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Measuring the distance between equivalence classes has its theoretical and practical
merit, in particular, in the aspect of rough sets or the application on information systems.
The typical metric for measuring the distance between partitions is the Hausdorff metric.
Another candidate is the minimal matching metric which matches the pairwise minimal dis-
tance between the compartments. However, both methods need to involve or imbed Jaccard
metric, which is essentially a static metric and less informative, since it scales the distance
between 0 and 1. In this article, we devise a third metric which is defined inductively by
some non-negative real functions. This mechanism enables its flexibility in applying metrics
in real problems and delve deeper into the structures. We then apply this hereditary met-
ric on two occasions: one with simulated data regarding algorithms and the other with real
data regarding ontology population process. This metric per se is suitable for categorising
procedures, methods, or other attributes.

Keywords: equivalence classes, information system, hereditary distance, ontology popula-
tion, algorithms

1. INTRODUCTION

Seeking or finding the underlying correlation or causality between variables are vital
in forming knowledge and decision making. However, in real world, one needs to involve
the uncertainty when modelling the real situations. Traditionally people tend to use rough
sets, fuzzy set or soft sets to deal with such uncertainty [1–3]. Other coordinating theories
or tools, such as statistical methods, or the combination of these analytical techniques are
normally required in order to combat some real complicated problems [4–6]. Correlation
could be revealed either by similarity indexes or distance functions. For the similarity
index parts, in addition to solely mathematical approaches or analysis, there exist other
parametric and non-parametric statistical methods, such as Pearson/Spearman correlation,
Paired t-test/Wilcoxon rank sum test, unpaired t test/Mann-Whitney U test [7, 8], etc.
Regarding the distance function part, there are mainly three types of distance functions for
partition space: minimal matching of two partitions [9], Hausdorff metric (or its variant
[10]) embedded with Jaccard metric (indeed Hausdorff metric could be embedded with
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any distance function, but for nominal data, Jaccard metric is a good candidate), and
the hereditary metric devised in this article. The advantage for Hausdorff metric used
in partition space is the computational convenience and its wide applications [11, 12];
however there exist some disadvantages for this metric, when one deals with nominal type
data, in particular the embedded Jaccard metric, which is essentially a static metric and
which squeezes the values of Hausdorff distance for partitions within 0 and 1 – this makes
it more like a camouflage of similarity index. Moreover, Jaccard metric tends to ignore
the data structures, or more precisely, it ditches the structures and purely focuses on the
nominal difference between measured entities. On the other hand, the minimal matching
method is very computational resource consuming, since it considers all the permutations
between the measured entities. In addition, it is mainly designed for numerical positive
data. For the nominal type data, it also needs to embed other set-related metric, such as
Jaccard metric.

This paper is motivated by these disadvantages and by the setting of rough sets, in
particular the treatment of information systems or data via equivalence classes or parti-
tions. Therefore, we need to devise a metric that could properly measure the distance
between equivalence classes that could minimise the above-mentioned disadvantages and
provide much flexibility in real application. In this article, we devise a metric based on the
hereditary values derived via three non-negative functions τ,σ and ρ: τ function tackles
the measurement of subsets of a universe (or it could be deemed as a weighing function
for compartments in a partition), which makes it capable of adaptable to real application,
while σ and ρ functions record the hereditary difference between structures (or compart-
ments). This also avoids the typical Hausdorff metric, which tends to ignore the structure
difference.

A complete description and proof of this hereditary metric and its applications are
presented in this article. In Section 2, we define the partition operation (union, inter-
section, and partial ordering) and their properties. In Section 3, we define a hereditary
metric – a metric deductively defined via three non-negative real functions τ,σ and ρ

– and show it satisfies all the axiomatic criteria for a metric. In Section 4, we apply the
hereditary metric on an information system regarding algorithms and problems, and study
the correlation between problems. In Section 5, we further apply this metric on some real
data regarding ontology population process (OPP). We study the correlation between the
procedures for OPP. There are several characteristics of this hereditary metric:

1. This metric generalizes the distance function δ between two non-empty pure sets A
and B, where δ (A,B) is defined by δ (A,B) = |A|+|B|

2 −|A∩B|. This format of metric
could be further extended into or derived from other (spatial) structural metric [13,
14];

2. It serves as an alternative for Hausdorff metric over partition space. Our metric
keeps some degree of flexibility by introducing several hierarchies into the struc-
ture of the distance function – this property also enables us to amend the metric
according to the real problems and applications;

3. This metric enables one to assigning weights to compartments or partitions, which
shall further enrich the application of rough sets.

Let us summarize the main contributions of this article:
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1. We have devised a hereditary metric that measures the distance between any two
equivalence classes. The proposed metric is much practical in real applications;

2. We have shown how to apply our distance function on information systems regard-
ing problem classification and ontology population process procedure categorisa-
tion;

3. Our distance function could be further applied on classifying algorithms, clustering
analysis, or even classifiers when they are treated as the attributes.

2. DEFINITIONS AND CLAIMS

Let S be an arbitrary non-empty finite set and |S| be its cardinality. Let P(S) denote
the power set of S and PP(S) denote the power set of P(S). One observes that PT (S) ⊆
PP(S). Let PT (S) denote the set of all the partitions of S. For any set of sets K =
{K1,K2, ...,Kn}, let ∪K denote the union K1 ∪K2...∪Kn. If all the elements in K are
pairwise disjoint, we use the notation ⊎K to represent such union operation. Let A,B,C∈
PT (S) and U,V ∈ PP(S) be arbitrary throughout this article.

Definition 2.1. (operation ⊓ on PP(S)) Define U⊓V= {U ∩V : U ∩V ̸= /0,U ∈ U,V ∈
V}.

Basically it is the set for two sets under ∩-associative law, in which ∩ corresponds to
logical operator “and” under uncertain reasoning. The distance connects to the concept of
overlapping: one could expect that two sets are closer if and only if their overlap is larger.

Example 1. Let us link the concept of equivalence classes with rough set theory. Suppose
the universe U consists of 11 objects (or U = {b1,b2, · · · ,b11}). Suppose there are three
attributes: a1,a2 and a3. The attribute values for a1 are good, bad and normal; for a2
are long and short; and for a3 are yellow, red and green. The corresponding informa-
tion system is shown in Table 1. The induced partitions based on the attribute-induced

Table 1. Information system.
U attribute 1 or a1 attribute 2 or a2 attribute 3 or a3

b1 good long yellow
b2 bad long red
b3 good short green
b4 normal short green
b5 normal short yellow
b6 bad long yellow
b7 bad short red
b8 normal long red
b9 bad short green
b10 bad long green
b11 good short red



356 RAY-MING CHEN

equivalence relations are:

• U/a1 = {a11 = {b1,b3,b11},a12 = {b2,b6,b7,b9,b10},a13 = {b4,b5,b8}} ∈
PT (U);

• U/a2 = {a21 = {b1,b2,b6,b8,b10},a22 = {b3,b4,b5,b7,b9,b11}} ∈ PT (U);

• U/a3 = {a31 = {b1,b5,b6},a32 = {b2,b7,b8,b11},a33 = {b3,b4,b9,b10}} ∈
PT (U).

By the above definition, one has

• U/a1 ⊓U/a2 = {{b1},{b3,b11},{b2,b6,b10},{b7,b9},{b8},{b4,b5}} ∈ PT (U);

• U/a1 ⊓U/a3 = {{b1},{b3},{b11},{b6},{b2,b7},{b9,b10},{b5},{b8},
{b4}} ∈ PT (U);

• U/a2 ⊓U/a3 = {{b1},{b2,b8},{b6},{b10},{b5},{b7,b11},{b3,b4,
b9}} ∈ PT (U).

Claim 1. A⊓A= A,A⊓B= B⊓A, and (A⊓B)⊓C= A⊓ (B⊓C).

Proof. The results follow directly from Definition 2.1.

Claim 2. (⊎A)∩ (⊎B) = S = ⊎(A⊓B).

Proof. Since ⊎A= ⊎B= S, it suffices to show (⊎A)∩ (⊎B) = ⊎(A⊓B). Let x ∈ (⊎A)∩
(⊎B) be arbitrary. Then one has x ∈ ⊎A and x ∈ ⊎B, i.e., there exist A ∈ A and B ∈ B
such that x ∈ A∩B. This, by Definition 2.1, shows x ∈ ⊎(A⊓B). On the other hand, by
assuming x ∈ ⊎(A⊓B), we could reach the result that x ∈ (⊎A)∩ (⊎B).

Corollary 1. (closure) PT (S) is closed under ⊓.

Proof. Let A,B ∈ PT (S) be arbitrary. We show A⊓B ∈ PT (S). In Claim 2, we have
shown ∪(A⊓B) = S. Hence it suffices to show every distinct C,D ∈ A⊓B,C∩D = /0.
Suppose C = AC ∩BC,D = AD∩BD; where AC,AD ∈A and BC,BD ∈B. If C∩D ̸= /0, then
AC ∩AD ̸= /0, and BC ∩BD ̸= /0,i.e., AC = AD and BC = BD, i.e., C = D, a contradiction.
Therefore C∩D = /0.

Definition 2.2. (refinement ≤ on PP(S)) Define U ≤ V if and only if ∀V ∈ V∃Z ⊆ U
such that ⊎Z = V . We say U is a refinement of V. If U ̸= V and U ≤ V, we say U is a
strict refinement of V, denoted by U< V, i.e., U≤ V and

∃V ∈ V∃Z⊆ U[|Z|> 1,⊎Z=V ].

If U is not a refinement of V, we use the notation U≰ V, i.e.,

∃V ∈ V∀Z⊆ U[⊎Z ̸=V ].

Claim 3. Basic statements
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• (1st Statement) A≤ B⇔∀A ∈ A∃B ∈ B[A ⊆ B];

• (2nd Statement) A< B⇔ [A≤ B and ∃A ∈ A∃B ∈ B(A ⊊ B)].

• (3rd Statement) A≤ B⇒ [|A| ≥ |B| and (A< B⇒ |A|> |B|)].

Proof. For the first statement: Let A ∈ A be arbitrary. Then ∃B ∈ B s.t. A∩B ̸= /0. By
A≤ B, it then follows ∃Z⊆ A such that ⊎Z= B, i.e., A∩⊎Z ̸= /0, i.e., A ⊆ ⊎Z= B. On
the other hand, assume

∀A ∈ A∃B ∈ B[A ⊆ B]. (1)

Let B ∈ B be arbitrary. Let

Z= {A ∈ A : A∩B ̸= /0} ⊆ A.

Obviously, Z ̸= /0 and by Eq. (1)

∀A ∈ Z∃BA ∈ B[A ⊆ BA], (2)

i.e., BA ∩B ̸= /0, i.e., ∀A ∈ A[BA = B], i.e., by Eq. (2)

∀A ∈ Z[A ⊆ B],

i.e., by the definition ⊎Z= B. For the second statement: Since A< B,

∃B ∈ B∃Z⊆ A[|Z|> 1,⊎Z= B],

i.e., ∃A ∈ A[A ⊊ B]. On the other hand, choose A ∈ A,B ∈ B such that A ⊊ B. Let
Z = {A ∈ A : A∩B ̸= /0} ⊆ A. Then |Z| > 1 and ⊎Z = B. For the third statement: It
follows immediately from the above results and the definition.

Claim 4. ≤ is a partial ordering on PT (S).

Proof. It follows directly from Claim 3.

Claim 5. 1. A⊓B≤ A,B and |A⊓B| ≥ |A|, |B|;

2. A ̸= B⇔ [A⊓B< A or A⊓B< B];

3. A= B⇔ [A⊓B= A and A⊓B= B];

4. A ̸= B⇔ [|A⊓B|> |A| or |A⊓B|> |B|];

5. A= B⇔ [|A⊓B|= |A|= |B|].

Proof. Firstly, by Corollary 1, A⊓B ∈ PT (S) and then by Claim 3, the results follow.
Secondly, let A ̸= B. Then ∃A ∈ A∃B ∈ B s.t. A∩B ⊊ A or A∩B ⊊ B, i.e., by Claim 3,
A⊓B < A or A⊓B < B. For the third statement, it follows immediately from the first
and second ones. The fourth and fifth ones come from Claim 3.
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Corollary 2. 1. |A⊓B| ≥ max{|A|, |B|};

2. A ̸= B iff |A⊓B|> min{|A|, |B|}.

Proof. Both statements follow immediately from Claim 5.

Claim 6. For any S⊆ B[A⊓S⊆ A⊓B], in particular, S= {B} for any B ∈ B.

Proof. It follows immediately from the definition.

Claim 7. If A≤ B,A ∈ A,B ∈ B and A∩B ̸= /0, then A ⊆ B.

Proof. By the definition, ∃Z⊆ A s.t. ⊎Z= B, i.e., A∩ (⊎Z) ̸= /0, i.e., A ⊆ ⊎Z= B.

3. SETTINGS OF A METRIC

In this section, we devise a metric which measures the distance between two parti-
tions. This metric is well equipped with several characteristics:

• It would investigate the subtle differences between the two partitions via three non-
negative real functions τ,σ and ρ . The partitions or their derived subsets are re-
garded as nodes, while τ,σ and ρ are deemed as weighting functions for the nodes
or the edges.

• It derives a tree-like structure distance. The distance between partitions are defined
by the assigned weights for their compartments, in which the assigned weights are
assigned by the subsets of these compartments.

• The three-level weighting approaches could also be easily reduced to two-level,
which is the typical method in devising distance functions.

• The three-level structures are easy to be linked to other probabilistic or fuzzy rea-
soning.

Suppose τ : P(S)→ R+ is a non-negative real function with a property that τ(K) = 0 if
and only if K is an empty set. This function could play the role in assigning weights or
probabilities for the nodes, which reflect the structure of the partitions.

Let S,T ⊆ A be arbitrary. Based on the hierarchical structure defined via ⊆ and ∈,
we have the following functions.

Definition 3.1. (σ function) Define σ : P(S)→ R+ by σ(A) := ∑
H∈P(A)

τ(H).

Definition 3.2. (ρ function) Define ρ : PP(S)→ R+ by ρ(U) := ∑
U∈U

σ(U).

Example 2. Suppose A = {A1,A2, ...,An} ⊆ P(S), i.e., each A j is a subset of S. Suppose
the power set of each A j, or P(A j) = {H j1,H j2, ...,H jm j} ⊆ A j, i.e., each H jk is a subset
of A j for all j ∈ {1,2, ...,n}.

Then the hierarchical structure of these functions could be illustrated in Fig. 1.
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Fig. 1. τ,σ and ρ functions.

Definition 3.3. Define a U−partition-induced subsets in total (or PST (U)) by PST (U) :=
∪{P(U) : U ∈ U}, i.e., PST (U) is the union of all the subsets of the compartments in U.

Claim 8. 1. ∀A,A′ ∈ A[A ̸= A′ ⇔ P(A)∩P(A′) = /0];

2. PST (T) =
⊎

V∈T
P(V ).

Proof. Both follow immediately from the definition.

Claim 9. 1. ρ(T) = ∑
H∈PST (T)

τ(H);

2. (monotonicity) U⊆ V⇒ PST (U)⊆ PST (V);

3. (monotonicity) PST (A)⊆ PST (B)⇒ ρ(A)≤ ρ(B).

Proof. By the definitions and Claim 8, the first statement holds via

ρ(T) = ∑
T∈T

σ(T ) = ∑
T∈T

∑
H∈P(T )

τ(H) = ∑
H∈PST (T)

τ(H).

For the second statement, it follows immediately from the definition. For the third state-
ment, it follows immediately from the first statement.

Claim 10. If K,H⊆ A and K∩H= /0, then

1. PST (K⊎H) = PST (K)⊎PST (H);

2. ρ(K⊎H) = ρ(K)+ρ(H).
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Proof. For the first statement: Let U ∈ PST (K⊎H). Then ∃V ∈ K⊎H such that U ∈
P(V ). Since K∩H= /0, it follows V ∈K or V ∈H, i.e.,

U ∈ PST (K)∪PST (H).

Therefore, we have shown PST (K⊎H) ⊆ PST (K)∪PST (H). With this and Claim 9, it
follows

PST (K⊎H) = PST (K)∪PST (H).

Next, we show PST (K)∩ PST (H) = /0. Suppose PST (K)∩ PST (H) ̸= /0. Let W ∈
PST (K)∩PST (H) be arbitrary. By definition,

∃K ∈K⊆ A,H ∈H⊆ A s.t. W ∈ P(K),W ∈ P(H),

i.e., W ⊆ K ∈ A and W ⊆ H ∈ A, i.e., K ∩H ̸= /0. Hence K = H, i.e., K∩H ̸= /0, a
contradiction. For the second statement: By the first statement and Claim 9, one has
ρ(K⊎H) =

∑
H∈PST (K⊎H)

τ(H) = ∑
H∈PST (K)

τ(H)+ ∑
H∈PST (H)

τ(H) = ρ(K)+ρ(H).

In the following, we define a distance function d on PT (S).

Definition 3.4. (distance function) Define the distance between A and B by

d(A,B) :=
1
2
· [ρ(A)+ρ(B)]−ρ(A⊓B).

From the definitions, we know the distance depends also on the function τ .

Claim 11. Suppose A = ⊎{Ai|1 ≤ i ≤ m} , B = ⊎{Bi|1 ≤ i ≤ n} and A ⊓ B =
⊎{Di|1 ≤ i ≤ v} for some v ∈ N. If τ(H) = |H| for all H ∈ P(S), then d(A,B) =

m

∑
j=1

|A j |

∑
k=0

|A j| ·2|A j |−1 +
n

∑
j=1

|B j |

∑
k=0

|B j| ·2|B j |−1

2 −
v

∑
j=1

|D j |

∑
k=0

|D j| ·2|D j |−1.

Proof. Let C be the notation for combination. By the definition,

d(A,B)=

m

∑
j=1

|A j |

∑
k=0

|A j| ·Ck
|A j |+

n

∑
j=1

|B j |

∑
k=0

|B j| ·Ck
|B j |

2 −
v

∑
j=1

|D j |

∑
k=0

|D j| ·Ck
|D j |, and the fact that

m

∑
i=0

i ·(
m
i

)
= m ·2m−1 and τ(H) = |H|, the result follows.

Claim 12. (equality) If U is a set of disjoint non-empty sets and V is a disjoint non-empty
sets, then

PST (U) = PST (V)⇔ U= V.
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Proof. Let U ∈ U be arbitrary. Then by the definitions,

U ∈ P(U)⊆ PST (U) = PST (V),

i.e., U ∈ PST (V), i.e.,

∃V ∈ V s.t. U ∈ P(V ),

i.e., U ⊆V . Similarly ∃Ũ ∈ U s.t. V ⊆ Ũ , i.e., U ⊆V ⊆ Ũ . Hence

V = Ũ =U ∈ V.

Therefore, we have shown U⊆V and by the same procedure, V⊆U. This completes our
proof.

Claim 13. (monotonicity)

1. A≤ B⇔ [PST (A)⊆ PST (B)];

2. A≤ B⇒ ρ(A)≤ ρ(B);

3. A< B⇒ [PST (A)⊊ PST (B) and ρ(A)< ρ(B)].

Proof. For the first statement: Let H ∈ PST (A) be arbitrary. By Definition 3.3, ∃A ∈
[H ∈ P(A)]. Since ∃B ∈ B such that A∩B ̸= /0, by Claim 7 H ⊆ A ⊆ B, i.e., H ∈ P(B),
i.e., H ∈ PST (B). Hence we have shown

∀A ∈ A∃B ∈ B[A ⊆ B],

which by Claim 3 yields A ≤ B. On the other hand, let A ∈ A be arbitrary. Then by the
definition

P(A)⊆ PST (A)⊆ PST (B),

i.e., A ∈ PST (B), i.e., by the definition ∃B ∈ B s.t. A ∈ P(B), i.e., A ⊆ B. For the second
statement: ρ(A) ≤ ρ(B) follows immediately from the first statement and Claim 9. For
the third statement: By the first and second statements and Claim 12, the results follow.

Claim 14. For any B,B′ ∈ B

(A⊓{B})∩ (A⊓{B′}) ̸= /0 iff B = B′.

Proof. Let

K ∈ (A⊓{B})∩ (A⊓{B′})

be arbitrary. Then ∃A, Ã ∈ A s.t. K = A∩B = Ã∩B′, i.e., B∩B′ ̸= /0, i.e., B = B′.

Lemma 3.1. 1. A⊓B=
⊎

B∈B
(A⊓{B});
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2. ρ(A⊓B) = ∑
B∈B

ρ(A⊓{B}) and ρ(B⊓C) = ∑
B∈B

ρ(C⊓{B});

3. ρ(B) = ∑
B∈B

ρ({B});

4. ρ(A⊓B⊓C) = ∑
B∈B

ρ(A⊓{B}⊓C).

Proof. For the first statement: A⊓B =
⊎

B∈B
(A⊓{B}) follows immediately from Claim

6 and 14. For the second statement: We show the front one. By the first statement and
Claim 10, it follows

ρ(A⊓B) = ρ(
⊎

B∈B
(A⊓{B})) = ∑

B∈B
ρ(A⊓{B}).

For the third statement: By Claim 10

ρ(B) = ρ(
⊎

B∈B
{B}) = ∑

B∈B
ρ({B}).

The fourth statement follows immediately from the above statements.

Given B ∈ B, we use Ki j to denote the set Ai ∩B∩C j, whenever Ai ∈ A and C j ∈ C.

Remark 1. If Ki j ̸= /0 and Ki′ j′ ̸= /0, then one has Ki j ∩Ki′ j′ ̸= /0 if and only i = i′, j = j′.
Furthermore, P(Ki j)∩P(Ki′ j′) ̸= /0 if and only if i = i′ and j = j′.

Based on Remark 1 and Claim 10, we have the following proofs.

Claim 15. 1. PST (A⊓{B}) =
|A|⊎
i=1

P(
|C|⊎
j=1

Ki j);

2. PST (C⊓{B}) =
|C|⊎
j=1

P(
|A|⊎
i=1

Ki j);

3. PST ({B}) = P(
|A|⊎
i=1

|C|⊎
j=1

Ki j);

4. PST (A⊓{B}⊓C) =
|A|⊎
i=1

|C|⊎
j=1

P(Ki j).

Proof. The first statement follows immediately from the following inferences:

H ∈ PST (A⊓{B})
⇔∃Ai ∈ A s.t. H ∈ P(Ai ∩B)

⇔∃Ai ∈ A s.t. H ⊆ Ai ∩B ⊆ Ai ∩B∩S = Ai ∩B∩ (⊎C)

=

|C|⊎
j=1

(Ai ∩B∩C j).
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This leads to the necessary and sufficient conditions that

∃Ai ∈ A s.t. H ∈ P(
|C|⊎
j=1

(Ai ∩B∩C j))⊆
|A|⊎
i=1

P(
|C|⊎
j=1

(Ai ∩B∩C j))

=

|A|⊎
i=1

P(
|C|⊎
j=1

Ki j).

Similarly, one could show the second statement. The third statement follows from the
following inferences:

P(B) = P(B∩S∩S) = P(B∩ (⊎A)∩ (⊎C))

= P(B∩ (

|A|⊎
i=1

Ai)∩ (

|C|⊎
j=1

C j)) = P(
|A|⊎
i=1

|C|⊎
j=1

Ai ∩B∩C j)

= P(
|A|⊎
i=1

|C|⊎
j=1

Ki j).

The fourth statement follows from the following inferences:

H ∈ PST (A⊓{B}⊓C)
⇔ H ∈ P(Ai ∩B∩C j) = P(Ki j) for some Ai ∈ A,C j ∈ C

⊆
|A|⊎
i=1

|C|⊎
j=1

P(Ki j).

Claim 16. P(
|C|⊎
j=1

Ai ∩B∩C j)∩PST (C⊓{B}) =
|C|⊎
j=1

P(Ai ∩B∩C j) for all Ai ∈ A.

Proof. Let Ai ∈A be arbitrary. Then the statement follows from the following inferences:

H ∈ P(
|C|⊎
j=1

Ai ∩B∩C j)∩PST (C⊓{B})

⇔ H ⊆
|C|⊎
j=1

Ai ∩B∩C j,H ∈ PST (C⊓{B})

⇔ H ⊆ Ai ∩B∩ (

|C|⊎
j=1

C j) = Ai ∩B∩S = Ai ∩B and

H ⊆Ck ∩B for some Ck ∈ C.
⇔ H ⊆ Ai ∩B∩Ck for some Ck ∈ C.
⇔ H ∈ P(Ai ∩B∩Ck) for some Ck ∈ C

⊆
|C|⊎
j=1

P(Ai ∩B∩C j).
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Claim 17. PST (A⊓{B})∩PST (C⊓{B}) = PST (A⊓{B}⊓C).

Proof. It follows immediately from the following inferences:

PST (A⊓{B})∩PST (C⊓{B})

=

|A|⊎
i=1

P(
|C|⊎
j=1

Ai ∩B∩C j)∩PST (C⊓{B})( by Claim 15)

=

|A|⊎
i=1

[P(
|C|⊎
j=1

Ai ∩B∩C j)∩PST (C⊓{B})]

=

|A|⊎
i=1

|C|⊎
j=1

P(Ai ∩B∩C j)( by Claim 16 )

= PST (A⊓{B}⊓C)( by Claim 15)

Lemma 3.2. 1. d(A,B)≥ 0;

2. d(A,B) = 0 if and only if A= B;

3. d(A,B) = d(B,A).

Proof. For the first two statements: If A = B, then by the definition of d and Claim 1, it
follows d(A,B) = 0. If A ̸= B, then by Claim 5, A⊓B< A or A⊓B< B. By Claim 13,

ρ(A⊓B)< ρ(A) or ρ(A⊓B)< ρ(B).

Therefore, one has

2 ·ρ(A⊓B)< ρ(A)+ρ(B),

and thus d(A,B)> 0. For the third statement: it follows immediately from the definition
of d and Claim 1.

Claim 18. For all B ∈ B

ρ({B})+ρ(A⊓{B}⊓C)−ρ(A⊓{B})−ρ(C⊓{B})≥ 0.

Proof. By Claim 9 and 15, we have the following inferences:

ρ({B})+ρ(A⊓{B}⊓C)−ρ(A⊓{B})−ρ(C⊓{B})
= ∑

H∈PST ({B})
τ(H)+ ∑

H∈PST (A⊓{B}⊓C)
τ(H)

− ∑
H∈PST (A⊓{B})

τ(H)− ∑
H∈PST (C⊓{B})

τ(H). (3)

Since

A⊓{B}⊓C⊆ A⊓{B} ⊆ {B},
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A⊓{B}⊓C⊆ C⊓{B} ⊆ {B},

by Claim 9,

PST (A⊓{B}⊓C)⊆ PST (A⊓{B})⊆ PST ({B}),
PST (A⊓{B}⊓C)⊆ PST (C⊓{B})⊆ PST ({B}). (4)

Now define

S1 = PST (A⊓{B})−PST (A⊓{B}⊓C),

S2 = PST (C⊓{B})−PST (A⊓{B}⊓C).

Then S1,S2 ⊆ PST ({B}). Moreover, by Claim 17, S1 ∩S2 = /0, i.e.,

S1 ⊎S2 ⊎PST (A⊓{B}⊓C)⊆ PST ({B}). (5)

Hence by Eqs. (3), (4) and (5)

ρ({B})+ρ(A⊓{B}⊓C)−ρ(A⊓{B})−ρ(C⊓{B})
≥ ∑

H∈S1⊎S2⊎PST (A⊓{B}⊓C)
τ(H)+ ∑

H∈PST (A⊓{B}⊓C)
τ(H)

− ∑
H∈S1⊎PST (A⊓{B}⊓C)

τ(H)− ∑
H∈S2⊎PST (A⊓{B}C)

τ(H)

= 0.

Lemma 3.3. d(A,B)+d(B,C)≥ d(A,C).

Proof. Since

d(A,B)+d(B,C)−d(A,C)
= ρ(B)+ρ(A⊓C)−ρ(A⊓B)−ρ(B⊓C), by Definition 3.4
≥ ρ(B)+ρ(A⊓B⊓C)−ρ(A⊓B)−ρ(B⊓C), by Claim 13

= ∑
B∈B

[ρ({B})+ρ(A⊓{B}⊓C)−ρ(A⊓{B})−ρ(C⊓{B})],

by Lemma 3.1. it suffices to show for all B ∈ B

ρ({B})+ρ(A⊓{B}⊓C)−ρ(A⊓{B})−ρ(C⊓{B})≥ 0.

It holds via Claim 18 and this completes our proof.

Theorem 3.4. (PT (S),d) is a metric space.

Proof. It follows immediately from Lemmas 3.2 and 3.3.
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4. APPLICATION ON PROBLEM CLASSIFICATION

In this section, we apply the metric of equivalence classes on rough set theory. Sup-
pose the universe U = {alg1,alg2, · · · ,alg12}, where algk indicates the kth given algo-
rithm. The attributes are defined by three problems which are prepared largely for the
algorithms. The attribute values for Problem 1 are correct, wrong and N/A, which stands
for the corresponding algorithms for the problem are correctly solved, wrongly solved
and not available (namely, can’t be solved by the algorithm), respectively. The problem
2 is solvable by all the algorithms, but with various handling speed. The attribute values
for Problem 2 are slow, medium and fast, which indicate how efficient the corresponding
algorithms are in solving Problem 2. Problem 3 is implementable by computer programs.
The attribute values for Problem 3 are C, C++, JAVA and PYTHON. Induced by the prob-
lems as attributes and the attributes as equivalence relations, the information system is
presented in Table 2. The partitions are

Table 2. Information system.
U Prob1 Prob2 Prob3

alg1 correct slow C
alg2 correct slow C++
alg3 wrong medium C
alg4 N/A fast JAVA
alg5 correct medium PYTHON
alg6 N/A fast C
alg7 N/A fast JAVA
alg8 wrong slow C++
alg9 correct medium JAVA
alg10 wrong slow PYTHON
alg11 correct fast C
alg12 wrong fast C

• U/Prob1 = {[correct] = {alg1,alg2,alg5,alg9,alg11}, [wrong] = {alg3,alg8,
alg10,alg12}, [N/A] = {alg4,alg6,alg7}};

• U/Prob2 = {[slow] = {alg1,alg2,alg8,alg10}, [medium] = {alg3,alg5,alg9},
, [ f ast] = {alg4,alg6,alg7,alg11,alg12}};

• U/Prob3 = {[C] = {alg1,alg3,alg6,alg11,alg12}, [C++]= {alg2,alg8}, [JAVA] =
{alg4,alg7,alg9}, [PY T HON] = {alg5,alg10}}.

Furthermore,

• U/Prob1 ⊓ U/Prob2 = {[correct] ⊓ [slow] = {alg1,alg2}, [correct] ⊓ [medium]
= {alg5,alg9}, [correct] ⊓ [ f ast] = {alg11}, [wrong] ⊓ [slow] = {alg8,alg10}
, [wrong] ⊓ [medium] = {alg3}, [wrong] ⊓ [ f ast] = {alg12}, [N/A] ⊓ [slow] =
/0, [N/A]⊓ [medium] = /0, [N/A]⊓ [ f ast] = {alg4,alg6,alg7}};
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• U/Prob1 ⊓ U/Prob3 = {[correct] ⊓ [C] = {alg1,alg11}, [correct] ⊓ [C + +] =
{alg2}, [correct] ⊓ [JAVA] = {alg9}, [correct] ⊓ [PY T HON] = {alg5}, [wrong] ⊓
[C] = {alg3,alg12}, [wrong]⊓ [C ++] = {alg8}, [wrong]⊓ [JAVA] = /0, [wrong]⊓
[PY T HON] = {alg10}, [N/A]⊓[C] = {alg6}, [N/A]⊓[C++]= /0, [N/A]⊓[JAVA] =
{alg4,alg7}, [N/A]⊓ [PY T HON] = /0};

• U/Prob2 ⊓ U/Prob3 = {[slow] ⊓ [C] = {alg1}, [slow] ⊓ [C + +] =
{alg2,alg8}, [slow]⊓ [JAVA] = /0, [slow]⊓ [PY T HON] = {alg10}, [medium]⊓ [C] =
{alg3}, [medium] ⊓ [C + +] = /0, [medium] ⊓ [JAVA] = {alg9}, [medium] ⊓
[PY T HON] = {alg5}, [ f ast] ⊓ [C] = {alg6,alg11,alg12}, [ f ast] ⊓ [C + +] =
/0, [ f ast]⊓ [JAVA] = {alg4,alg7}, [ f ast]⊓ [PY T HON] = /0}}.

Now we choose the τ : P(U) → R+ by τ(H) = 1, which indicates the compatible algo-
rithms within the same compartment shall enforce and strengthen the attribute with which
the compartment is endowed. The more the combinations are, the higher the weights
assigned to the compartment are. Take the compartment [correct] for example. With
our device, we could further consider the possible interaction between the algorithms
alg1,alg2,alg5,alg9 and alg11. Since they are in the same category with the same at-
tribute, one shall expect the combination of the algorithms among them shall enhance the
weights of the compartment. Unlike typical measurement for partition distance function,
our device could further delve into the property of the compartments (or categories). Now
we calculate the values for function σ :

• σ([correct]) = 2|[correct]| − 1 = 31;σ([wrong]) = 2|[wrong]| − 1 = 31;σ([N/A]) =
2|[N/A]| − 1 = 7;σ([slow]) = 2|[slow]| − 1 = 31;σ([medium]) = 2|[medium]| − 1 =
7;σ([ f ast]) = 2|[ f ast]|−1= 31;σ([C]) = 2|[C]|−1= 31;σ([C++])= 2|[C++]|−1=
3;σ([JAVA]) = 2|[JAVA]|−1 = 7;σ([PY T HON]) = 2|[PY T HON]|−1 = 3;

• σ([correct] ⊓ [slow]) = 3,σ([correct] ⊓ [medium]) = 3,σ([correct] ⊓ [ f ast]) =
1,σ([wrong] ⊓ [slow]) = 3,σ([wrong] ⊓ [medium]) = 1,σ([wrong] ⊓ [ f ast]) =
1,σ([N/A]⊓ [slow]) = 0,σ([N/A]⊓ [medium]) = 0,σ([N/A]⊓ [ f ast]) = 7;

• σ([correct] ⊓ [C]) = 3,σ([correct] ⊓ [C + +]) = 1,σ([correct] ⊓ [JAVA]) =
1,σ([correct] ⊓ [PY T HON]) = 1,σ([wrong] ⊓ [C]) = 3,σ([wrong] ⊓ [C ++]) =
1,σ([wrong] ⊓ [JAVA]) = 0,σ([wrong] ⊓ [PY T HON]) = 1;σ([N/A] ⊓ [C]) =
1,σ([N/A]⊓ [C++]) = 0,σ([N/A]⊓ [JAVA]) = 3,σ([N/A]⊓ [PY T HON]) = 0;

• σ([slow]⊓ [C]) = 1,σ([slow]⊓ [C ++]) = 3,σ([slow]⊓ [JAVA]) = 0,σ([slow]⊓
[PY T HON]) = 1,σ([medium]⊓ [C]) = 1,σ([medium]⊓ [C++])= 0,σ([medium]⊓
[JAVA]) = 1,σ([medium]⊓ [PY T HON]) = 1,σ([ f ast]⊓ [C]) = 7,σ([ f ast]⊓ [C +
+]) = 0,σ([ f ast]⊓ [JAVA]) = 3,σ([ f ast]⊓ [PY T HON]) = 0.

Next, we calculate the values for ρ:

• ρ(U/Prob1) = σ([correct]) + σ([wrong]) + σ([N/A]) = 69;ρ(U/Prob2) =
σ([slow])+σ([medium])+σ([ f ast]) = 69;ρ(U/Prob3) = σ([C])+σ([C++])+
σ([JAVA])+σ([PY T HON]) = 44;
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• ρ(U/Prob1 ⊓ U/Prob2) = σ([correct] ⊓ [slow]) + σ([correct] ⊓ [medium]) +
σ([correct]⊓ [ f ast])+σ([wrong]⊓ [slow])+σ([wrong]⊓ [medium])+σ([wrong]⊓
[ f ast])+σ([N/A]⊓ [slow])+σ([N/A]⊓ [medium])+σ([N/A]⊓ [ f ast]) = 19;

• ρ(U/Prob1 ⊓ U/Prob3) = σ([correct] ⊓ [C]) + σ([correct] ⊓ [C + +]) +
σ([correct] ⊓ [JAVA]) + σ([correct] ⊓ [PY T HON]) + σ([wrong] ⊓ [C]) +
σ([wrong] ⊓ [C + +]) + σ([wrong] ⊓ [JAVA]) + σ([wrong] ⊓ [PY T HON]) +
σ([N/A] ⊓ [C]) + σ([N/A] ⊓ [C + +]) + σ([N/A] ⊓ [JAVA]) + σ([N/A] ⊓
[PY T HON]) = 15;

• ρ(U/Prob2 ⊓ U/Prob3) = σ([slow] ⊓ [C]) + σ([slow] ⊓ [C + +]) + σ([slow] ⊓
[JAVA])+σ([slow]⊓ [PY T HON])+σ([medium]⊓ [C])+σ([medium]⊓ [C++])+
σ([medium]⊓ [JAVA])+σ([medium]⊓ [PY T HON])+σ([ f ast]⊓ [C])+σ([ f ast]⊓
[C++])+σ([ f ast]⊓ [JAVA])+σ([ f ast]⊓ [PY T HON] = 18.

Finally, we calculate the distances between the partitions:

• d(U/Prob1,U/Prob2) =
ρ(U/Prob1)+ρ(U/Prob2)

2 −ρ(U/Prob1 ⊓U/Prob2) = 50;

• d(U/Prob1,U/Prob3) =
ρ(U/Prob1)+ρ(U/Prob3)

2 −ρ(U/Prob1 ⊓U/Prob3) = 42.5;

• d(U/Prob2,U/Prob3) =
ρ(U/Prob2)+ρ(U/Prob3)

2 −ρ(U/Prob2 ⊓U/Prob3) = 38.5.

The conclusion is Problems 2 and 3 are much correlated.

Remark 2. In this application, we take the universe be a set of algorithms and the problems
as the attributes. One could also redo the other way around by taking the universe of
problems and the attributes of algorithms. In this case, one could further classify the
algorithms, i.e., attribute classification or form the clusters based on the hereditary metric,
i.e., attribute clustering. If the attributes are associated with a set of classifiers, one could
also categorise these classifiers, or classifier categorisation.

Remark 3. We could also endow the three function τ,σ and ρ with probabilistic settings.
Let Φ be the power set of U , but excluding empty set. This set represents all the possible
combinations of the 12 algorithms. In order to study the probabilistic correlation between
the attributes, we restrict their individual sample space to the maximal consistent equiva-
lence classes induced by the types of problems, for example Problems 1 and 2. The max-
imal consistent combinations for Problem 1 is PW [correct]∪PW [wrong]∪PW [N/A]−
{ /0}, while the ones for Problem 2 is Ω2 = PW [slow]∪PW [medium]∪PW [ f ast]−{ /0},
where PW denotes the power set operation. If τ is defined by 1

|Ω| , where |Ω| = |Ω1| for
Problem 1, |Ω| = |Ω2| for Problem 2, and |Ω| = |Ω12| for the intersected structure (or
partition) Ω12. Then the distance function reveals the dissimilar distance between two
probabilistic structures regarding Problems 1 and 2.

5. APPLICATION ON ONTOLOGY POPULATION PROCESS

Ontology population process is an interesting and practical issues in information
science [15, 16]. In this part, we run a real data [17] based analysis via our hereditary
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metric. Let the universe U be a collection of 14 ontology population systems (OPS). The
attributes are various automatic ontology process procedures. The assigned attributes are
the patterns (or parameters) applied within the attribute. The detailed description regard-
ing the choice design of these ontology population systems are presented in the informa-
tion system in Table 3. In the table, “att 1” represents “Type of concept instances”; “att 2”
represents “Type of relation instances”; “att 3” represents “Domain dependency”; “att 4”
represents “Consistency and redundancy checks”; “att 5” represents “Input documents
type”; “att 6” represents “Expert intervention”; “att 7” represents “Used method”. In the
column att 2, ‘all’ means both taxonomic and non-taxonomic relations, including verb
and noun relations. Now we intend to find out the correlation between these attributes, or
ontology population process procedures.

Table 3. Information system for ontology population systems.
OPS att 1 att 2 att 3 att 4

1 ≡ Hearst Noun phrase Taxonomic Independent Not solved
2 ≡ Group 1 Noun phrases All Independent Not solved
3 ≡ Ibrahim Noun phrases All Dependent Not solved

4 ≡ Artequakt Exact entities All except noun- based Dependent Redundancy only
5 ≡ Makki Exact entities All except noun- based Independent Solved
6 ≡ Faria Exact entities All except noun- based Independent Not solved

7 ≡ SOBA Exact entities All Dependent Redundancy only
8 ≡ ISOLDE Exact entities All Independent Solved

9 ≡ Web → KB Web pages All Web-centred Not solved
10 ≡ Group 2 Noun phrases All Independent Not solved
11 ≡ Group 3 Exact entities All Dependent Not solved

12 ≡ BOEMIE Exact entities All Independent Solved
13 ≡ Group 4 Exact entities None Independent Redundancy only

14 ≡ Yoon Exact entities None Independent Redundancy only

OPS att 5 att 6 att 7

1 ≡ Hearst Unstructured text Automatic Rule-based
2 ≡ Group 1 Unstructured text Semi-automatic Rule-based
3 ≡ Ibrahim Unstructured text Semi-automatic Rule-based

4 ≡ Artequakt Unstructured text Automatic Rule-based
5 ≡ Makki Unstructured text Semi-automatic Rule-based
6 ≡ Faria Unstructured text Automatic Rule-based

7 ≡ SOBA Unstructured text, Automatic Rule-based
8 ≡ ISOLDE Unstructured text Automatic Rule-based

9 ≡ Web → KB Unstructured text Automatic Machine learning
10 ≡ Group 2 Unstructured text Automatic Machine learning
11 ≡ Group 3 Unstructured text Automatic Machine learning

12 ≡ BOEMIE Heterogeneous Semi-automatic Hybrid
13 ≡ Group 4 Unstructured text Automatic Statistical

14 ≡ Yoon Only structured Semi-automatic Statistical

• U/att1 = {[Noun phrase] = {1,2,3,10}, [Exact entities] = {4,5,6,7,8,11,12,13,
14}, [Web pages] = {9}};
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• U/att2 = {[Taoxonomic] = {1}, [All] = {2,3,7,8,9,10,11,12}, [All except noun−
based] = {4,5,6}, [None] = {13,14}};

• U/att3 = {[Independent] = {1,2,5,6,8,10,12,13,14}, [Dependent] = {3,4,7,
11}, [Web centred] = {9}};

• U/att4 = {[Not solved] = {1,2,3,6,9,10,11}, [Redundancy only] = {4,7,13,
14}, [Solved] = {5,8,12}};

• U/att5 = {[Unstructured text] = {1,2,3,4,5,6,7,8,9,10,11,13}, [Heterogeneous]
= {12}, [Only structured] = {14}};

• U/att6 = {[Automatic] = {1,4,6,7,8,9,10,11,13}, [Semi− auotmatic] = {2,3,5,
12,14}};

• U/att7 = {[Rule − based] = {1,2,3,4,5,6,7,8}, [Machine learning] = {9,10,
11}, [Hybrid] = {12}, [Statistical] = {13,14}}.

Moreover, the intersected partitions from the pairs of partitions are listed calculated and
listed by their representing vector in Appendix titled “Pairwise intersected partitions”.
Now suppose the compartment weight is induced by the function τ : P(U)→ R+, which
is defined by τ(H) := |H|2. Then the values for function σ are calculated as follows:

• σ([Noun phrase]) =
|[Noun phrase]|

∑
k=1

k2 ·
(|[Noun phrase]|

k

)
= (|[Noun phrase]| +

|[Noun phrase]|2) · 2|[Noun phrase]|−2 = 80; similarly, σ([Exact entities]) = 11520;
σ([Web pages]) = 1;

• σ([Taoxonomic]) = 1; σ([All]) = 4608; σ([All except noun − based]) = 24;
σ([None]) = 6;

• σ([Independent]) = 11520; σ([Ddependent]) = 80; σ([Web centred]) = 1;

• σ([Not solved]) = 1792;σ([Redundancy only]) = 80;σ([Solved]) = 24;

• σ([Unstructuredtext]) = 159744;σ([Heterogenous]) = 1;σ([Only structured]) =
1;

• σ([Automatic]) = 11520;σ([Semi−automatic]) = 240;

• σ([Rule − based]) = 4608;σ([Machinelearning]) = 24;σ([Hybrid]) = 1;
σ([Statistical]) = 6.

As for the values for σ function over intersected partitions are listed in Appendix titled
“Values for σ function over intersected partitions”. Now the distances between ontology
population process procedures are calculated and presented in Table 4. The most corre-
lated pair among all the attributes is Attributes 2 and 4, and the second most correlated pair
among all the attributes is Attributes 4 and 7. This indicates “Type of relation instances”
is closely related to “Consistency and redundancy checks” in terms of level of automation
for the ontology system. Therefore the information extraction engine regarding type of
relation of instances is directly responsible for the consistency of data extraction and the
soundness of knowledge base.
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Table 4. Distance matrix for ontology population process procedures.
d(U/atti,U/att j) U/att1 U/att2 U/att3 U/att4 U/att5 U/att6 U/att7

U/att1 0 7984 10879 6557.5 83798.5 10971.5 7846
U/att2 7984 0 8001 3010.5 80372.5 7925.5 4503
U/att3 10879 8001 0 6625.5 83798.5 11334.5 7846
U/att4 6557.5 3010.5 6625.5 0 78997 6550 3144.5
U/att5 83798.5 80372.5 83798.5 78997 0 74207 77557.5
U/att6 10971.5 7925.5 11334.5 6550 74207 0 7908.5
U/att7 7846 4503 7846 3144.5 77557.5 7908.5 0

6. CONCLUSIONS

Firstly, we have devised a metric that is suitable for measuring the distances between
equivalence classes or the partitions, which are basic units in uncertain reasoning. Our
device extends the concept of overlap between two sets. In uncertain reasoning, to identify
or compare the differences between the units, one relies on the set intersection operations.
Secondly, in the article, we give a complete proof for the distance functions. Distance
functions are much more intuitive in explanation and interpretation of experimental or
observational results. Thirdly, we show how to apply our metric on the real problems -
in particular categorisation of problems or processing procedures. Lastly, based on these
applications, one could find that this metric is flexible in coupling with other algorithms
or methods. This offers us a much more efficient way tackling real problems, in particular
those related to uncertain situations or environments. It is worth comparing our method
with typical measurement of attribute dependency (MAD) in rough set theory:

• Our distance function measures mainly the correlation between attributes, while
MAD measures the dependency or functionality of one attribute on the other;

• Distance function is a symmetric measurement, which is closer to the concept of
similarity index, while MAD is an asymmetric measurement;

• Our distance function utilises three functions across three levels, which render some
extra power in manipulating the weights on the compartments, while MAD utilises
only two levels;

• The range of our distance function could be any positive real numbers, while MAD
is normalised by the size of the universe and lies between 0 and 1;

• A larger value produced by our distance function indicates how uncorrelated two
attributes are, while a larger value produced by MAD indicates a stronger depen-
dency of one attribute on the other;

• Our distance function exploits mainly intersection operation, while MAD exploits
intersection, union and subset operations.

When considering the correlation between attributes via our metric, one could further test
whether the correlation is statically justifiable via non-parametric statistical inference.
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One takes the product of partition space generated from the universe as the sample space
and takes our method as a statistic to produce the range of the statics and a probability
density function. Then one compares the empirical distance with the critical distance
to obtain a hypothetical testing regarding the significance of the correlation between the
attributes. However, one should be warned that the statistic per se depends on the func-
tions τ,σ and ρ , and thus one should properly design the three functions to better reflect
the realistic correlation between attributes. Another issue is such statistical testing nor-
mally consumes a lot of computational resources, since the product of all the partitions
are considered.
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