
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 24, 1213-1227 (2008) 

1213  

Short Paper_________________________________________________ 

 
A Secure Hash-Based Strong-Password Authentication 

Protocol Using One-Time Public-Key Cryptography 

 
MINHO KIM AND ÇETIN KAYA KOÇ*  

Department of Computer Science 
Korea Air Force Academy 

Sangsu, 363-849, South Korea 
E-mail: mhkim@afa.ac.kr 

*School of Electrical Engineering and Computer Science 
Oregon State University  

Corvallis, Oregon 97331, U.S.A. 
E-mail: koc@eecs.oregonstate.edu 

 
Secure communication is an important issue in networks and user authentication is 

a very important part of the security. Several strong-password authentication protocols 
have been introduced, but there is no fully secure authentication scheme that can resist 
all known attacks. We propose enhanced secure schemes with registration and login 
protocols, and add the “forget password” and password/verifier change protocols. We 
show that our scheme is more secure against guessing, stolen-verifier, replay, denial-of- 
service, and impersonation attacks than previously introduced protocols.   
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1. INTRODUCTION 
 

Password-based authentication mechanisms are the simplest and most convenient 
way to have a user authenticated in order to provide services of a computing or commu-
nication system to a pre-selected group of authorized users. These mechanisms are less 
costly than the biometric methods of authentication, such as fingerprint, iris scan, voice 
signature, etc. A generic password-based authentication system usually hashes the pass-
word of the user with the help of hash function derived from a secret-key cryptographic 
function, such as MISTY, DES, or FEAL [13, 14, 19]. The hashed password is stored on 
the server in order to preclude stealing the password by the adversary. 

Unfortunately, there are two limitations in password-based authentication systems: 
(1) the user must submit the bare password at every authentication, and (2) the transmit-
ted password could be stolen by wiretapping or sniffing. One of the remedying is found 
the use of one-time password method by Lamport [9], but there are some practical diffi-
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culties in implementing this method, such as the problems of high overhead and pass-
word resetting. Another related method is CINON [17] which solves these problems, but 
it requires two random numbers generated by the user, which must be stored by the user 
in some sort of mobile memory device. On the other hand, the PERM (Privacy Enhanced 
Information Reading and Writing Management) Protocol [18] stores one random number 
at the host, which is sent to the user for authentication. However, there are some security 
flaws in such a system; the adversary can launch a man-in-the-middle attack if he can 
obtain the logs of two consecutive sessions. 

The SAS protocol proposed in [16] is a simple strong-password authentication 
scheme, which is superior to several well-known schemes. But, it was shown in [11] that 
the SAS protocol is vulnerable to the replay attack and the denial of service attack. The 
OSPA (Optimal Strong-Password Authentication) Protocol given in [11] was claimed to 
be secure against stolen-verifier attacks, replay attacks, and the denial of service attacks. 
Nevertheless, it was shown in [1] the SAS and OSPA protocols cannot resist to the sto-
len-verifier attack as claimed. Also, an impersonation attack was described in [20] on the 
OSPA method without an active attack on the server. Later on, an enhanced OSPA proto-
col was introduced in [12], which resists to the guessing, reply, impersonation, and sto-
len-verifier attacks. However, it was shown in [8] that the protocol is still vulnerable to 
reply and denial-of-service attacks. Furthermore, these two simple attacks can easily be 
launched without compromising the server in advance. 

Recently, a hash-based strong-password authentication scheme was described in [3], 
which withstands several attacks, including replay, password-file compromise, denial-of- 
service, and insider attacks. However, Kim-Koç [6] showed that Ku’s scheme [3] is still 
vulnerable to stolen-verifier, denial-of-service, replay, and impersonation attacks. 

The Lee-Li-Hwang (LLH) authentication scheme [10] was proposed to circumvent 
the guessing attack in the Peyravian-Zunic (PZ) password scheme [15]. However, Yoon, 
Ryu, and Yoo (YRY) [21] discovered that the LLH scheme still suffers from the denial of 
service attack, and proposed an enhancement for the LLH scheme to solve its security 
problems. More recently, Ku, Chiang, and Chang (KCC) [4] demonstrated that the YRY 
scheme is vulnerable to off-line guessing and stolen-verifier attacks. Kim-Koç showed 
that the YRY scheme is also vulnerable to the denial-of-service attack. Furthermore, it 
was also claimed in [4] that the YRY scheme cannot achieve backward secrecy. Kim-Koç 
showed that this claim is not entirely valid [7]. 

Most of the previous articles deal with registration and login phases. However, we 
propose enhanced secure schemes with registration and login protocols, and add the 
“forget password” and password/verifier change protocols. Firstly, we give the basic 
definitions of these attacks. The remainder of this paper is organized as follows. In sec-
tions 2 and 3, we describe the hash-based strong-password authentication scheme intro-
duced in [3], and a hash-based secure user authentication scheme was described in [21], 
and then explain the details of Kim-Koç’s attacks. In section 4, we propose our scheme 
with four protocols. In section 5, we will briefly analyze how the proposed scheme is 
secure against guessing, stolen-verifier, replay, denial-of-service, and impersonation at-
tacks. Finally, we shall give a brief conclusion in section 6.   
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2. KU’S SCHEME AND ATTACK 

2.1 Review of the Ku Scheme 
 

We introduce the notation used to describe the protocols below and explain the de-
tailed steps of both of these protocols. 
 
2.1.1 Notations 

 
• U denotes the User, C denotes the Client, S denotes the Server, and A denotes the Ad-

versary. 
• ESpu denotes the encryption with the public key of the server. 
• DSpr denotes the decryption with the private key of the server. 
• h denotes a cryptographic hash function, such that h(m) means the message m is hashed 

once, while h2(m) means it is hashed twice, i.e., h2(m) = h(h(m)). Furthermore, h(a, b) 
denotes the hash of concatenated a and b, i.e., h(a, b) = h(a || b). 

• N denotes an integer starting from 1 since U’s initial registration. 
• P denotes the strong password of U. 
• Ku is a random generated key selected by U. 
• Ks denotes the secret-key of S. 
• Rc and Rs denote random numbers generated by Client and Server, respectively. 
• T denotes the most recent time U initially registered or re-registered at S. 
• Ts denotes the timestamp. 
• UID denotes the identification of the user. 
• ⊕ denotes the bitwise XOR operation, and || denotes the concatenation. 
• AuthQ/AuthA denotes the authentication question/answer for the registration, “forget 

password” and password/verifier change protocols. 
• The expression A → B: X means A sends the message X to B via an insecure channel. 
• The expression A ⇒ B: X means A sends the message X to B via a secure channel. 

 
The hash-based strong-password authentication scheme described in [3] comes with 

two protocols: the registration protocol and the login protocol. 
 

2.1.2 Registration protocol 
 
This protocol is invoked whenever U initially registers or re-registers to S. 
 

R1. U sends his registration request to S. 
R2. S → U: N, T. 

S sets T as the currently value of the time. If this is U’s initial registration, S sets N = 
1, otherwise S sets N = N + 1. Next, S sends N and T to U. 

R3. U ⇒ S: h2(S || P || N || T). 
U computes the verifier h2(S || P || N || T) and sends it to S. 

R4. S computes the user storage key ( )T
UK = h(U || h(KS || T)) and the sealed verifier sv(N) = 

h2(S || P || N || T) ⊕ ( ) ,T
UK and then he stores sv(N), N, and T in the password file. 
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2.1.3 Login protocol 

This protocol is invoked whenever U logins to S. 

L1. U sends his login request to S. 
L2. S → U: r, n, t. 

S selects a random nonce r and retrieves the values of n = N and t = T from S’s pass-
word file. 

L3. U → S: c1, c2, c3. 
U sends c1, c2, and c3 to S, where 

c1 = h2(S || P || n || t) ⊕ h(S || P || n || t), 
c2 = h(S || P || n || t) ⊕ h2(S || P || n + 1 || t),  
c3 = h(h2(S || P || n + 1 || t) || r).  

L4. S computes 
( )t
UK  = h(U || h(KS || t)), and then derives h2(S || P || n || t) from the stored 

sealed verifier sv(n) using 
 
h2(S || P || n || t) = sv(n) ⊕ ( ) .t

UK  
 
Then, S computes u1 and u2 using 
 
u1 = c1 ⊕ h2(S || P || n || t) = h(S || P || n || t), 
u2 = c2 ⊕ u1 = h2(S || P || n + 1 || t). 

If the equalities h(u1) = h2(S || P || n || t) and h(u2 || r) = c3 hold, then S authenticates U. 
Otherwise, S rejects U’s login request and terminates the session.   

After a successful authentication, S computes a new sealed-verifier using 

sv(n+1) = u2 ⊕ ( )t
UK = h2(S || P || n + 1 || t) ⊕ ( ) ,t

UK  

and replaces sv(n) with sv(n+1), and sets N = n + 1 for U’s next login protocol. The value of 
T is unchanged, i.e., T = t. 

2.2 Attack on the Ku Scheme 

Kim-Koç [6] devise an attack assumption that the adversary steals a copy of user’s 
password-verifier h2(S || P || N || T). Such scenarios are considered in other paper [1]. 

The second assumption they make is that A is capable of blocking the communica-
tion from U to S. After having stolen a copy of the password verifier, A launches an at-
tack whenever it can block communication. 

Therefore, Kim-Koç attack assumes that a stolen-verifier attack (by obtaining a 
copy of the password verifier) and a denial-of-service attack (by blocking the communi-
cation from U to S) have succeeded. They then show that under these two assumptions 
(attacks), the attacker can now successfully login to the system using replay, impersonate 
the user, and thus succeed in the impersonation attack. 
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1. A steals a copy of U’s password-verifier h2(S || P || N || T). 
2. During the U’s nth login process, A monitors the communication channel, and then he 

sees the request U made to S and the values r, n, and t sent by S. Next, A captures the 
values of c1, c2, and c3 sent by U to S and blocks the communication channel from U 
to S. These values are not reaching to S by blocking communication. 

3. A computes h(S || P || n || t) and h2(S || P || n + 1 || t) with the help of the captured values c1, 
c2, and the previously stolen password-verifier h2(S || P || N || T) as  

h(S || P || n || t) = c1 ⊕ h2(S || P || n || t), 
h2(S || P || n + 1 || t) = c2 ⊕ h(S || P || n || t), 

where N = n and T = t. 
4. Next, A sends c1, c2, and c3 to S.  
5. After receiving this message, S retrieves t from the password file and computes 

( )t
UK  = h(U || h(KS || t)) 

and then uses ( )t
UK to compute the verifier h2(S || P || n || t) with the help of the stored 

sealed verifier sv(n) as 

h2(S || P || n || t) = sv(n) ⊕ ( ) .t
UK  

6. Next, S computes 

u1 = c1 ⊕ h2(S || P || n || t) = h(S || P || n || t), 
u2 = c2 ⊕ u1 = h2(S || P || n + 1 || t).  

If h(u1) = h2(S || P || n || t) and h(u2 || r) = c3 hold, S supposed to authenticate the sender. 
Since these equalities will hold, S authenticates A as being U. Therefore, S allows the 
attacker A to login. 

7. After this successful login, S updates the sealed verifier according to the step L4 of 
login protocol. Therefore, the following will be executed by S. S computes 

sv(n+1) = u2 ⊕ ( )t
UK = h2(S || P || n + 1 || t) ⊕ ( ) ,t

UK   

and replaces sv(n) with sv(n+1), and then he sets N = n + 1 for U’s next login protocol. 
The value of T is unchanged, i.e., T = t. 

At the end of step 6, the adversary has successfully logged into the system imper-
sonating the legitimate user. It can now launch other attacks within the system or access 
to sensitive documents. If the user logs in after the attacker does, it may not be possible 
to discover that the attacker has logged into the system impersonating the user, unless the 
user checks the login records. Until the time when the user or the system managers dis-
cover the attacker’s successful login, the attacker can continue to impersonate the user. 
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3. YRY’S SCHEME AND ATTACK 

3.1 Review of the YRY Scheme 
 
A hash-based secure user authentication scheme was described in [21]. The scheme 

has 3 phases: Registration phase, User authentication phase, and Change password phase. 
 
3.1.1 Registration phase 

 
This registration phase is performed only once when a new user wants to join the 

system. On the other hand, the authentication phase is executed whenever the user wants 
to login to the system. The procedures of this phase are as follows: 
 
R1. U ⇒ S: UID, HPW U randomly chooses UID and P, and then calculates a password 

verifier HPW = h(UID, P). 
R2. S stores UID and HPW in the verification table. 

 
3.1.2 User authentication phase 

 
In this phase, the user logs in to a server for accessing resources and the server au-

thenticates the user. The procedures of this phase are as follows: 
 

A1. C → S: UID, Rc ⊕ HPW, h(Rs). 
U enters UID and P to C. C computes HPW = h(UID, P) and randomly chooses a 
number Rc, and then computes the hash value h(Rc). Next, C sends UID, Rc ⊕ HPW, 
and h(Rc) to S. 

A2. S → C: Rs ⊕ HPW, h(Rc, Rs). 
S retrieves the U’s password verifier HPW from the verification table, and then ob-
tains Rc by computing (Rc ⊕ HPW) ⊕ HPW. Next, S verifies the equality of the 
computed h(Rc) with the obtained Rc and the received h(Rc). If they are equal, S ran-
domly generates a number Rs, and then computes Rs ⊕ HPW, h(Rc, Rs), and AUTH* = 
h(HPW, Rc, Rs). Next, S sends Rs ⊕ HPW and h(Rc, Rs) to C. 

A3. C → S: UID, AUTH. 
C retrieves Rs by using (Rs ⊕ HPW) ⊕ HPW and computes h(Rc, Rs). If the computed 
and received h(Rc, Rs) are equal, C computes AUTH = h(HPW, Rc, Rs) and sends UID 
and AUTH to S. 

A4. S compares AUTH with AUTH*. If they are equal, S authenticates U. Otherwise, S 
rejects C’s request and terminates the session.  

3.1.3 Change password phase 

The change password phase is invoked whenever client wants to change its pass-
word P with a new one, say NewP. The procedures of this phase are given below. Note 
that steps C1 and C2 are the same as the ones in the user authentication phase.  

C3. C → S: UID, AUTH, Mask, VMask. 
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C retrieves Rs by using (Rs ⊕ HPW) ⊕ HPW and computes h(Rc, Rs). If the computed 
and received h(Rc, Rs) are equal, then C computes  
 
NewHPW = h(UID, NewP),  
AUTH = h(HPW, Rc, Rs),  
Mask = NewHPW ⊕ h(HPW, Rc + 1, Rs),  
VMask = h(NewHPW, Rs).  
 
Then, C sends UID, AUTH, Mask, and VMask to S. 

C4. S retrieves the U’s HPW from the verification table. If AUTH = AUTH*, S accepts C 
to change the U’s password, and then obtains new password verifier NewHPW as 
NewHPW = Mask ⊕ h(HPW, Rc + 1, Rs). Next, S calculates h(NewHPW, Rs) and 
compares it with VMask. If they are equal, S replaces the old HPW with the new pass-
word verifier NewHPW in the verification table. Otherwise, S rejects C’s change 
password request and terminates the session. 

3.2 Denial of Service Attack on the YRY Scheme 

The adversary is able to prevent the client from logging in during the user authenti-
cation phase or changing its password P with NewP in the change password phase by 
making the server reject all login requests and change password requests. As mentioned 
in the impersonation attack, the adversary can replace all information that were related to 
the login and change password phases. 

 
From To 

Rc Ra 
NewP Pa 

NewHPW = h(UID, NewP) NewHPW* = h(UID, Pa) 
AUTH = h(HPW, Rc, Rs) AUTH* = h(HPW, Ra, Rs) 

Mask = NewHPW ⊕ h(HPW, Rc + 1, Rs) Mask* = NewHPW* ⊕ h(HPW, Rc + 1, Rs) 

After receiving the replaced message, if the user tries to login the server, he will be 
rejected since both the password and the password verifier were changed. 
 
DoS1. In the user authentication phase, U enters UID and P to C. C computes HPW = 

h(UID, P) and randomly chooses a number Rc, and then computes h(Rc). Next, C 
sends UID, Rc ⊕ HPW, and h(Rc) to S in step A1. 
Since S retrieves A’s new password verifier NewHPW* = h(UID, Pa) from the 
verification table, he obtains Rc

*  that is different from Rc, Rc
*  was obtained by 

computing (Rc ⊕ HPW) ⊕ NewHPW*. 
Next, S verifies the equality of the computed h(Rc) and the received h(Rc

* ). They 
are not equal. Therefore, S rejects C’s request. 

DoS2. Even though this attack happened after U’s successful login, the problem is the 
same as in the user change password phase since the request in step C1 is the 
same as in step A1. 
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DoS3. If this attack happened after step C2, C computes NewHPW = h(UID, NewP), 
AUTH′ = h(HPW, Rc, Rs), Mask = NewHPW ⊕ h(HPW, Rc + 1, Rs), and VMask = 
h(NewHPW, Rs), and then C sends UID, AUTH, Mask, and VMask to S in step C3. 
At this moment, AUTH* = h(HPW, Ra, Rs) is not equal to AUTH′ = h(HPW, Rc, Rs) 
that S computed in step C2, not in step C3. Therefore, S rejects C’s to change U’s 
password. 

DoS4. If this attack happened after step C3, C computes NewHPW, AUTH, Mask, and 
VMask the same as step DoS3, and then C sends UID, AUTH, Mask, and VMask to S 
in step C3. AUTH′ = h(HPW, Rc, Rs) is equal to AUTH = h(HPW, Rc, Rs) that S 
computes in step C2, accordingly, S accepts C to change the U’s password. How-
ever, S obtains a different password verifier as NewHPW′ = Mask ⊕ h(HPW, Ra + 
1, Rs), which is not equal to U’s new verifier NewHPW, since Rc was already 
changed with Ra by A. After that, S computes h(NewHPW′, Rs) and compares it 
with VMask. The value of h(NewHPW′, Rs) is not equal to VMask = h(NewHPW, Rs). 
Consequently, S rejects C’s change password request and terminates the session. 

 
For those reason, both the user’s authentication and change password requests are 

rejected until the user has re-registered with the server. 
The adversary can interrupt or lock the account of any user. In addition, this attack 

works even if P is a strong password. 
 
3.3 KCC Impersonation Attack with Stolen-Verifier 

 
Suppose that the adversary has stolen the verifier HPW = h(UID,P) of the user from 

the server. The adversary can compute Rc, (Rc ⊕ HPW) ⊕ HPW by XORing, and then he 
can get more information in sequence, computing h(Rc), Rs using (Rs ⊕ HPW) ⊕ HPW, 
h(Rc, Rs), and AUTH* = h(HPW, Rc, Rs). After that, the adversary has all the information 
he needs to login into the server. If the adversary obtains an HPW through the stolen-  
verifier attack, he can then perform the following:  

 
B1. A can make a random generated number Ra to compute Ra ⊕ HPW and h(Ra). He 

sends UID, Ra ⊕ HPW, and h(Ra) to the server in step A1. 
B2. S retrieves the Ra = (Ra ⊕ HPW) ⊕ HPW by XORing, and then S verifies the equality 

of the computed h(Ra) and received h(Ra). If they are equal, S randomly generates a 
number Rs and computes Rs ⊕ HPW, h(Ra, Rs), and AUTH* = h(HPW, Ra, Rs). S 
sends Rs ⊕ HPW and h(Ra, Rs) to A in step A2. 

B3. A retrieves Rs using (Rs ⊕ HPW) ⊕ HPW and computes h(Ra, Rs). Next, if the com-
puted and received h(Ra, Rs) are equal, A computes AUTH = h(HPW, Ra, Rs) and 
sends UID and AUTH to S in step A3. 

B4. S compares AUTH with AUTH*. If they are equal, S authenticates A in step A4. 
After that, A can impersonate U.  
Additionally, this attack can be adapted on the change password phase in the same 
way. This is described as below. 

B5. A can get the Rs and AUTH = h(HPW, Rc, Rs) after steps C1 and C2, and he can then 
choose his new password Pa and the random number Ra. Next, A computes New- 
HPW, Mask, and VMask with his own Pa as 
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NewHPW = h(UID, Pa), 
Mask = NewHPW ⊕ h(HPW, Rc + 1, Rs), 
AUTH = h(HPW, Ra, Rs), 
VMask = h(NewHPW, Rs). 
 
Then, A sends UID, AUTH, Mask, and VMask to S in step C3. 

B6. After receiving these values, S retrieves U’s HPW from the verification table and 
compares AUTH = AUTH*. If they are equal, S accepts A to change the user U’s 
password P with A’s password Pa. 

B7. S obtains the A’s new password verifier NewHPW as NewHPW = Mask ⊕ h(HPW, Rc 
+ 1, Rs), and then S compares h(NewHPW, Rs) with VMask. Since h(NewHPW, Rs) = 
VMask, it accepts and S replaces the old HPW with the new password verifier 
NewHPW in the verification table. 

 
Thus, the adversary can impersonate as the user to login and change the password. 

He can then launch other attacks within the system. If the user logs in after an attack, she 
may not be able to discover that the attacker has logged into the system impersonating as 
her, without checking the login records. Until the user or the system manager discovers 
the attacker’s login, the attacker may continue to impersonate the user. 
 
3.4 No Lack of Backward Secrecy 

 
It was supposed in [4] that the adversary has stolen the HPW. If C detects that HPW 

is compromised, it can invoke the password change phase to change password P with a 
new one, say NewP. However, by intercepting the messages transmitted in steps C1 and 
C2 of the change password phase, the adversary can use the stolen HPW to retrieve Rc 
and Rs, and compute h(HPW, Rc + 1, Rs). Moreover, by intercepting the message trans-
mitted in step C3 of the change password phase, the adversary can use the computed 
h(HPW, Rc + 1, Rs) to retrieve NewHPW from Mask (= NewHPW ⊕ h(HPW, Rc + 1, Rs)). 

However, there is a limitation. Even though the adversary intercepts the messages in 
steps C1 and C2 of the change password phase, he cannot retrieve Rc and Rs, because the 
HPW is already changed with NewHPW, and it is not equal to HPW of the previous sto-
len verifier. If the adversary wants to get Rc and Rs after the change password phase, he 
needs to obtain the new password verifier. Only then, the adversary cannot the computes 
h(HPW, Rc + 1, Rs). Therefore, the claim in [4] is not valid. 

4. THE PROPOSED SCHEME 

There are some cases for our scheme: (1) If someone forgets his password, he 
should use the “forget password” protocol. (2) If the user just wants to change password, 
then he should use the password/verifier change protocol. This protocol should be used 
after a user logs in successfully. (3) Lastly, if someone wants to change user ID and 
password, then he should use the register protocol. 
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4.1 Registration Protocol 
 
R1. U→ S: PV = h(Ku || P) ⊕ Ku. 

U inputs his ID, password, and private key into the client system. The client system 
computes the user’s password verifier PV = h(Ku || P) ⊕ Ku, and sends it to S for a 
registration request. 

R2. S → U: R, AuthQ. 
S stores PV and computes R = PV ⊕ Ts. Next, S sends R and AuthQ to U. 

R3. U → S: ESpu(UV, Ts′, Uid, K′u, P′, AuthQ ⊕ AuthA). 
U derives Ts′ by XORing r with PV, and computes the user’s important verifier UV = 
h(K′u || P′ || Ts′ || Uid) ⊕ K′u . Next, U encrypts UV, Ts′, Uid, K′u , P′ and AuthQ ⊕ AuthA 
with S’s public key, and sends it to S. 

R4. S decrypts DSpr(ESpu(UV, T′s, Uid, K′u, P′, AuthQ ⊕ AuthA)) and derives UV, Ts′, Uid, K′u, 
P′, and AuthQ ⊕ AuthA. S computes h(K′u || P′) ⊕ K′u. S then compares h(K′u || P′) ⊕ K′u 
and Ts′ with PV and Ts, respectively, that were stored and sent in step R2. If both are 
equal, then S stores the sealed-verifier SV = h(K′u || P′ || Uid) ⊕ Kpr, PV, UKP = 
ESpu(Uid, K′u , P′), and QAK = AuthQ ⊕ AuthA ⊕ Kpr in his password file, where Kpr is 
the server’s private key. 

4.2 Login Protocol 

L1. U → S: PV′ = h(K′u || P′) ⊕ K′u. 
U inputs his ID, password, and private key into the client system. The client system 
computes the user’s password verifier PV′ = h(K′u || P′) ⊕ K′u, and sends it to S for a 
login request. 

L2. S → U: PV, rs. 
S compares PV′ with the PV that was stored in R2. If they are equal, then S generates 
a random nonce rs, and then sends PV and rs to U. 

L3. U → S: L. 
U compares PV′ with PV. If they are equal, then U computes h(Ku || P || Uid). Next, U 
computes L = h(h(Ku || P || Uid) ⊕ PV′) ⊕ h(Ku || P || Uid) ⊕ PV′ ⊕ Rs, and sends it to S. 

L4. S derives C1 = h(h(Ku || P || Uid) ⊕ PV′) ⊕ h(Ku || P || Uid) ⊕ PV′ by XORing L with rs. 
S then computes C2 = SV ⊕ Kpr = h(Ku || P || Uid) using the stored SV and Kpr in step 
R4 and C3 = h(C2 ⊕ PV) ⊕ C2 ⊕ PV. Next, S checks C1 = C3. If they are equal, S 
authenticates U.  

 
4.3 “Forget Password” Protocol 
 
FP1. U → S: “forget password” request. 
FP2. S → U: Auth′Q, RF. 

S generates a random nonce RF, and then sends AUTH ′Q and RF to U. 
FP3. U → S: ESpu(FP, U′id). 

U computes FP = Auth′Q ⊕ Auth′A ⊕ RF, and encrypts it and U′id with S’s public key. 
Next, U sends ESpu(FP, U′id) to S. 

FP4. S → U: AuthA ⊕ K′u, AuthA ⊕ P′. 
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S decrypts DSpr(ESpu(FP, U ′id)), and derives D1 = Auth′Q ⊕ Auth′A by XORing FP with 
RF. S then derives D2 = AuthQ ⊕ AuthA by XORing QAK with Kpr that was stored in 
step R4. After that, S checks D1 = D2. If they are equal, S decrypts UKP, DSpr(ESpu 
(Uid, K′u, P′)) that was stored in step R4. Otherwise, S rejects this request. Next, S 
derives K′u, Uid and P′, and then checks U′id = Uid. If they are equal, S computes Au-
thA ⊕ K′u and AuthA ⊕ P′, and then sends these values to U. If not, S terminates this 
session. 

FP5. U obtains the former password P and private key Ku by XORing AuthA ⊕ K′u and 
AuthA ⊕ P′ with AuthA. 

 
4.4 Password/Verifier Change Protocol 
 
PC1. U → S: password-change request. 
PC2. S → U: Auth′Q, RC. 

S generates a random nonce RC, and sends Auth′Q and Rc to U. 
PC3. U → S: ESpu(W1, Pnew, Kunew, Uidnew). 

U computes W1 = Auth′Q ⊕ Auth′A ⊕ RC ⊕ h(Ku || P || Uid), and encrypts W1 and the 
new values of Kunew, Pnew, and Uidnew with S’s public key. Next, U sends (ESpu(Auth′Q ⊕ 
Auth′A ⊕ RC ⊕ h(Ku || P || Uid), Kunew, Pnew, Uidnew) to S. 

PC4. S decrypts DSpr(ESpu(W1, Kunew, Pnew, Uidnew)), and obtains W1, Kunew, Pnew, and Uidnew. S 
then computes P2 = AuthQ ⊕ AuthA by XORing QAK with Kpr that was stored in 
step R4 and W3 = SV ⊕ Kpr = h(Ku || P || Uid) using the stored SV and Kpr in step R4. 
Next, S computes W4 = W2 ⊕ RC ⊕ W3 and checks W1 = W4. If they are equal, then S 
stores a new SV ′ = h(Kunew || Pnew || Uidnew) ⊕ Kpr, a new PV ′ = h(Kunew || Pnew) ⊕ Kunew, a 
new UKP′ = (ESpu(Uidnew, Kunew, Pnew), and QAK = AuthQ ⊕ AuthA ⊕ Kpr in his pass-
word file. 

5. SECURITY ANALYSIS 

We will briefly demonstrate that the proposed scheme is secure against guessing, 
stolen-verifier, replay, denial-of-service, and impersonation attacks. 

5.1 Guessing Attack 
 
By nature, due to the use of a strong password, this scheme is able to resist the 

off-line guessing attack. Additionally, the user’s password is always secretly concealed 
with the private key Ku within the hash function, since it is hard to find P and Ku from 
h(Ku || P) ⊕ Ku. Therefore, no one can reveal the user’s password P without U’s permis-
sion. 
 
5.2 Stolen-Verifier Attack 

 
The server stores the verifier of user’s password instead of the clear text of the 

password. In the stolen-verifier attack, the adversary who has stolen the password veri-
fier from the server uses it directly to masquerade as a legitimate user. If the adversary 
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obtains a copy of the password verifier h(Ku || P) ⊕ Ku in step R1, he also can obtain Ts by 
copying h(Ku || P) ⊕ Ku and computing PV ⊕ Ts with the previous stolen verifier PV in 
step R2. However, the adversary can neither get any information nor manipulate after 
step R3 without the server’s private key. Since it is hard to find P and Ku in h(Ku || P) ⊕ 
Ku, the adversary cannot derive h(Ku || P || Uid) ⊕ Kpr to obtain the sealed-verifier SV from 
h(Ku || P) ⊕ Ku. Even though the adversary intercepts password verifiers in steps R1 and 
R2, the adversary cannot use them since there is no way to derive Uid before step R2 for 
registration. In step R3, since Uid is encrypted with the server’s public key, the attacker 
cannot obtain Uid without the server’s private key Kpr. The adversary also cannot obtain 
h(h(Ku || P || Uid) ⊕ PV) for login from h(Ku || P) ⊕ Ku. Even if the adversary steals SV = 
h(Ku || P || Uid) ⊕ Kpr and AuthQ ⊕ AuthA ⊕ Kpr from the server, he cannot open them with-
out the server’s private key. If the adversary obtains the server’s private key, he is able to 
get any information. However, we assumed the server’s private key Kpr is kept as a top 
secret on the server. If Kpr is released, not only does the server’s private key need to be 
changed, but all users should be re-registered too. Since we use the verifier and other 
unknown values (e.g. Kpr or Ku) together, even if the attacker steals the verifier, he will 
not use it anywhere without knowing Kpr or Ku. Thus, our scheme can resist any stolen- 
verifier attacks. 

 
5.3 Replay Attack 

 
The replay attack is an offensive action in which the adversary impersonates or de-

ceives another legitimate participant through the reuse of information obtained in proto-
cols. It indicates an attempt by an unauthorized third party to record exchanged messages. 
In step L3, since Uid is hashed with two other unknown values Ku and P, the attacker 
cannot obtain Uid without the knowledge of Ku and P. The adversary is able to steal PV in 
step R1 and rs in step L2, and then obtain h(h(K*

u  || P*
 || Uid) ⊕ PV ′) ⊕ h(K*

u  || P*
 || Uid). 

However, he cannot get any information for login, “forget password” and change pass-
word protocols. After that, the adversary will try to change C*

1 = h(h(K*
u  || P*

 || U*
i  d ⊕ PV′) 

⊕ h(K*
u  || P*

 || U*
i  d) ⊕ PV′ with his own values P*, U*

i  d and PV′. However, the server will 
detect it as modified (i.e. C*

1 ≠ C2) in step L4, since the attacker needs the encrypted val-
ues with Kpr such as Ku, P, and AuthA. The adversary can steal PV and AuthQ in steps R1 
and R2, respectively. After that, he will use them for the replay attack. However, this 
attack cannot be successful, since the adversary needs to know the sealed-verifier SV and 
the server’s private key Kpr for this attack. Consequently, our proposed scheme can resist 
a replay attack. 
 
5.4 Denial-of-Service Attack 

 
This attack is characterized by the explicit attempt of an attacker to prevent legiti-

mate users of a service from using that service. This attempt includes several different 
flavors: disrupting service to a specific system or user, preventing a particular user from 
accessing a service, or denying requests issued by a legitimate user. The adversary, how-
ever, is unable to change the user’s password without the user’s permission in our 
scheme, since it is hard to find P and Ku not only in h(Ku || P) ⊕ Ku , but also in h(h(Ku || P 
|| Uid) ⊕ Kpr) ⊕ h(Ku || P || Uid) ⊕ Kpr. There is no chance to change the password or veri-
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fier in step R3 or L3. Therefore, our improved scheme can resist a denial-of-service at-
tack. 
 
5.5 Impersonation Attack 

 
This attack deceives the identity of one of the legitimate parties. An attacker inserts 

or changes a message and claims that it originated from a real sender. If the adversary 
impersonates U and wants to get the user's former password P, he should attack the “for-
get password” protocol. Since he does not know AuthA, he cannot obtain the password. If 
the attacker wants to get the password, he needs to know Kpr for decryption. Moreover, in 
our protocol, AuthA is always protected with a S’s private key Kpr and other unknown 
values such as RC, RF, and h(Ku || P || Uid). If the adversary logs in the system successfully, 
he could try to change it with his own password P*. However, to change the password, 
the adversary would need to attack the password/verifier change protocol and know Ku, 
AuthA, and SV, which is impossible. Thus, our proposed scheme can also resist a imper-
sonation attack. 

6. CONCLUSIONS 

In this paper, we have proposed a secure hash-based strong-password authentication 
protocol using one-time public-key cryptography that includes not only secure registra-
tion and login authentication, but secure “forget password” and password/verifier change 
protocols. It is more secure against guessing, stolen-verifier, replay, denial-of-service, 
and impersonation attacks. 
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