library C. The transmissions
TransmitMessage1 and TransmitMessage2 simulate the transmission of the coordination
messages and obtain the network packet loss rate by calling the trans_success function,
which is set at 20%. Fig. 9 shows the statistics of the transaction success rate.

Fig. 8. CPN model of the parent page in the ACoDe protocol.

Fig. 9. The statistics of the transaction success rate.

As shown in Fig. 9, referring to Fig. 5, when the transaction changes its state from
“Completing” or “Waiting” to “Complete” after the sub-coordinator sent the message
“completed,” the SuccCount is incremented by 1. Likewise, when the state changes from
“Alternating” to “Completing” by the message “Alternated,” the SuccCount also needs
to be incremented by 1. That is, when the state of a transaction becomes “Complete”
within deadline, the SuccCount needs to be increased by 1.

We take the Alternator_A subpage as an example to demonstrate the simulation
process, as shown in Fig. 10. Alternator_A plays the role of the superior coordinator and
sends messages that are used in the superior coordinator. Alternator_ A also contains 7
transmissions, Judge, Completed, wait_Alternate, Alternated, Faulted Process, Cannot-

DE-PENG DANG, XUE JIANG, NAN WANG, YING-TING YAO AND WEN-BIN YAO

278

Fig. 10. CPN model of Alternator_A subpage in the ACoDe protocol.

Completed Process and Exit Process. The Judge transmission processes and responds to
messages from the subordinate coordinator Alternator_B. For example, if Judge receives
a Completed message, it will transmit it to library Done, which temporarily stores the
TIDs and time spent by completed transactions. After the Completed transmission, li-
brary A returns an empty record to the parent page (because the Completed message in-
dicates that the transaction has been successfully submitted) and submits the number of
successful transactions and response time through the library SuccCount. Another exam-
ple is, if Judge receives a Wait message, it will decide whether to notify the superior co-
ordinator to wait or to choose an alternative transaction in accordance with the Wait_
Alternator transmission. This process is simulated by random numbers generated by the
library AlternateOrNot. For the first case, the Wait_Alternator transmission will send a
token containing an Alternate message to library A. Otherwise, Wait_Alternator sends a
token containing an Alternated message (simulated by library AlternateOrNot). Addi-
tionally, the success of alternating sub-transactions also belongs to a trigger condition, so
the SuccCount statistics accumulate accordingly.

Fig. 11 shows the CPN model of the Alternator_B subpage. Alternator_B plays the
role of the subordinate coordinator and sends messages that are used in the subordinate
coordinator. Alternator_B also contains 11 transmissions, Dependence Detection, Judge,

Fig. 11. CPN model of the Alternator_B subpage in the ACoDe protocol.

CONCURRENCY CONTROL OF REAL-TIME WEB SERVICE TRANSACTIONS 279

Alternated Process, Close Process, Cancel Process, Compensate Process, Completed,
Fault, Exit, Wait, and Not Completed. The Judge transmission processes and responds to
messages from the superior coordinator Alternator_A. If library B receives a Completed
message from Alternator_A, Judge Transmission will transmit it to the left library com-
plete, and the Dependence detection transmission will detect the dependence. If the result
is the permission to submit, the process will be executed by the Completed transmission,
and otherwise by the Wait transmission. The functions of other libraries and transmis-
sions are similar to the functions described in Alternator_A.

In addition, we have also modeled the standard framework Business Agreement
with Coordinator Completion based on the Petri Net to contrast it with our protocol
ACoDe. The modeling results are shown in Figs. 12, 13, and 14.

Fig. 12. CPN model of the parent page in the WS-BA protocol.

Fig. 13. CPN model of the Coordinator_A subpage in the WS-BA protocol.

WS-BA Simulation

Fig. 12 depicts the simulation model of the parent page for WS-BA. The context of

DE-PENG DANG, XUE JIANG, NAN WANG, YING-TING YAO AND WEN-BIN YAO

280

the web service transaction that the parent page expresses is consistent between the two
protocols. Therefore, the model of the parent page should maintain consistency in the
two protocols.

Fig. 13 depicts the simulation model of the Coordinator_A subpage for WS-BA.
This model lacks the Wait_Alternate and Alternated transmissions.

Fig. 14 depicts the simulation model of the Coordinator_B subpage for WS-BA.
This model lacks the Alternate Process and Wait transmissions. The original WS-BA
does not have the ability to handle the access to conflict.

Fig. 14. CPN model of the Coordinator_B subpage in the WS-BA protocol.

The models of the two protocols are set to the same initial transaction state and sim-
ulation parameters. In the next section, we will analyze and compare the simulation re-
sults and evaluate the ACoDe protocol performance.

5.2 Analysis and Evaluation of the Simulation Results

Based on the simulation models above, we regard the transaction success rate as a

performance evaluation metric to compare the ACoDe protocol in the WS-Alternator
framework and Business Agreement with the Coordinator Completion protocol (WS-BA)
in the standard framework. Considering every concurrent transaction situation, we con-
duct the experiment five times to record the number of successful transactions and the
transaction response time, and then we calculate the average values to compare the re-
sults. The experimental data and comparative results are shown in Figs. 15 and 16.

Experimental results show that the transaction success rate in the new framework
protocol ACoDe is significantly higher than in the standard framework of the WS-BA
protocol. This is because, when a sub-transaction that the subordinate coordinator han-
dles cannot be submitted normally, a Wait message will be sent to the superior coordi-
nator, which starts an alternative transaction if the waiting period is too long but still
within the deadline. However, for WS-BA, if a transaction cannot be submitted normal-

CONCURRENCY CONTROL OF REAL-TIME WEB SERVICE TRANSACTIONS 281

Fig. 15. Comparison of the transaction success rate.

Fig. 16. Comparison of the average time.

ly, it will restart the same transaction again and again until it meets the deadline or it is
completed successfully. Thus, we empirically verify that alternating a new transaction is
more likely to be completed successfully than restarting the transaction that has failed
before. That is why the transaction success rate improves significantly. In addition, with
the increase of the transaction concurrency, the transaction success rate declines slightly,
and because of the limit of the subordinate coordinator and the increase of concurrent
transactions, transaction dependency will be increased when submitting requests, which
results in response to more submission waiting cases.

Therefore, the new framework of the ACoDe protocol performs better than the WS-
BA protocol in the aspect of the transaction success rate. Furthermore, by the reason of
the higher transaction success rate, which means more transactions in ACoDe are com-
pleted within the deadline, the average response time of transactions in the new frame-
work protocol ACoDe is lower than that in the standard framework protocol WS-BA.

6. CONCLUSIONS

In a dynamic open web service environment, maintaining consistency is a new cha-

DE-PENG DANG, XUE JIANG, NAN WANG, YING-TING YAO AND WEN-BIN YAO

282

llenge. In this paper, we have proposed a flexible web service transaction model
FleWeSeT, which regards the root transaction and all sub-transactions as a transaction
tree. For each non-leaf node of the transaction tree, the degree and depth are both de-
pendent on functional logic, the service composition process and alternative transaction
flexibility. We have expanded the WS-Frame framework as WS-Ultimate and joined
some components to support the replaceability, compensation and transaction-depen-
dence detection of real-time web services. We have also proposed an optimistic verified
concurrency control protocol, ACoDe, for replaceable and compensatory web service
transactions based on the transaction dependence detection. Furthermore, we have inte-
grated the ACoDe protocol into our proposed WS-UItimate framework, in which each
dependence detection service component in WS-Alternator maintains partial views of the
global dependence graph. Finally, we have established a concurrency control model of
the web service transactions to conduct an ACoDe protocol simulation based on a ran-
domly colored Petri Net and compared the model with the standard framework protocol
Business Agreement with Coordinator Completion to evaluate the performance of ACoDe.
Experimental results show that the new protocol can significantly improve the transac-
tion success rate and reduce the average response time through alternate transactions.

ACKNOWLEDGMENTS

This research was supported by the National Natural Science Foundation of China
under Grant No. 61672102, No. 61073034 and No. 61370064; the Program for New
Century Excellent Talents in the University of Ministry of Education of China under
Grant No. NCET-10-0239; the Science Foundation of Ministry of Education of China
and China Mobile Communications Corporation under Grant No. MCM20130371; and
the Open Project Sponsor of Beijing Key Laboratory of Intelligent Communication
Software and Multimedia under Grant ITSM201493. Corresponding author. Tel: +86
13121915269. E-mail address: ddepeng@bnu.edu.cn (D. Dang)

REFERENCES

1. D. Guinard, S. Karnouskos, D. Savio, et al., “Interacting with the SOA-based inter-
net of things: Discovery, query, selection, and on-demand provisioning of web ser-
vices,” IEEE Transactions on Services Computing, Vol. 3, 2010, pp. 223-235.

2. A. Segev and Q. Sheng, “Bootstrapping ontologies for web services,” IEEE Trans-
actions on Services Computing, Vol. 5, 2012, pp. 33-44.

3. A. Barker, D. Robertson, and C. Walton, “Choreographing web services,” IEEE
Transactions on Services Computing, Vol. 2, 2009, pp. 151-166.

4. M. Abdelkader, S. Benslimane, and M. Mimoun, “Locating candidate web service in
legacy software: A search based approach,” in Proceedings of International Con-
ference on Information Technology and e-Services, 2012, pp. 1-6.

5. Y. Badr, N. Faci, Z. Maamar, et al., “Using social networks for web services dis-
covery,” IEEE Internet Computing, Vol. 15, 2011, pp. 47-53.

6. I. Giannoukos, V. Loumos, I. Lykourentzou, et al., “Web-based decision-support
system methodology for smart provision of adaptive digital energy services over

CONCURRENCY CONTROL OF REAL-TIME WEB SERVICE TRANSACTIONS 283

cloud technologies,” IET Software, Vol. 5, 2011, pp. 444-454.
7. V. Altmann, F. Golatowski, J. Skodzik, and D. Timmermann, “Investigation of the

use of embedded web services in smart metering applications,” in Proceedings of the
38th Annual Conference on IEEE Industrial Electronics Society, 2012, pp. 6072-
6077.

8. J. Y. Gong, L. P. Di, N. C. Chen, et al., “A flexible data and sensor planning service
for virtual sensors based on web service,” IEEE Sensors Journal, Vol. 11, 2011, pp.
1429-1439.

9. K. Don and S. H. Son, “QoS management in Web-based real-time data services,” in
Proceedings of the 4th IEEE International Workshop on Advanced Issues of E-Com-
merce and Web-Based Information Systems, 2002, pp. 129-136.

10. Z. Shelby, “Embedded web services,” IEEE Wireless Communications, Vol. 17, 2010,
pp. 51-56.

11. D. K. Chen, “A context-aware recommender system for web service composition,”
in Proceedings of the 8th International Conference on Intelligent Information Hid-
ing and Multimedia Signal Processing, 2012, pp. 227-229.

12. A. C. Pathan and M. A. Potey, “Detection of malicious transaction in database using
log mining approach,” in Proceedings of International Conference on Electronic
Systems, Signal Processing and Computing Technologies, 2014, pp. 262-265.

13. C. S. Ran and G. L. Guo, “The research of real-time performance in EAM system
based on web services,” in Proceedings of International Conference on Computer
Science and Electronics Engineering, 2012, pp. 44-46.

14. F. Andrade, A. Jose, R. Bertagna, et al., “Exigency-based real-time scheduling pol-
icy to provide absolute QoS for web services,” in Proceedings of the 19th Interna-
tional Symposium on Computer Architecture and High Performance Computing,
2007, pp. 254-262.

15. C. J. Hu, J. Liu, and H. J. Yuan, “Application of web services on the real-time data
warehouse technology,” in Proceedings of International Conference on Advances in
Energy Engineering, 2010, pp. 335-338.

16. A. Eggen, T. Hafs, F. T. Johnsen, et al., “Robust web services in heterogeneous mil-
itary networks,” IEEE Communications Magazine, Vol. 47, 2010, pp. 78-83.

17. A. Eggen, C. Griwodz, T. Hafs, et al., “Web services discovery across heterogene-
ous military networks,” IEEE Communications Magazine, Vol. 47, 2010, pp. 84-90.

18. L. Kulik, “Privacy for real-time location-based services,” ACM SIG Spatial, Vol. 1,
2009, pp. 9-14.

19. F. Golatowski, G. Moritz, S. Pruter, and D. Timmermann, “Web services on deeply
embedded devices with real-time processing,” in Proceedings of IEEE International
Conference on Emerging Technologies and Factory Automation, 2008, pp. 432-435.

20. X. X. Wu and Y. X. Chen, “Trustworthiness expectation of real-time web services,”
in Proceedings of the 7th IEEE International Conference on Ubiquitous Intelligence
and Computing, 2010, pp. 292-298.

21. L. Lin and P. Lin, “Orchestration in web services and real-time communications,”
IEEE Communications Magazine, Vol. 44, 2007, pp. 44-49.

22. R. Deters, S. Jamal, and R. Lomotey, “SOPHRA: A mobile web services hosting
infrastructure in health,” in Proceedings of the 1st IEEE International Conference
on Mobile Services, 2012, pp. 88-95.

DE-PENG DANG, XUE JIANG, NAN WANG, YING-TING YAO AND WEN-BIN YAO

284

23. C. Capua, A. Meduri, and R. Morello, “A smart ECG measurement system based on
web-service-oriented architecture for telemedicine applications,” IEEE Transactions
on Instrumentation and Measurement, Vol. 58, 2010, pp. 2520-2528.

24. T. Bubhaus, S. Fischer, and D. Gregorczyk, “A proof of concept for medical device
integration using web services,” in Proceedings of the 9th International Multi-Con-
ference on Systems, Signals and Devices, 2012, pp. 1-6.

25. A. Ahmadi, R. Bakhshi, A. Elci, et al., “Microcontroller-based AWGNG for securi-
ty enhancement of embedded real-time web services,” in Proceedings of the 33rd
IEEE Annual International Conference on Computer Software and Applications,
2009, pp. 110-115.

26. M. E. Cambronero, G. Diaz, Pardo, and V. Valero, “Using UML diagrams to model
real-time web services,” in Proceedings of the 2nd International Conference on In-
ternet and Web Applications and Services, 2007, pp. 24-29.

27. B. Kawtar, N. Manuel, R. Carlos, et al., “Real-time web services orchestration and
choreography,” in Proceedings of the 6th International Workshop on Enterprise and
Organizational Modeling and Simulation, 2010, pp. 142-152.

28. A. J. Beaumont, M. J. Eccles, and D. J. Evans, “True real-time change data capture
with web service database encapsulation,” in Proceedings of the 6th IEEE World
Congress on Services, 2010, pp. 128-131.

29. C. A. Sun, E. Khoury, and M. Aiello, “Transaction management in service-oriented
systems: Requirements and a proposal,” IEEE Transactions on Services Computing,
Vol. 4, 2011, pp. 167-180.

30. K. Ramamritham, “Real-time databases,” Distributed and Parallel Databases, Vol.
1, 1993, pp. 199-226.

31. J. Haritsa and K. Ramamritham, “Real-time databases in the new millennium,” Real-
Time Systems, Vol. 19, 2000, pp. 205-208.

32. E. Kayan and O. Ulusoy, “Real-time transaction management in mobile computing
systems,” in Proceedings of the 6th International Conference on Database Systems
for Advanced Applications, 2002, pp. 127-134.

33. D. P. Dang and Y. S. Liu, “Concurrency control in real-time broadcast environ-
ments,” Journal of Systems and Software, Vol. 68, 2003, pp. 137-144.

34. D. Georgakopoulos and M. P. Papazoglou, Service-Oriented Computing, The MIT
Press, UK, 2009.

35. Mark Little, “Transactions and web services,” Communications of the ACM, Vol. 45,
2003, pp. 48-53.

36. S. Agarwal and C. Petrie, “An alternative to the top-down semantic web of ser-
vices,” IEEE Internet Computing, Vol. 16, 2012, pp. 94-97.

37. A. Bouguettaya, J. Yang, W. Zhao, and H. Zheng, “QoS analysis for web service
compositions with complex structures,” IEEE Transactions on Services Computing,
2012, pp. 99-101.

38. A. Andrekanic and R. Gamble, “Architecting web service attack detection handlers,”
in Proceedings of the 19th IEEE International Conference on Web Services, 2012,
pp. 130-137.

39. A. Mourad, H. Otrok, C. Talhi, et al., “Towards a BPEL model-driven approach for
web services security,” in Proceedings of the 10th Annual International Conference
on Privacy, Security and Trust, 2012, pp. 120-127.

CONCURRENCY CONTROL OF REAL-TIME WEB SERVICE TRANSACTIONS 285

40. P. Giani, M. Lovera, and M. Tanelli, “Linear parameter-varying model identification
with structure selection for autonomic web service systems,” Control Theory and
Applications, Vol. 6, 2012, pp. 1889-1898.

41. C. J. Hu, J. Liu, and H. J. Yuan, “Application of web services on the real-time data
warehouse technology,” in Proceedings of International Conference on Advances in
Energy Engineering, 2010, pp. 335-338.

42. A. Eggen, T. Hafs, F. T. Johnsen, et al., “Robust web services in heterogeneous mil-
itary networks,” IEEE Communications Magazine, Vol. 47, 2010, pp. 78-83.

43. A. Eggen, C. Griwodz, T. Hafs, et al., “Web services discovery across heterogene-
ous military networks,” IEEE Communications Magazine, Vol. 47, 2010, pp. 84-90.

44. T. Bubhaus, S. Fischer, and D. Gregorczyk, “A proof of concept for medical device
integration using web services,” in Proceedings of the 9th International Multi-Con-
ference on Systems, Signals and Devices, 2012, pp. 1-6.

45. A. Ahmadi, R. Bakhshi, A. Elci, et al., “Microcontroller-based AWGNG for securi-
ty enhancement of embedded real-time web services,” in Proceedings of IEEE 33rd
Annual International Conference on Computer Software and Applications, 2009, pp.
110-115.

46. C. S. Wang and M. J. Tsai, “Adaptive real-time computation coordination for the
web services based computing architecture,” in Proceedings of the 11th Internation-
al Conference on Computer Supported Cooperative Work in Design, 2007, pp. 552-
556.

47. M. E. Cambronero, G. Diaz, Pardo, and V. Valero, “Using UML diagrams to model
real-time web services,” in Proceedings of the 2nd International Conference on In-
ternet and Web Applications and Services, 2007, pp. 24-29.

48. I. Saleh, G. Kulczycki, and M. B. Blake, “Formal specification and verification of
transactional service composition,” in Proceedings of IEEE World Congress on Ser-
vices, 2011, pp. 464-471.

49. Y. Cardinale, J. E. Haddad, M. Manouvrier, and M. Rukoz, “CPN-TWS: a coloured
petri-net approach for transactional-QoS driven Web Service composition,” Interna-
tional Journal of Web and Grid Services, Vol. 7, 2011, pp. 91-115.

50. J. Hadad, M. Manouvrier, and M. Rukoz, “TQoS: Transactional and QoS-aware
selection algorithm for automatic web service composition,” IEEE Transactions on
Services Computing, Vol. 3, 2010, pp. 73-85.

51. F. Montagut and R. Molva, “Augmenting web services composition with transac-
tional requirements,” IEEE International Conference on Web Services IEEE Com-
puter Society, 2009, pp. 91-98.

52. OASIS, “Business transaction protocol,” http://www.oasis-open.org/committees/do-
cuments.php?wg_abbrev=business-transaction.

53. IBM, Microsoft and BEA, “Web services transactions specifications,” http://www-
106.ibm.com/developerworks/webservices/library/ws-transpec/.

54. Arjuna Technologies Ltd., Fujitsu Software, “IONA Technologies PLC, Oracle
Corp., and Sun Microsystems,” Web Services Composite Application Framework,
http://developers.sun.com/techtopics/webservices/wscaf.

55. M. Schafer, P. Dolg, and W. Nejdl, “An environment for flexible advanced com-
pensations of web service transactions,” ACM Transactions on the Web, Vol. 2,
2008, pp. 1-36.

DE-PENG DANG, XUE JIANG, NAN WANG, YING-TING YAO AND WEN-BIN YAO

286

56. A. Liu, L. S. Huang, and M. J. Xiao, and Q. Li, “FACTS: A framework for fault-
tolerant composition of transactional web services,” IEEE Transactions on Services
Computing, Vol. 3, 2010, pp. 45-58.

57. K. Haller, H. Schuldt, and C. Türker, “Decentralized coordination of transactional
processes in peer-to-peer environments,” in Proceedings of ACM CIKM Interna-
tional Conference on Information and Knowledge Management, 2005, pp. 28-35.

58. S. Fink, M. Husemann, and N. Ritter, “Rule-based coordination of distributed web
service transactions,” IEEE Transactions on Services Computing, Vol. 3, 2010, pp.
59-72.

59. M. Alrifai, W. Balke, and P. Dolog, “Distributed management of concurrent web
service transactions,” IEEE Transactions on Services Computing, Vol. 2, 2009, pp.
289-302.

60. M. Alrifai, P. Dolog, and W. Nejdl, “Transactions concurrency control in web ser-
vice environment,” in Proceedings of IEEE European Conference on Web Services,
2006, pp. 109-118.

61. S. Choi, H. Jang, H. Kim, J. Kim, S. Kim, J. Song, and Y. Lee, “Maintaining con-
sistency under isolations relaxation of web services transactions,” in Proceedings of
International Conference on Web Information Systems Engineering, 2005, pp. 245-
257.

De-Peng Dang (党德鹏) received his Ph.D. degree in Comput-
er Science and Technology from Huazhong University of Science
and Technology, China, in 2003. From June 2003 to June 2005, he
did his postdoctoral research in the Department of Computer Sci-
ence and Technology, Tsinghua University, China. Now, he is a Full
Professor and supervisor of Ph.D. students in Computer Science and
Technology at Beijing Normal University, China. Up to now, he has
chaired Four NSFC projects. His research interests include service
computing, service recommendation, big data and MapReduce.

Xue Jiang (姜雪) is currently studying at the College of In-
formation Science and Technology, Beijing Normal University,
China. She has received her Bachelor’s degree in Computer Science
and Technology from Beijing Normal University. Her research in-
terests include service computing and advanced transactions.

CONCURRENCY CONTROL OF REAL-TIME WEB SERVICE TRANSACTIONS 287

Nan Wang (王楠) has received her Bachelor’s degree in
Computer Science and Technology from Beijing Normal Univer-
sity. She is currently studying at the College of Information Sci-
ence and Technology, Beijing Normal University, China. Her re-
search interests include service computing, big data and advanced
transactions.

Ying-Ting Yao (姚颖婷) has received her Bachelor’s degree
in Computer Science and Technology from Beijing Normal Uni-
versity. She is currently studying at the college of Information
Science and Technology, Beijing Normal University, China. Her
research interests include service computing, service recommenda-
tion and big data.

Wen-Bin Yao (姚文斌) received his Ph.D. degree in Com-
puter Science and Technology from Harbin Institute of Technolo-
gy University, China, in 2003. From 2003 to 2005, he did his
postdoctoral research in the Department of Computer Science and
Technology, Tsinghua University, China. Now, he is a Full Pro-
fessor and supervisor of Ph.D. students in Computer Science and
Technology at Beijing Key Laboratory of Intelligent Communica-
tion Software and Multimedia, China. His research interests in-
clude service computing, advanced transactions, big data and Map-
Reduce.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

