
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 24, 1213-1227 (2008)

1213

Short Paper___

A Secure Hash-Based Strong-Password Authentication

Protocol Using One-Time Public-Key Cryptography

MINHO KIM AND ÇETIN KAYA KOÇ*

Department of Computer Science
Korea Air Force Academy

Sangsu, 363-849, South Korea
E-mail: mhkim@afa.ac.kr

*School of Electrical Engineering and Computer Science
Oregon State University

Corvallis, Oregon 97331, U.S.A.
E-mail: koc@eecs.oregonstate.edu

Secure communication is an important issue in networks and user authentication is

a very important part of the security. Several strong-password authentication protocols
have been introduced, but there is no fully secure authentication scheme that can resist
all known attacks. We propose enhanced secure schemes with registration and login
protocols, and add the “forget password” and password/verifier change protocols. We
show that our scheme is more secure against guessing, stolen-verifier, replay, denial-of-
service, and impersonation attacks than previously introduced protocols.

Keywords: password authentication, forget password, password/verifier change, guess-
ing attack, stolen-verifier attack, replay attack, denial-of-service attack, impersonation
attack

1. INTRODUCTION

Password-based authentication mechanisms are the simplest and most convenient
way to have a user authenticated in order to provide services of a computing or commu-
nication system to a pre-selected group of authorized users. These mechanisms are less
costly than the biometric methods of authentication, such as fingerprint, iris scan, voice
signature, etc. A generic password-based authentication system usually hashes the pass-
word of the user with the help of hash function derived from a secret-key cryptographic
function, such as MISTY, DES, or FEAL [13, 14, 19]. The hashed password is stored on
the server in order to preclude stealing the password by the adversary.

Unfortunately, there are two limitations in password-based authentication systems:
(1) the user must submit the bare password at every authentication, and (2) the transmit-
ted password could be stolen by wiretapping or sniffing. One of the remedying is found
the use of one-time password method by Lamport [9], but there are some practical diffi-

Received July 6, 2006; revised October 17, 2006; accepted March 14, 2007.
Communicated by Ja-Ling Wu.

admin
打字機文字
DOI:10.1688/JISE.2008.24.4.14

MINHO KIM AND ÇETIN KAYA KOÇ

1214

culties in implementing this method, such as the problems of high overhead and pass-
word resetting. Another related method is CINON [17] which solves these problems, but
it requires two random numbers generated by the user, which must be stored by the user
in some sort of mobile memory device. On the other hand, the PERM (Privacy Enhanced
Information Reading and Writing Management) Protocol [18] stores one random number
at the host, which is sent to the user for authentication. However, there are some security
flaws in such a system; the adversary can launch a man-in-the-middle attack if he can
obtain the logs of two consecutive sessions.

The SAS protocol proposed in [16] is a simple strong-password authentication
scheme, which is superior to several well-known schemes. But, it was shown in [11] that
the SAS protocol is vulnerable to the replay attack and the denial of service attack. The
OSPA (Optimal Strong-Password Authentication) Protocol given in [11] was claimed to
be secure against stolen-verifier attacks, replay attacks, and the denial of service attacks.
Nevertheless, it was shown in [1] the SAS and OSPA protocols cannot resist to the sto-
len-verifier attack as claimed. Also, an impersonation attack was described in [20] on the
OSPA method without an active attack on the server. Later on, an enhanced OSPA proto-
col was introduced in [12], which resists to the guessing, reply, impersonation, and sto-
len-verifier attacks. However, it was shown in [8] that the protocol is still vulnerable to
reply and denial-of-service attacks. Furthermore, these two simple attacks can easily be
launched without compromising the server in advance.

Recently, a hash-based strong-password authentication scheme was described in [3],
which withstands several attacks, including replay, password-file compromise, denial-of-
service, and insider attacks. However, Kim-Koç [6] showed that Ku’s scheme [3] is still
vulnerable to stolen-verifier, denial-of-service, replay, and impersonation attacks.

The Lee-Li-Hwang (LLH) authentication scheme [10] was proposed to circumvent
the guessing attack in the Peyravian-Zunic (PZ) password scheme [15]. However, Yoon,
Ryu, and Yoo (YRY) [21] discovered that the LLH scheme still suffers from the denial of
service attack, and proposed an enhancement for the LLH scheme to solve its security
problems. More recently, Ku, Chiang, and Chang (KCC) [4] demonstrated that the YRY
scheme is vulnerable to off-line guessing and stolen-verifier attacks. Kim-Koç showed
that the YRY scheme is also vulnerable to the denial-of-service attack. Furthermore, it
was also claimed in [4] that the YRY scheme cannot achieve backward secrecy. Kim-Koç
showed that this claim is not entirely valid [7].

Most of the previous articles deal with registration and login phases. However, we
propose enhanced secure schemes with registration and login protocols, and add the
“forget password” and password/verifier change protocols. Firstly, we give the basic
definitions of these attacks. The remainder of this paper is organized as follows. In sec-
tions 2 and 3, we describe the hash-based strong-password authentication scheme intro-
duced in [3], and a hash-based secure user authentication scheme was described in [21],
and then explain the details of Kim-Koç’s attacks. In section 4, we propose our scheme
with four protocols. In section 5, we will briefly analyze how the proposed scheme is
secure against guessing, stolen-verifier, replay, denial-of-service, and impersonation at-
tacks. Finally, we shall give a brief conclusion in section 6.

SECURE HASH-BASED STRONG-PASSWORD AUTHENTICATION

1215

2. KU’S SCHEME AND ATTACK

2.1 Review of the Ku Scheme

We introduce the notation used to describe the protocols below and explain the de-
tailed steps of both of these protocols.

2.1.1 Notations

• U denotes the User, C denotes the Client, S denotes the Server, and A denotes the Ad-

versary.
• ESpu denotes the encryption with the public key of the server.
• DSpr denotes the decryption with the private key of the server.
• h denotes a cryptographic hash function, such that h(m) means the message m is hashed

once, while h2(m) means it is hashed twice, i.e., h2(m) = h(h(m)). Furthermore, h(a, b)
denotes the hash of concatenated a and b, i.e., h(a, b) = h(a || b).

• N denotes an integer starting from 1 since U’s initial registration.
• P denotes the strong password of U.
• Ku is a random generated key selected by U.
• Ks denotes the secret-key of S.
• Rc and Rs denote random numbers generated by Client and Server, respectively.
• T denotes the most recent time U initially registered or re-registered at S.
• Ts denotes the timestamp.
• UID denotes the identification of the user.
• ⊕ denotes the bitwise XOR operation, and || denotes the concatenation.
• AuthQ/AuthA denotes the authentication question/answer for the registration, “forget

password” and password/verifier change protocols.
• The expression A → B: X means A sends the message X to B via an insecure channel.
• The expression A ⇒ B: X means A sends the message X to B via a secure channel.

The hash-based strong-password authentication scheme described in [3] comes with

two protocols: the registration protocol and the login protocol.

2.1.2 Registration protocol

This protocol is invoked whenever U initially registers or re-registers to S.

R1. U sends his registration request to S.
R2. S → U: N, T.

S sets T as the currently value of the time. If this is U’s initial registration, S sets N =
1, otherwise S sets N = N + 1. Next, S sends N and T to U.

R3. U ⇒ S: h2(S || P || N || T).
U computes the verifier h2(S || P || N || T) and sends it to S.

R4. S computes the user storage key ()T
UK = h(U || h(KS || T)) and the sealed verifier sv(N) =

h2(S || P || N || T) ⊕ () ,T
UK and then he stores sv(N), N, and T in the password file.

MINHO KIM AND ÇETIN KAYA KOÇ

1216

2.1.3 Login protocol

This protocol is invoked whenever U logins to S.

L1. U sends his login request to S.
L2. S → U: r, n, t.

S selects a random nonce r and retrieves the values of n = N and t = T from S’s pass-
word file.

L3. U → S: c1, c2, c3.
U sends c1, c2, and c3 to S, where

c1 = h2(S || P || n || t) ⊕ h(S || P || n || t),
c2 = h(S || P || n || t) ⊕ h2(S || P || n + 1 || t),
c3 = h(h2(S || P || n + 1 || t) || r).

L4. S computes
()t
UK = h(U || h(KS || t)), and then derives h2(S || P || n || t) from the stored

sealed verifier sv(n) using

h2(S || P || n || t) = sv(n) ⊕ () .t

UK

Then, S computes u1 and u2 using

u1 = c1 ⊕ h2(S || P || n || t) = h(S || P || n || t),
u2 = c2 ⊕ u1 = h2(S || P || n + 1 || t).

If the equalities h(u1) = h2(S || P || n || t) and h(u2 || r) = c3 hold, then S authenticates U.
Otherwise, S rejects U’s login request and terminates the session.

After a successful authentication, S computes a new sealed-verifier using

sv(n+1) = u2 ⊕ ()t
UK = h2(S || P || n + 1 || t) ⊕ () ,t

UK

and replaces sv(n) with sv(n+1), and sets N = n + 1 for U’s next login protocol. The value of
T is unchanged, i.e., T = t.

2.2 Attack on the Ku Scheme

Kim-Koç [6] devise an attack assumption that the adversary steals a copy of user’s
password-verifier h2(S || P || N || T). Such scenarios are considered in other paper [1].

The second assumption they make is that A is capable of blocking the communica-
tion from U to S. After having stolen a copy of the password verifier, A launches an at-
tack whenever it can block communication.

Therefore, Kim-Koç attack assumes that a stolen-verifier attack (by obtaining a
copy of the password verifier) and a denial-of-service attack (by blocking the communi-
cation from U to S) have succeeded. They then show that under these two assumptions
(attacks), the attacker can now successfully login to the system using replay, impersonate
the user, and thus succeed in the impersonation attack.

SECURE HASH-BASED STRONG-PASSWORD AUTHENTICATION

1217

1. A steals a copy of U’s password-verifier h2(S || P || N || T).
2. During the U’s nth login process, A monitors the communication channel, and then he

sees the request U made to S and the values r, n, and t sent by S. Next, A captures the
values of c1, c2, and c3 sent by U to S and blocks the communication channel from U
to S. These values are not reaching to S by blocking communication.

3. A computes h(S || P || n || t) and h2(S || P || n + 1 || t) with the help of the captured values c1,
c2, and the previously stolen password-verifier h2(S || P || N || T) as

h(S || P || n || t) = c1 ⊕ h2(S || P || n || t),
h2(S || P || n + 1 || t) = c2 ⊕ h(S || P || n || t),

where N = n and T = t.
4. Next, A sends c1, c2, and c3 to S.
5. After receiving this message, S retrieves t from the password file and computes

()t
UK = h(U || h(KS || t))

and then uses ()t
UK to compute the verifier h2(S || P || n || t) with the help of the stored

sealed verifier sv(n) as

h2(S || P || n || t) = sv(n) ⊕ () .t
UK

6. Next, S computes

u1 = c1 ⊕ h2(S || P || n || t) = h(S || P || n || t),
u2 = c2 ⊕ u1 = h2(S || P || n + 1 || t).

If h(u1) = h2(S || P || n || t) and h(u2 || r) = c3 hold, S supposed to authenticate the sender.
Since these equalities will hold, S authenticates A as being U. Therefore, S allows the
attacker A to login.

7. After this successful login, S updates the sealed verifier according to the step L4 of
login protocol. Therefore, the following will be executed by S. S computes

sv(n+1) = u2 ⊕ ()t
UK = h2(S || P || n + 1 || t) ⊕ () ,t

UK

and replaces sv(n) with sv(n+1), and then he sets N = n + 1 for U’s next login protocol.
The value of T is unchanged, i.e., T = t.

At the end of step 6, the adversary has successfully logged into the system imper-
sonating the legitimate user. It can now launch other attacks within the system or access
to sensitive documents. If the user logs in after the attacker does, it may not be possible
to discover that the attacker has logged into the system impersonating the user, unless the
user checks the login records. Until the time when the user or the system managers dis-
cover the attacker’s successful login, the attacker can continue to impersonate the user.

MINHO KIM AND ÇETIN KAYA KOÇ

1218

3. YRY’S SCHEME AND ATTACK

3.1 Review of the YRY Scheme

A hash-based secure user authentication scheme was described in [21]. The scheme

has 3 phases: Registration phase, User authentication phase, and Change password phase.

3.1.1 Registration phase

This registration phase is performed only once when a new user wants to join the

system. On the other hand, the authentication phase is executed whenever the user wants
to login to the system. The procedures of this phase are as follows:

R1. U ⇒ S: UID, HPW U randomly chooses UID and P, and then calculates a password

verifier HPW = h(UID, P).
R2. S stores UID and HPW in the verification table.

3.1.2 User authentication phase

In this phase, the user logs in to a server for accessing resources and the server au-

thenticates the user. The procedures of this phase are as follows:

A1. C → S: UID, Rc ⊕ HPW, h(Rs).
U enters UID and P to C. C computes HPW = h(UID, P) and randomly chooses a
number Rc, and then computes the hash value h(Rc). Next, C sends UID, Rc ⊕ HPW,
and h(Rc) to S.

A2. S → C: Rs ⊕ HPW, h(Rc, Rs).
S retrieves the U’s password verifier HPW from the verification table, and then ob-
tains Rc by computing (Rc ⊕ HPW) ⊕ HPW. Next, S verifies the equality of the
computed h(Rc) with the obtained Rc and the received h(Rc). If they are equal, S ran-
domly generates a number Rs, and then computes Rs ⊕ HPW, h(Rc, Rs), and AUTH* =
h(HPW, Rc, Rs). Next, S sends Rs ⊕ HPW and h(Rc, Rs) to C.

A3. C → S: UID, AUTH.
C retrieves Rs by using (Rs ⊕ HPW) ⊕ HPW and computes h(Rc, Rs). If the computed
and received h(Rc, Rs) are equal, C computes AUTH = h(HPW, Rc, Rs) and sends UID
and AUTH to S.

A4. S compares AUTH with AUTH*. If they are equal, S authenticates U. Otherwise, S
rejects C’s request and terminates the session.

3.1.3 Change password phase

The change password phase is invoked whenever client wants to change its pass-
word P with a new one, say NewP. The procedures of this phase are given below. Note
that steps C1 and C2 are the same as the ones in the user authentication phase.

C3. C → S: UID, AUTH, Mask, VMask.

SECURE HASH-BASED STRONG-PASSWORD AUTHENTICATION

1219

C retrieves Rs by using (Rs ⊕ HPW) ⊕ HPW and computes h(Rc, Rs). If the computed
and received h(Rc, Rs) are equal, then C computes

NewHPW = h(UID, NewP),
AUTH = h(HPW, Rc, Rs),
Mask = NewHPW ⊕ h(HPW, Rc + 1, Rs),
VMask = h(NewHPW, Rs).

Then, C sends UID, AUTH, Mask, and VMask to S.

C4. S retrieves the U’s HPW from the verification table. If AUTH = AUTH*, S accepts C
to change the U’s password, and then obtains new password verifier NewHPW as
NewHPW = Mask ⊕ h(HPW, Rc + 1, Rs). Next, S calculates h(NewHPW, Rs) and
compares it with VMask. If they are equal, S replaces the old HPW with the new pass-
word verifier NewHPW in the verification table. Otherwise, S rejects C’s change
password request and terminates the session.

3.2 Denial of Service Attack on the YRY Scheme

The adversary is able to prevent the client from logging in during the user authenti-
cation phase or changing its password P with NewP in the change password phase by
making the server reject all login requests and change password requests. As mentioned
in the impersonation attack, the adversary can replace all information that were related to
the login and change password phases.

From To

Rc Ra
NewP Pa

NewHPW = h(UID, NewP) NewHPW* = h(UID, Pa)
AUTH = h(HPW, Rc, Rs) AUTH* = h(HPW, Ra, Rs)

Mask = NewHPW ⊕ h(HPW, Rc + 1, Rs) Mask* = NewHPW* ⊕ h(HPW, Rc + 1, Rs)

After receiving the replaced message, if the user tries to login the server, he will be
rejected since both the password and the password verifier were changed.

DoS1. In the user authentication phase, U enters UID and P to C. C computes HPW =

h(UID, P) and randomly chooses a number Rc, and then computes h(Rc). Next, C
sends UID, Rc ⊕ HPW, and h(Rc) to S in step A1.
Since S retrieves A’s new password verifier NewHPW* = h(UID, Pa) from the
verification table, he obtains Rc

* that is different from Rc, Rc
* was obtained by

computing (Rc ⊕ HPW) ⊕ NewHPW*.
Next, S verifies the equality of the computed h(Rc) and the received h(Rc

*). They
are not equal. Therefore, S rejects C’s request.

DoS2. Even though this attack happened after U’s successful login, the problem is the
same as in the user change password phase since the request in step C1 is the
same as in step A1.

MINHO KIM AND ÇETIN KAYA KOÇ

1220

DoS3. If this attack happened after step C2, C computes NewHPW = h(UID, NewP),
AUTH′ = h(HPW, Rc, Rs), Mask = NewHPW ⊕ h(HPW, Rc + 1, Rs), and VMask =
h(NewHPW, Rs), and then C sends UID, AUTH, Mask, and VMask to S in step C3.
At this moment, AUTH* = h(HPW, Ra, Rs) is not equal to AUTH′ = h(HPW, Rc, Rs)
that S computed in step C2, not in step C3. Therefore, S rejects C’s to change U’s
password.

DoS4. If this attack happened after step C3, C computes NewHPW, AUTH, Mask, and
VMask the same as step DoS3, and then C sends UID, AUTH, Mask, and VMask to S
in step C3. AUTH′ = h(HPW, Rc, Rs) is equal to AUTH = h(HPW, Rc, Rs) that S
computes in step C2, accordingly, S accepts C to change the U’s password. How-
ever, S obtains a different password verifier as NewHPW′ = Mask ⊕ h(HPW, Ra +
1, Rs), which is not equal to U’s new verifier NewHPW, since Rc was already
changed with Ra by A. After that, S computes h(NewHPW′, Rs) and compares it
with VMask. The value of h(NewHPW′, Rs) is not equal to VMask = h(NewHPW, Rs).
Consequently, S rejects C’s change password request and terminates the session.

For those reason, both the user’s authentication and change password requests are

rejected until the user has re-registered with the server.
The adversary can interrupt or lock the account of any user. In addition, this attack

works even if P is a strong password.

3.3 KCC Impersonation Attack with Stolen-Verifier

Suppose that the adversary has stolen the verifier HPW = h(UID,P) of the user from

the server. The adversary can compute Rc, (Rc ⊕ HPW) ⊕ HPW by XORing, and then he
can get more information in sequence, computing h(Rc), Rs using (Rs ⊕ HPW) ⊕ HPW,
h(Rc, Rs), and AUTH* = h(HPW, Rc, Rs). After that, the adversary has all the information
he needs to login into the server. If the adversary obtains an HPW through the stolen-
verifier attack, he can then perform the following:

B1. A can make a random generated number Ra to compute Ra ⊕ HPW and h(Ra). He

sends UID, Ra ⊕ HPW, and h(Ra) to the server in step A1.
B2. S retrieves the Ra = (Ra ⊕ HPW) ⊕ HPW by XORing, and then S verifies the equality

of the computed h(Ra) and received h(Ra). If they are equal, S randomly generates a
number Rs and computes Rs ⊕ HPW, h(Ra, Rs), and AUTH* = h(HPW, Ra, Rs). S
sends Rs ⊕ HPW and h(Ra, Rs) to A in step A2.

B3. A retrieves Rs using (Rs ⊕ HPW) ⊕ HPW and computes h(Ra, Rs). Next, if the com-
puted and received h(Ra, Rs) are equal, A computes AUTH = h(HPW, Ra, Rs) and
sends UID and AUTH to S in step A3.

B4. S compares AUTH with AUTH*. If they are equal, S authenticates A in step A4.
After that, A can impersonate U.
Additionally, this attack can be adapted on the change password phase in the same
way. This is described as below.

B5. A can get the Rs and AUTH = h(HPW, Rc, Rs) after steps C1 and C2, and he can then
choose his new password Pa and the random number Ra. Next, A computes New-
HPW, Mask, and VMask with his own Pa as

SECURE HASH-BASED STRONG-PASSWORD AUTHENTICATION

1221

NewHPW = h(UID, Pa),
Mask = NewHPW ⊕ h(HPW, Rc + 1, Rs),
AUTH = h(HPW, Ra, Rs),
VMask = h(NewHPW, Rs).

Then, A sends UID, AUTH, Mask, and VMask to S in step C3.

B6. After receiving these values, S retrieves U’s HPW from the verification table and
compares AUTH = AUTH*. If they are equal, S accepts A to change the user U’s
password P with A’s password Pa.

B7. S obtains the A’s new password verifier NewHPW as NewHPW = Mask ⊕ h(HPW, Rc
+ 1, Rs), and then S compares h(NewHPW, Rs) with VMask. Since h(NewHPW, Rs) =
VMask, it accepts and S replaces the old HPW with the new password verifier
NewHPW in the verification table.

Thus, the adversary can impersonate as the user to login and change the password.

He can then launch other attacks within the system. If the user logs in after an attack, she
may not be able to discover that the attacker has logged into the system impersonating as
her, without checking the login records. Until the user or the system manager discovers
the attacker’s login, the attacker may continue to impersonate the user.

3.4 No Lack of Backward Secrecy

It was supposed in [4] that the adversary has stolen the HPW. If C detects that HPW

is compromised, it can invoke the password change phase to change password P with a
new one, say NewP. However, by intercepting the messages transmitted in steps C1 and
C2 of the change password phase, the adversary can use the stolen HPW to retrieve Rc
and Rs, and compute h(HPW, Rc + 1, Rs). Moreover, by intercepting the message trans-
mitted in step C3 of the change password phase, the adversary can use the computed
h(HPW, Rc + 1, Rs) to retrieve NewHPW from Mask (= NewHPW ⊕ h(HPW, Rc + 1, Rs)).

However, there is a limitation. Even though the adversary intercepts the messages in
steps C1 and C2 of the change password phase, he cannot retrieve Rc and Rs, because the
HPW is already changed with NewHPW, and it is not equal to HPW of the previous sto-
len verifier. If the adversary wants to get Rc and Rs after the change password phase, he
needs to obtain the new password verifier. Only then, the adversary cannot the computes
h(HPW, Rc + 1, Rs). Therefore, the claim in [4] is not valid.

4. THE PROPOSED SCHEME

There are some cases for our scheme: (1) If someone forgets his password, he
should use the “forget password” protocol. (2) If the user just wants to change password,
then he should use the password/verifier change protocol. This protocol should be used
after a user logs in successfully. (3) Lastly, if someone wants to change user ID and
password, then he should use the register protocol.

MINHO KIM AND ÇETIN KAYA KOÇ

1222

4.1 Registration Protocol

R1. U→ S: PV = h(Ku || P) ⊕ Ku.

U inputs his ID, password, and private key into the client system. The client system
computes the user’s password verifier PV = h(Ku || P) ⊕ Ku, and sends it to S for a
registration request.

R2. S → U: R, AuthQ.
S stores PV and computes R = PV ⊕ Ts. Next, S sends R and AuthQ to U.

R3. U → S: ESpu(UV, Ts′, Uid, K′u, P′, AuthQ ⊕ AuthA).
U derives Ts′ by XORing r with PV, and computes the user’s important verifier UV =
h(K′u || P′ || Ts′ || Uid) ⊕ K′u . Next, U encrypts UV, Ts′, Uid, K′u , P′ and AuthQ ⊕ AuthA
with S’s public key, and sends it to S.

R4. S decrypts DSpr(ESpu(UV, T′s, Uid, K′u, P′, AuthQ ⊕ AuthA)) and derives UV, Ts′, Uid, K′u,
P′, and AuthQ ⊕ AuthA. S computes h(K′u || P′) ⊕ K′u. S then compares h(K′u || P′) ⊕ K′u
and Ts′ with PV and Ts, respectively, that were stored and sent in step R2. If both are
equal, then S stores the sealed-verifier SV = h(K′u || P′ || Uid) ⊕ Kpr, PV, UKP =
ESpu(Uid, K′u , P′), and QAK = AuthQ ⊕ AuthA ⊕ Kpr in his password file, where Kpr is
the server’s private key.

4.2 Login Protocol

L1. U → S: PV′ = h(K′u || P′) ⊕ K′u.
U inputs his ID, password, and private key into the client system. The client system
computes the user’s password verifier PV′ = h(K′u || P′) ⊕ K′u, and sends it to S for a
login request.

L2. S → U: PV, rs.
S compares PV′ with the PV that was stored in R2. If they are equal, then S generates
a random nonce rs, and then sends PV and rs to U.

L3. U → S: L.
U compares PV′ with PV. If they are equal, then U computes h(Ku || P || Uid). Next, U
computes L = h(h(Ku || P || Uid) ⊕ PV′) ⊕ h(Ku || P || Uid) ⊕ PV′ ⊕ Rs, and sends it to S.

L4. S derives C1 = h(h(Ku || P || Uid) ⊕ PV′) ⊕ h(Ku || P || Uid) ⊕ PV′ by XORing L with rs.
S then computes C2 = SV ⊕ Kpr = h(Ku || P || Uid) using the stored SV and Kpr in step
R4 and C3 = h(C2 ⊕ PV) ⊕ C2 ⊕ PV. Next, S checks C1 = C3. If they are equal, S
authenticates U.

4.3 “Forget Password” Protocol

FP1. U → S: “forget password” request.
FP2. S → U: Auth′Q, RF.

S generates a random nonce RF, and then sends AUTH ′Q and RF to U.
FP3. U → S: ESpu(FP, U′id).

U computes FP = Auth′Q ⊕ Auth′A ⊕ RF, and encrypts it and U′id with S’s public key.
Next, U sends ESpu(FP, U′id) to S.

FP4. S → U: AuthA ⊕ K′u, AuthA ⊕ P′.

SECURE HASH-BASED STRONG-PASSWORD AUTHENTICATION

1223

S decrypts DSpr(ESpu(FP, U ′id)), and derives D1 = Auth′Q ⊕ Auth′A by XORing FP with
RF. S then derives D2 = AuthQ ⊕ AuthA by XORing QAK with Kpr that was stored in
step R4. After that, S checks D1 = D2. If they are equal, S decrypts UKP, DSpr(ESpu
(Uid, K′u, P′)) that was stored in step R4. Otherwise, S rejects this request. Next, S
derives K′u, Uid and P′, and then checks U′id = Uid. If they are equal, S computes Au-
thA ⊕ K′u and AuthA ⊕ P′, and then sends these values to U. If not, S terminates this
session.

FP5. U obtains the former password P and private key Ku by XORing AuthA ⊕ K′u and
AuthA ⊕ P′ with AuthA.

4.4 Password/Verifier Change Protocol

PC1. U → S: password-change request.
PC2. S → U: Auth′Q, RC.

S generates a random nonce RC, and sends Auth′Q and Rc to U.
PC3. U → S: ESpu(W1, Pnew, Kunew, Uidnew).

U computes W1 = Auth′Q ⊕ Auth′A ⊕ RC ⊕ h(Ku || P || Uid), and encrypts W1 and the
new values of Kunew, Pnew, and Uidnew with S’s public key. Next, U sends (ESpu(Auth′Q ⊕
Auth′A ⊕ RC ⊕ h(Ku || P || Uid), Kunew, Pnew, Uidnew) to S.

PC4. S decrypts DSpr(ESpu(W1, Kunew, Pnew, Uidnew)), and obtains W1, Kunew, Pnew, and Uidnew. S
then computes P2 = AuthQ ⊕ AuthA by XORing QAK with Kpr that was stored in
step R4 and W3 = SV ⊕ Kpr = h(Ku || P || Uid) using the stored SV and Kpr in step R4.
Next, S computes W4 = W2 ⊕ RC ⊕ W3 and checks W1 = W4. If they are equal, then S
stores a new SV ′ = h(Kunew || Pnew || Uidnew) ⊕ Kpr, a new PV ′ = h(Kunew || Pnew) ⊕ Kunew, a
new UKP′ = (ESpu(Uidnew, Kunew, Pnew), and QAK = AuthQ ⊕ AuthA ⊕ Kpr in his pass-
word file.

5. SECURITY ANALYSIS

We will briefly demonstrate that the proposed scheme is secure against guessing,
stolen-verifier, replay, denial-of-service, and impersonation attacks.

5.1 Guessing Attack

By nature, due to the use of a strong password, this scheme is able to resist the

off-line guessing attack. Additionally, the user’s password is always secretly concealed
with the private key Ku within the hash function, since it is hard to find P and Ku from
h(Ku || P) ⊕ Ku. Therefore, no one can reveal the user’s password P without U’s permis-
sion.

5.2 Stolen-Verifier Attack

The server stores the verifier of user’s password instead of the clear text of the

password. In the stolen-verifier attack, the adversary who has stolen the password veri-
fier from the server uses it directly to masquerade as a legitimate user. If the adversary

MINHO KIM AND ÇETIN KAYA KOÇ

1224

obtains a copy of the password verifier h(Ku || P) ⊕ Ku in step R1, he also can obtain Ts by
copying h(Ku || P) ⊕ Ku and computing PV ⊕ Ts with the previous stolen verifier PV in
step R2. However, the adversary can neither get any information nor manipulate after
step R3 without the server’s private key. Since it is hard to find P and Ku in h(Ku || P) ⊕
Ku, the adversary cannot derive h(Ku || P || Uid) ⊕ Kpr to obtain the sealed-verifier SV from
h(Ku || P) ⊕ Ku. Even though the adversary intercepts password verifiers in steps R1 and
R2, the adversary cannot use them since there is no way to derive Uid before step R2 for
registration. In step R3, since Uid is encrypted with the server’s public key, the attacker
cannot obtain Uid without the server’s private key Kpr. The adversary also cannot obtain
h(h(Ku || P || Uid) ⊕ PV) for login from h(Ku || P) ⊕ Ku. Even if the adversary steals SV =
h(Ku || P || Uid) ⊕ Kpr and AuthQ ⊕ AuthA ⊕ Kpr from the server, he cannot open them with-
out the server’s private key. If the adversary obtains the server’s private key, he is able to
get any information. However, we assumed the server’s private key Kpr is kept as a top
secret on the server. If Kpr is released, not only does the server’s private key need to be
changed, but all users should be re-registered too. Since we use the verifier and other
unknown values (e.g. Kpr or Ku) together, even if the attacker steals the verifier, he will
not use it anywhere without knowing Kpr or Ku. Thus, our scheme can resist any stolen-
verifier attacks.

5.3 Replay Attack

The replay attack is an offensive action in which the adversary impersonates or de-

ceives another legitimate participant through the reuse of information obtained in proto-
cols. It indicates an attempt by an unauthorized third party to record exchanged messages.
In step L3, since Uid is hashed with two other unknown values Ku and P, the attacker
cannot obtain Uid without the knowledge of Ku and P. The adversary is able to steal PV in
step R1 and rs in step L2, and then obtain h(h(K*

u || P*
 || Uid) ⊕ PV ′) ⊕ h(K*

u || P*
 || Uid).

However, he cannot get any information for login, “forget password” and change pass-
word protocols. After that, the adversary will try to change C*

1 = h(h(K*
u || P*

 || U*
i d ⊕ PV′)

⊕ h(K*
u || P*

 || U*
i d) ⊕ PV′ with his own values P*, U*

i d and PV′. However, the server will
detect it as modified (i.e. C*

1 ≠ C2) in step L4, since the attacker needs the encrypted val-
ues with Kpr such as Ku, P, and AuthA. The adversary can steal PV and AuthQ in steps R1
and R2, respectively. After that, he will use them for the replay attack. However, this
attack cannot be successful, since the adversary needs to know the sealed-verifier SV and
the server’s private key Kpr for this attack. Consequently, our proposed scheme can resist
a replay attack.

5.4 Denial-of-Service Attack

This attack is characterized by the explicit attempt of an attacker to prevent legiti-

mate users of a service from using that service. This attempt includes several different
flavors: disrupting service to a specific system or user, preventing a particular user from
accessing a service, or denying requests issued by a legitimate user. The adversary, how-
ever, is unable to change the user’s password without the user’s permission in our
scheme, since it is hard to find P and Ku not only in h(Ku || P) ⊕ Ku , but also in h(h(Ku || P
|| Uid) ⊕ Kpr) ⊕ h(Ku || P || Uid) ⊕ Kpr. There is no chance to change the password or veri-

SECURE HASH-BASED STRONG-PASSWORD AUTHENTICATION

1225

fier in step R3 or L3. Therefore, our improved scheme can resist a denial-of-service at-
tack.

5.5 Impersonation Attack

This attack deceives the identity of one of the legitimate parties. An attacker inserts

or changes a message and claims that it originated from a real sender. If the adversary
impersonates U and wants to get the user's former password P, he should attack the “for-
get password” protocol. Since he does not know AuthA, he cannot obtain the password. If
the attacker wants to get the password, he needs to know Kpr for decryption. Moreover, in
our protocol, AuthA is always protected with a S’s private key Kpr and other unknown
values such as RC, RF, and h(Ku || P || Uid). If the adversary logs in the system successfully,
he could try to change it with his own password P*. However, to change the password,
the adversary would need to attack the password/verifier change protocol and know Ku,
AuthA, and SV, which is impossible. Thus, our proposed scheme can also resist a imper-
sonation attack.

6. CONCLUSIONS

In this paper, we have proposed a secure hash-based strong-password authentication
protocol using one-time public-key cryptography that includes not only secure registra-
tion and login authentication, but secure “forget password” and password/verifier change
protocols. It is more secure against guessing, stolen-verifier, replay, denial-of-service,
and impersonation attacks.

REFERENCES

1. C. M. Chen and W. C. Ku, “Stolen-verifier attack on two new strong-password au-
thentication protocols,” IEICE Transactions on Communications, Vol. E85-B, 2002,
pp. 2519-2521.

2. N. M. Haller, “The S/KEY(TM) one-time password system,” Internet Society Sym-
posium on Network and Distributed System Security, 1994, pp. 151-158.

3. W. C. Ku, “A hash-based strong-password authentication scheme without using
smart cards,” ACM Operating System Review, Vol. 38, 2004, pp. 29-34.

4. W. C. Ku, M. H. Chiang, and S. T. Chang, “Weaknesses of Yoon-Ryu-Yoo’s hash-
based password authentication scheme,” ACM Operating System Review, Vol. 39,
2005, pp. 85-89.

5. W. C. Ku, C. M. Chen, and H. L. Lee, “Cryptoanalysis of a variant of Peyravian-
Zunic’s password authentication scheme,” IEICE Transactions on Communications,
Vol. E86-B, 2003, pp. 1682-1684.

6. M. Kim and Ç. K. Koç, “A simple attack on a recently introduced hash-based
strong-password authentication scheme,” International Journal of Network Security,
Vol. 1, 2005, pp. 77-80.

7. M. Kim and Ç. K. Koç, “A simple attack on a recently introduced hash-based secure

MINHO KIM AND ÇETIN KAYA KOÇ

1226

user authentication scheme,” International Journal of Computer Science and Net-
work Security, Vol. 6, 2006, pp. 157-160.

8. W. C. Ku, H. C. Tsai, and S. M. Chen, “Two simple attacks on Lin-Shen-Hwang’s
strong-password authentication protocol,” ACM Operating System Review, Vol. 37,
2003, pp. 26-31.

9. L. Lamport, “Password authentication with insecure communication,” Communica-
tions of the ACM, Vol. 24, 1981, pp. 770-772.

10. C. C. Lee, L. H. Li, and M. S. Hwang, “A remote user authentication scheme using
hash functions,” ACM Operating System Review, Vol. 36, 2002, pp. 23-29.

11. C. L. Lin, H. M. Sun, and T. Hwang, “Attacks and solutions on strong-password au-
thentication,” IEICE Transactions on Communications, Vol. E84-B, 2001, pp. 2622-
2627.

12. C. W. Lin, J. J. Shen, and M. S. Hwang, “Security enhancement for optimal strong-
password authentication protocol,” ACM Operating System Review, Vol. 37, 2003,
pp. 7-12.

13. M. Matsui, “New block encryption algorithm MISTY,” Fast Software Encryption,
LNCS 1267, Springer-Verlag, 1997, pp. 54-68.

14. National Institute for Standards and Technology, “Data encryption standard (DES),”
FIPS 46-3, Oct 1999.

15. M. Peyravian and N. Zunic, “Methods for protecting password transmission,” Com-
puters and Security, Vol. 19, 2000, pp. 466-469.

16. M. Sandirigama, A. Shimizu, and M. Noda, “Simple and secure password authenti-
cation protocol (SAS),” IEICE Transactions on Communications, Vol. E83-B, 2000,
pp. 1363-1365.

17. A. Shimizu, “A dynamic password authentication method by one-way function,”
IEICE Transactions on Information and Systems, Vol. E73-DI, 1990, pp. 630-636.

18. A. Shimizu, T. Horioka, and H. Inagaki, “A password authentication method for con-
tents communication on the internet,” IEICE Transactions on Communications, Vol.
E81-B, 1998, pp. 1666-1673.

19. A. Shimizu and S. Miyaguchi, “Fast data encipherment algorithm FEAL,” IEICE
Transactions, Vol. J70-D, 1987, pp. 1413-1423.

20. T. Tsuji and A. Shimizu, “An implementation attack on one-time password authenti-
cation protocol OSPA,” IEICE Transactions on Communications, Vol. E86-B, 2003,
pp. 2182-2185.

21. E. J. Yoon, E. K. Ryu, and K. Y. Yoo, “A secure user authentication scheme using
hash functions,” ACM Operating System Review, Vol. 38, 2004, pp. 62-68.

Minho Kim is currently an assistant professor of Computer Science at Korea Air

Force Academy and has also been working in Electrical Engineering and Computer Sci-
ence at Oregon State University. He received his Ph.D. degree from Oregon State Uni-
versity. Dr. Kim’s research interests include algorithms and protocols for cryptography,
computer arithmetic, computer and network security, and wireless communications.

SECURE HASH-BASED STRONG-PASSWORD AUTHENTICATION

1227

Çetin Kaya Koç received his Ph.D. (1988) degree in Electrical and Computer En-
gineering from University of California, Santa Barbara. After working for the University
of Houston from 1988-1992 as an Assistant Professor, he moved to Oregon State Uni-
versity, where is a full professor. Dr. Koç has founded Information Security Laboratory
at Oregon State University to coordinate faculty and graduate student research efforts
concentrated on cryptography, information security, and electronic commerce. In Sep-
tember 2001, he received OSU College of Engineering Research Award for Outstanding
and Sustained Research Leadership. his research interests are in cryptographic engineer-
ing, algorithms and architectures for cryptography, computer arithmetic and finite fields,
parallel algebraic computation, and network security. He has co-founded the Workshop
on Cryptographic Hardware and Embedded Systems (CHES) in 1999 and has been the
program co-chair and proceedings editor from 1999 to 2003. He is currently a permanent
member of the steering committee of CHES. The Proceedings of CHES Workshops are
published by Springer in the Lecture Notes in Computer Science (LNCS) series. He was
the Guest Co-Editor of the special issue in April 2003 of IEEE Transactions on Com-
puters on cryptographic hardware and embedded software development. He is also in the
editorial boards of IEEE Transactions on Computers and IEEE Transactions on Mobile
Computing. He is a member of IEEE and IEEE Computer Society. He has become an
IEEE Fellow (effective January 1, 2007) for his contributions to cryptographic engineer-
ing. He has been working as a consulting engineer with research and development inter-
ests in cryptographic engineering and embedded systems for several companies including
Intel, RSA Security, Samsung Electronics, and Texas Instruments.

