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The development of vehicular services in Internet of vehicles poses challenges for vehi-
cles with limited computation resources to guarantee the quality of service (QoS) of latency-
sensitive and massive computation onboard services. Vehicular mobile edge computing
(VEC) has emerged as an effective technology to enhance vehicular service quality through
offloading onboard computation tasks to mobile edge computing (MEC) servers. MEC
technology can reduce task processing latency and data transmission latency through its
on-premises feature. However, the deployment of VEC still faces several problems such as
lacking rational and effective resource allocation schemes. In order to solve these problems,
we provide an optimal resource allocation mechanism in vehicular MEC systems (RAVEC)
to minimize the total task processing delay among a set of vehicles in a time slot by using
a global optimization perspective. The method considers the computation ability of each
MEC server at road side unit (RSU) in a road segment, the mobility of each vehicle and the
total offloading latency of a set of vehicles to get a best resource allocation plan and achieve
onboard task offloading. Simulation results show that RAVEC demonstrates a reliable solu-
tion and has a certain value for future research.

Keywords: vehicular network, mobile edge computing, resource allocation, task offloading,
global optimization

1. INTRODUCTION

The internet of vehicles (IOV) is emerging thanks to the advance of computing and
communication technology. More and more researchers have been focusing on vehicu-
lar ad hoc network (VANET) during the past few years [1, 2]. Vehicle to infrastructure
(V2I), vehicle to vehicle (V2V), vehicle to the Internet (V2N) and vehicle to pedestrian
(V2P) are the typical communication paradigms in VANET and the researchers want to
implement V2X which means vehicles can communicate with everything. IEEE 802.11p
VANET and 5G-based cellular networks provide supports for IOV on aspects of commu-
nication [3]. Vehicular task computing is a crucial element to achieve new technologies
in the field of intelligent traffic including traffic prediction, autonomous driving, colli-
sion avoidance, bird’s eye view, automated overtake etc. [4]. Because emerging traffic
services often have low latency requirements and require a large amount computation re-
sources [5], the current onboard computation capacity may not meet these requirements.
Considering the communication aspects, the feature of conventional cloud computing may
bring considerable overhead to the backbone network when vehicular users (VUs) offload
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computation task to the servers [6]. In other words, there is always a long distance for
data transmission between VUs and remote cloud servers, and it is difficult to guarantee
the quality of service (QoS) and quality of experience (QoE) requirements [7].

Mobile edge computing (MEC) technology is introduced into IOV to solve the above
problems. MEC extends onboard task computing power to the vicinity of VUs [8], with
the help of MEC-enabled task offloading technology, VUs can obtain higher task process-
ing speed and lower response latency. However, the MEC servers usually face problems
of limited resource. Moreover, the communication overhead(bandwidth etc.) in the data
offloading [9] also exists in computation offloading [10]. So it’s important to propose
an efficient resource allocation scheme in MEC-based vehicular networks to improve the
experience of VU.

According to previous researches, the task offloading process in VEC generally has
three parts: (1) Task offloading: The data packet with computation tasks is sent to the
MEC servers by vehicular onboard device via V2I communication paradigm. There are
two main factors which may affect the transmission latency: the size of the data packet
and the condition of the wireless channel; (2) Task calculation: After the MEC servers at
RSUs receive the task from vehicles, they will decide the destination processing server of
the task according to the relevant resource allocation scheme. The task will be sent to the
destination server and the calculation will be completed; (3) Feedback of task computa-
tion results: After the completion of the task calculation, the result will be sent back to
the onboard device. Although the relevant schemes of task offloading have been analyzed
and optimized for many years in academia, the existing schemes are still flawed. There is
a lack of an efficient scheme to allocate the limited computation resources so that the to-
tal system performances can not be enhanced. Based on the existing researches [11–13],
we mainly consider how many computation resources each MEC server can share. The
computing capacity of each MEC server is dynamic changing which may influence the
task processing performance. We also find that the location and mobility of vehicle may
change the data transmission rate of V2I communication. Thus, when choosing the desti-
nation server to offload the onboard of a vehicle, its location, speed, the latency threshold
of the task and the states of each MEC server should all be taken into consideration. In
summary, the main contributions of this paper are as follows:

• Considering the computing capacity of each MEC server may change in different
time slots, we firstly divide MEC servers at RSUs into several types according to
their current computation resource sharing ability. This step can can motive MEC
servers with large computing ability and low resource occupancy rate to share their
computation resources for vehicular onboard task offloading.

• An optimal offloading scheme in the multiple MEC servers scenario with the con-
sideration of the location and mobility of each vehicle is proposed. The task of-
floading decisions are jointly optimized.

• In order to minimize the total task offloading delay of a set of vehicles in a time slot,
a comprehensive optimization algorithm is proposed to derive an optimal resource
distributed method.

The rest of this paper is organized as follows. We will review the related work in
Section 2. Then in Section 3, we will describe the design of RAVEC. Simulation and
evaluation of the mechanism will be given in Section 4. And we will summarize our
paper in Section 5.
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2. RELATED WORK

MEC is attracting a lot attentions of academia and industry. It has great advantages
to cope computation tasks with low-latency and high computation resource demand be-
cause of its on-premises feature. X. Lyu et al. consider the transmit power and CPU
frequency of each device to optimize the offloading decisions as well as propose a model
with weighting methods to achieve energy consumption and task offloading latency min-
imization [14]. In [15], the authors propose a one-to-many framework(one mobile device
and multiple edge devices) and optimize the offloading decisions by considering the CPU
frequency of APs. The authors also verify that task offloading decisions can be affected
by the channel status. For a better utilization of local and MEC computation resources, a
partial offloading model is proposed by Ren J et al. in [16], this model divides onboard
tasks into two parts, one part is offloaded to the MEC server while the other part can be
processed onboard. In [17] a hybrid MEC offloading scheme is proposed to minimize the
multiuser video compression offloading latency. Due to the deployment and maintenance
cost, the computational resources of MEC servers are limited. The MEC servers may
relay the computation tasks to the remote cloud [18, 19], or other around servers [20, 21]
and reduce the workloads to ensure the QOS when the task computation is huge. They
also considered the tradeoffs between the transmission latency and task processing la-
tency. However, the devices are not in high moving speeds in the previous researches,
the previous schemes in MEC-enabled networks may not be applied in VEC due to the
mobility feature of vehicles.

Recently, several conventional offloading schemes have been optimized and ex-
tended to the VEC networks [22-26]. The vehicles and roadside BSs are divided into
a two-level architecture [22]. K. Wang et al. investigated the collaborative MEC frame-
work in IOV to solve the limited computational capacity problems in MEC [23]. In [24],
a game theory is used in the offloading scheme to minimize the latency. Y. Liu et al. pro-
posed an autonomous VEC framework, they use GPS information to team up the vehicles
and design a task caching scheme to optimize the task offloading [25]. In [26], Zhang
et al. considered task latency tolerance and the computation resource limitation in vehic-
ular networks and proposed a contractbased resource allocation mechanism to maximize
the profit of the MEC server provider. However, all of the above schemes lack a uniform
framework to solve the limited computation resource allocation problem in VEC from
the perspectives of minimizing the overall network delay. Specifically, an appropriate
method to offload the onboard task to the most suitable MEC server according to the cur-
rent computation ability of each server requires further investigation. Also, the wireless
transmission distance will mainly influence the data transmission rate in V2I communi-
cation paradigm. Thus, when proposing an optimal scheme to minimize the total system
costs, all of these related factors should be taken into consideration.

3. DESIGN OF RAVEC

In this section, we will show how RAVEC works by presenting the VEC framework
including MEC classifying model, the communication process, optimal offloading algo-
rithm and formulations of the model.

3.1 VEC Framework

We consider that RSUs are deployed evenly along a straight road. Each RSU has a
collocated MEC server, and the total available computation resource of these servers can
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be different for vehicles may occupy part of the resource to offload their computation task.
A Data center is deployed in the upper layer network and connected with MEC servers to
get information from all these servers. The framework is shown in Fig. 1.

RSU to MEC Vehicle to 
RSU

Center 
Cloud

Data Center

Base Station

Center 
Cloud

Data Center

Road Side Unit

Fig. 1. MEC-enabled vehicular network senario.

In each road section, RSUs take charge of vehicular communication resource infor-
mation exchange and task assignment. If the onboard unit can’t satisfy the computation
demands of the vehicle, RSUs equipped with MEC servers act as computational nodes
and assist vehicles in task computation.

Due to the mobility of vehicles, the location of vehicles may change every once in a
while and will affect the data transmission rate during the task offloading process. When
task arrives, the MEC servers will decide whether send it to other servers on the road
section judging from their current computation ability and the demand of computation
resource for the task. Also, when RSUs send task processing results back to vehicles, the
distances between the RSUs and vehicles should be considered.

In V2I communication paradigm, the wireless network states will be periodically
broadcasted by RSUs. Vehicles will choose the spectrum band according to the infor-
mation from RSUs. They transmit data in different spectrum and each vehicle has an
orthogonal spectrum channel to avoid the co-channel interference.

3.2 MEC Classifying Model

To simplify our model, we divide continuous time into discrete intervals [27]. Our
offloading process is calculated in a slot-by-slot fashion. Vehicles drive into the road
section is donated as set VM {v1,v2, · · · ,vm, · · · ,vM} and the set of RSUs on a specific road
section remains fixed within each slot which is denoted as RN {r1,r2, · · · ,rn, · · · ,rN}. We
use a set {Dm,Cm,γm} to describe the onboard task feature of vehicle vm, where Dm is the
data size of the task, Cm is the computation resource which the task needed, and γm is the
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task processing latency limitation. We define fvm as the onboard computation capacity of
vehicle vm and the velocity of vehicle vm as Svm .

Since the number of MEC servers on the road section is fixed, the number of MEC
server types is in a finite space.

We denote the set of MEC servers on the given road section as
SK {s1,s2, · · · ,sk, · · · ,sK} and present the resource sharing capability of each type
in a set ΘK {θ1,θ2, · · · ,θk, · · · ,θK}, where

θ1 < θ2 < · · ·< θk < · · ·< θK , k ∈ K (1)

Here, we will describe how to get the type of each MEC server and express it in
formula. The computation size of the computation task to be processed on MEC server at
the RSU rn is Cn . If the computation resource is shared with a vehicle, the task processing
delay on the sever will be increased, which is shown as

∆γn =
Cnαn

α2
n,0−αnαn,0

+ εn,t ≤ ∆γn,max , (2)

where αn,0 is the rest available computation resource, αn is the occupied computation
resource, εn,t is the delay caused by the external environment affecting the server at time
slot t. Ideally, the value of εn,t would be 0. The formula shows that the increased delay
caused by the resource sharing shouldn’t be more than a threshold ∆γn,max to guarantee
the QoE and QoS requirements.

By deriving formula 3, we can find the upper bound of αn as

α
upper
n =

α2
n ,0 (∆γn,max−εn,t)

αn,0 (∆γn,max−εn,t)+Cn
, (3)

where α
upper
n is the upper bound of computation resources that can be shared whose value

is in a continuous closed interval [αmin, αmax]. We divide the interval into K equal-length
subintervals. θk is the lower bound of the subinterval k, which can be calculated according
to the equality below

θk = αmin +
k−1

K
(αmax−αmin). (4)

The type of server on the RSU rn is noted as sk if θk ≤ α
upper
n < θk+1. When the task

arrives, it will decide the relevant MEC server on the road section to process the task
based on the MEC type and the computation demand of the task.

3.3 Communication Process

In our scenario, each RSU in the set RN has a state table of the type of MEC server
attached to the RSU in the set, the information of each RSU is defined as a tuple {rn,θk}
in the table and RSUs in the set periodically communicate with each other rn to update
the type information. When a vehicle enters the section of the road, it will judge whether
to compute the task onboard locally according to the inequality below

Dm

fvm

< γm, (5)
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if the task onboard satisfies the inequality, the task will be completely computed locally.
Otherwise, the vehicle will send a request to the nearest RSU to get the state table of the
type of MEC servers on the road section.

As the vehicle moves closer to the RSU, the data transmission rate becomes higher
and the transmission latency becomes lower. In order to minimize the transmission la-
tency, the vehicle should choose a optimal transmission time tm. At the transmission time
tm, the data transmission rate follows

Rm = Bc,m log2 (1+
Pmd−δ

m,ch2
m,c

N0
) (6)

where Bc,m is the link bandwidth between vehicle vm and RSU rc, rayleigh channel coef-
ficient is presented as hm,c, N0 is the power noise, the path loss exponent is noted as δ ,
dm,c is the distance between the vehicle vm and RSU rc which satisfies

√
(l0

m)
2 +d2

s , 0 < l0
m ≤ dr√

(l0
m−Svmtm)2 +d2

s , l0
m > dr

(7)

where dr is the coverage radius of the RSU, ds is the vertical distance between RSU and
the center of the road, l0

m is the distance between the vehicle vm and the vertical mapping
point from the first RSU of the driving direction to the center of the road (When a new
time slot starts, if the vehicle has passed the vertical mapping point of the current RSU, it
will choose the next RSU in its driving direction as the first entering RSU), the two cases
in formula 7 are shown in Figs. 2 (a) and (b).

(a) 0 < l0
m ≤ dr (b) l0

m > dr

Fig. 2. The location of vehicle vm.

3.4 Optimal Offloading Algorithm

In each time slot, we divide vehicles in the vehicle set into two group. When Dm
fvm

<

γm, vehicle vm belongs to group GL. Otherwise, vehicle vm belongs to group GO. To
minimize the total offloading latency of vehicles in group GO, we analyze the whole
offloading process of each vehicle and give a optimal resource allocation algorithm.

Due to the mobility feature of vehicles, the vehicles may leave out of the coverage
area of the RSU, causing the data transmission distances between the vehicles and RSU
to increase. In this article we set the transmission time tm as the moment vehicle vm enters
the coverage of the first RSU of its driving direction to let the vehicle send its data out as
soon as possible. After servers receive the task from vehicles, they will calculate the total
offloading delay as the following step:
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A. Task transmission delay
The task of vehicle vm in group GO should be offloaded to the MEC server. First, the

task should be transmitted from the vehicle to the closest RSU rc. The task transmission
delay between the vehicle and the nearest RSU can be written as

T m,t
c,m =

Dm

Rm
. (8)

After the nearest RSU rc receives the task, it will transmit the task to the destination RSU
rn. The channel bandwidth between adjacent RSUs is fixed, which is defined as B [28].
Hence the transmission time of the task between the nearest RSU rc to the destination
RSU rn is

T m,t
c,n =

Dm

B
(n− c), (9)

where n− c is the hops between rc and rn. The size of the data transmission from the
MEC server to vehicle vm is very small, so the transmission time can be ignored [29]. The
total task transmission delay is

T T
n,m = T m,t

c,m +T m,t
c,n . (10)

B. Task processing delay
The resource sharing capability of RSU rn is θk and Cm is the computation resource

the vehicle vm needed according to the previous description. The task processing delay
when vehicle vm offloads its task to RSU rn is calculated as

T p
n,m =

Cm

θk
. (11)

Here, we build a N*M matrix X to represent the whole offloading task decision in
the time slot t between N RSUs and vehicles in group GO. Each element xn,m in matrix
X can only equal to 0 or 1. xn,m = 1 represents the onboard task of vehicle vm(m ∈ GO)
is processed on RSU rn and xn,m = 0 otherwise. Considering that the offloading process
of each vehicle will produce certain computation loads on the target MEC server based
on the previous server typing algorithm results. The task processing time of each server
will be less than that without considering processing performance loss. So we define the
current task processing ability weight of the target MEC server on RSU rn as ωn. The
value of ωn becomes larger as the shared resource of the server on RSU rn increases. The
optimization problem is formulated as P1.

P1 : min
X ∑

n∈RN

∑
m∈GO

(1+0.2∗ tanh(ωn))xn,m(T T
n,m +T p

n,m),

s.t

C1 : ∑
rn∈RN

xn,m ≤ 1,∀rn ∈ RN

C2 :

√
d2

m,c−d2
s +dr(n− c)

Svm

> T T
n,m +T p

n,m

C3 : T T
n,m +T p

n,m < γm

C4 : c≤ n
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where C1 represents there is a one-to-many correspondence among RSUs and vehicles.
Considering the mobility of each vehicle, task processing on RSU rn may not finish when
vehicle vm moves out of its communication range , which causes the offloading failure.
The offloading scheme should meet the time delay limitation C2. The task processing
latency limitation should also be taken into consideration, so the total offloading latency
should also satisfy the inequality C3. C4 represents vehicles only consider RSUs ahead of
them to offload their tasks.

We present the whole multiple conditional cycles process in the Algorithm 1. RSUs
are in charge of the computation resource assignment. Each vehicle uploads its state pa-
rameter to its nearest RSU, and then the whole offloading task decision between vehicles
and MEC servers is calculated by the RSUs based on the algorithm. Eventually, RSUs on
the section of the road broadcast the matching result to the set of vehicles, so that vehicles
can offload their tasks to the corresponding MEC servers accordingly.

Algorithm 1
Require:

The parameters of each elements in set VM and set RN ;
1: Stage 1: MEC Classifying

2: if θk ≤
α2

n ,0(∆γn,max−εn,t )
αn,0(∆γn,max−εn,t )+Cn

< θk+1 then
3: The type of the MEC server is sk;
4: end if
5: Stage 2: Calculate whether offloading its task to MEC servers based on Dm

fvm
< γm

6: for vm ∈VM do
7: if Dm

fvm
< γm then

8: put vm into group GL ;
9: compute the task onboard locally ;

10: else
11: put vm into group GO ;
12: end if
13: end for
14: Stage 3: Resource allocation
15: for vm ∈ GO do
16: for rn ∈ RN do
17: if

√
d2

m,c−d2
s +dr(n−c)

Svm
> T T

n,m +T p
n,mandT T

n,m +T p
n,m < γm then

18: Calculate the task transmission delay T T
n,m based on (8)(9)(10);

19: Calculate the task processing delay T p
n,m based on (11);

20: Save the value T T
n,m +T p

n,m;
21: end if
22: end for
23: end for
24: Calculate min

X
∑n∈RN ∑m∈GO

(1+0.2∗tanh(ωn))xn,m(T T
n,m+T p

n,m) according to the val-

ues above;
Ensure:

The optimal resource allocation result;
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3.5 Computational Complexity

Our MEC servers classifying scheme has N equality constraints and 2N+1 inequality
constraints and can be viewed as a convex programming problem. The computational
complexity of this process is O(N).

To get the final resource allocation result, the exhaustive searching scheme is used
in RAVEC. The maximum number of matched combinations is M*N. The whole process
should find out each possible combination to get the best result, so the computational
complexity of RAVEC is O(MN).

4. SIMULATION RESULTS AND DISCUSSIONS

In this section, we will propose an actual example for RAVEC and verify RAVEC
via simulations.

A. Scheme Stability
We assume that our mechanism is applied to a typical urban road scenario as depicted

in Fig. 1. Vehicles move on a single lane and two direction road with RSUs deploying
evenly along a straight road. We conduct several simulations to verify the effectiveness of
RAVEC. We consider in a road section with a set of RSUs and a set of vehicles entering the
road section in each time slot, with the assumption that the initial types of MEC-servers
attached to RSUs follow a Gaussian distribution from 1 to K. MEC-servers work in an
ideal environment. The velocity of each car follows a random distribution in a certain
interval. Notable simulation parameters are summarized in Table 1.

Table 1. Parameters.
Parameter Value
Number of vehicles in a time slot 20-30
Number of RSUs in a road section 12
Data size of vehicle’s task 100-200 Mb
Computation size of vehicle’s task 100-400 Mb
Computing resources of MEC servers(Upper bound) 1.2GHz
Velocity of vehicles 10-20m/s
Delay constraint 2s
Vertical distance between RSU and the center of the road 6m
Radius of RSU’s communication coverage 200m
The interval between RSUs 300m
Transmission power of onboard units 1.3W
Bandwidth between vehicle and RSU 20MHz
Noise power -110dB
Path loss exponent 2
Uplink channel fading coefficient 1.05

We simulate and evaluate the proposed task offloading mechanism via Matlab
R2018b, the hardware environment is in Windows 7 with a 8 GB random access memory
and an Intel Core i5 3.2GHz CPU.

Here, we define the probability of each MEC server attached to RSU being used in a
time slot t as a set Mt {µ1,µ2, ...,µn, ...,µN}. To verify whether RAVEC can evenly select
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the server along the road section, we calculate the variance of µn in set Mt through the
formula below. The result is shown in Fig. 3. We can see that the variance in different
time slots are stable, which shows the stability of RAVEC.

{
µt = (µ1 +µ2 + ...+µn + ...+µN)/N

σ
2
µt = ((µ1−µt)

2 +(µ2−µt)
2 + ...+(µN −µt)

2)/N
(12)

Fig. 3. σ2
µt

in different time slots.

In order to further test the stability of RAVEC, we simulate the offloading delay of
different vehicle sets in multiple time slots. Each slot represents the total time in which
the algorithm takes to complete a resource allocation process. From Figs. 4 (a) and (b)
we can see that in different time slots, the average offloading delay of each vehicle is
between 0.700 to 0.760 seconds when the number of vehicles is 20 and 0.740 to 0.790
seconds when the number of vehicles is 25, 0.770 to 0.840 seconds when the number
of vehicles is 30. As the number of vehicles increase, the average delay also becomes
larger. The reason for this relationship is that the total computation size of offloading
tasks goes up as the number of vehicles rises which implies more resources of the MEC
servers may be occupied. Our scheme considers that computing capacity of each MEC
server changes in each time slot and proposes a MEC type model that follows the fact that
the average time delay does not particularly increase as the number of vehicles increases
and is relatively stable in different time slots.

(a) Total offloading delay in different time slots. (b) Average offloading delay in different time slots.

Fig. 4. Delay performance.

B. Delay Performance Comparison
We evaluate RAVEC with an existing MEC offloading scheme that we conveniently

named as the conventional scheme. In the conventional scheme, VUs consider to offload
their onboard tasks to the nearest MEC server attached to the RSU by one hop without
considering resource allocation among the whole set of vehicles in a time slot.
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We compared the proposed scheme with the conventional scheme by fixing the num-
ber of vehicles to 3 levels: 20, 25 and 30. The results are shown below in Fig. 5 with
scheme 1 represents RAVEC and scheme 2 represents the conventional scheme. We can
see from the results that the range of delay jitter of the conventional scheme is much larger
than RAVEC with RAVEC getting a 15% delay reduction comparing to the conventional
scheme. RAVEC also makes better uses of the limited computation resources because of
the comprehensive optimization algorithm.

(a) M=20 (b) M=25 (c) M=30

Fig. 5. Performance comparison.

5. CONCLUSIONS

In this paper, we investigated how to utilize the limited computation resources in
MEC-enabled vehicular networks and proposed an optimal resource allocation mecha-
nism named RAVEC. A MEC server type dividing mechanism was designed to optimize
the allocation of computing resources while a total offloading delay minimum algorithm
was developed to minimize the interaction during task offloading between vehicles. The
location of vehicles and the occupying frequency of the target MEC server are also taken
into consideration. Numerical results proved that RAVEC achieves an optimal way to
offload the onboard task.

In summary, the major characteristic of RAVEC is to reduce the task processing
latency of each vehicle. The transmission delay during the task offloading such as the
wireless transmission delay between vehicle and RSU and the wire transmission delay
between RSUs should also be considered. In different time slots, the mechanism can avoid
significant changes of task offloading delay in order to keep the stability of the whole
system. Beyond that, it can coexist with the legacy MEC-enabled offloading mechanisms
in vehicular networks, and require only less changes to infrastructure, so that it can be
easy to deploy incrementally.

In future works, we will investigate a scenario where the channel states and traffic
states are more complicated, and improve the performance of RAVEC.
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