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We address the sparse signal reconstruction problem over networked sensing system. 

Signal acquisition is performed as in compressive sensing (CS), hence the number of 
measurements is reduced. Majority of existing algorithms are developed based on p 
minimization in the framework of distributed convex optimization and thus whose per-
formance is sensitive to the tuning of additional parameters. In this paper, we propose a 
distributed sparse signal reconstruction algorithm in the full Bayesian framework by us-
ing Variational Bayesian (VB) with embedded consensus filter. Specifically, each node 
executes one-step average-consensus with its neighbors per VB step and thus reaches a 
consensus on estimate of sparse signal finally. The proposed approach is ease of imple-
mentation and scalability to large networks. In addition, due to the observability of nodes 
can be enhanced by average-consensus, the number of measurements for each node can 
be further reduced and not necessary to satisfy lower bound required by CS. Simulation 
results demonstrate that the proposed distributed approach have good recovery perfor-
mance and converge to their centralized counterpart.      
 
Keywords: compressive sensing, sparse signal, variational Bayesian, consensus filter, wire- 
less sensor networks 
 
 

1. INTRODUCTION 
 

The recently developed compressive sensing (CS) theory [1, 2] is a new sampling 
paradigm that can achieve acquisition of information contained in a large-scale data us-
ing only much fewer samples than that required by Nyquist sampling theorem. By ex-
ploiting sparsity, which is inherent characteristic of many natural signals, CS enables the 
signal to be stored in few samples and subsequently be recovered accurately. Indeed, 
advances in electronics and digital communications have made wireless sensor networks 
(WSNs) the predicted panacea for solving a variety of large-scale decision and infor-
mation-processing tasks [3-6]. Hence, CS is a promising technique for WSNs in saving 
bandwidth and energy. However, most of CS reconstruction algorithms operate in cen-
tralized manner where all the measurements need to be concentrated for processing. 
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From a practical perspective, these centralized approaches are only attractive to WSNs 
with a fusion center (FC). Moreover, the centralized approaches have the following 
drawbacks: (i) the pressure on storage and computation load at the FC tends to increase 
as the number of nodes grows; (ii) they are sensitive to FC failure. Due to the high fault 
tolerance and scalability, distributed processing is becoming increasingly popular in the 
WSNs applications. Different from the centralized approaches that rely on an FC, dis-
tributed processing requires no central coordinator and only single-hop communications 
among neighbors that aim to achieve consensus on local estimates. Recently, many re-
searchers have attempted to discuss the distributed sparse signal recovery problems [7-9, 
11] for WSN applications when a centralized approach is not possible or desirable. In [7], 
the distributed iterative hard thresholding (IHT) algorithm was proposed for tree net-
works, in which collaboration among the nodes is carried out via the broadcast of mes-
sages from the parent nodes and the converge cost of messages from the children nodes. 
In [8], João F. C. Mota et al. have developed a distributed basis pursuit (BP) algorithm 
for sparse signal reconstruction in noise-free scenario. In [9], the distributed least abso-
lute shrinkage and selection operator algorithm (Lasso) reformulate the Lasso into a sep-
arable form which is iteratively minimized using the alternating-direction method of 
multipliers (ADMM) so as to achieve parallel optimization. In [13], authors proposed a 
distributed approach to Joint Sparse Model (JSM) based on Lasso and ADMM tech-
niques. In [10], a reweighted 1 soft thresholding technique is leveraged in distributed 
recovery of jointly sparse signals. However, these aforementioned works based on con-
vex optimization, such as BP, Lasso, IHT, etc., usually require one or more practically 
unknown parameters, e.g., the noise statistics, the regularization parameters, etc. In addi-
tion, a main issue of these deterministic methods is that the uncertainty of signal recon-
struction is generally obscure. 

On the one hand, an increasing attention has been recently paid to Bayesian algo-
rithms since they generally achieve the better recovery performance and providing pro- 
babilistic estimates [14-17]. Moreover, the Bayesian CS algorithms naturally model the 
unknown signal along with the model parameters, which result in fully automated algo-
rithms estimating all required parameters. As one important family of Bayesian algo-
rithms, sparse Bayesian learning (SBL) was derived from the research area of machine 
learning [18] and then enriched by many researchers. In SBL, the sparse signal recovery 
problem is solved from a Bayesian perspective while the sparsity is modeled by a hier-
archical prior which is called Automatic Relevance Determination (ARD). Considering 
JSM-1 model, a distributed Bayesian algorithm has been presented in [12] by using pe-
ripheral ADMM procedure. In [19], authors propose a distributed SBL algorithm for 
in-network recovery of joint sparse signal. These distributed reconstructions are devel-
oped by combining SBL with ADMM method. Nevertheless, the relevance vector ma-
chine (RVM) approach to SBL is known to converge rather slowly and the computation-
al complexity scales O(N3). An alternative approach to SBL is the variational rendition 
of SBL (VSBL) with several advantages compared to SBL [20-22]. Moreover, both [12] 
and [19] apply the several ADMM procedure in each expectation maximization (EM).  

On the other hand, average-consensus algorithms have lately issued as a family of 
low-complexity iterative distributed algorithms. The consensus formulation was early 
analyzed in [23] and deals with the problem of computing averages over graphs. Specif-
ically, a group of networked nodes cooperate with each other to adjust their own state 
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with the goal to reach a consensus in a scalable and fault-tolerant manner [24, 25]. It has 
received considerable attention in different subjects [26-30]. As previously stated, the 
existing works, which apply the ADMM to the design of consensus-type sparse signal 
reconstruction algorithms, involve the implementations that necessitate the fine tuning of 
additional parameters. Compared with ADMM technique, average-consensus strategies 
naturally lead to an equalization effect across the sensors without complexity [31]. 

Motivated by all of the above, this paper aims to propose a distributed algorithm for 
sparse signal reconstruction in the full Bayesian framework by using variational ap-
proximation and average-consensus techniques. We start by deriving a centralized ap-
proach for reconstruction with VSBL, which facilitate our distributed algorithm design; 
afterwards, we move to the distributed scenario and employed average-consensus as a 
diffusion strategy for acquiring three global information quantities which extracted from 
centralized approach; particularly, the average-consensus step only needs to be per-
formed once among neighbors in each fixed point iteration of variational SBL for saving 
communication resource and energy. Furthermore, both the convergence and scalability 
of algorithm are also discussed. 

The remainder of this paper is structured as follows. The fundamental of compres-
sive sampling is provided in Section 2, and introduces the sparse signal recovery using 
SBL. The system model is described in Section 3. In Section 4, we develop variational 
Bayesian inference for the system model. In the sequel, the proposed distributed sparse 
signal reconstruction is provided in Section 5. Numerical results are presented in Section 
6, followed by conclusions in Section 7. 

 
Notation: Throughout this paper, we use b, B and b for scalars, matrices and column vec- 
tors, respectively. The superscripts ()T and ()-1 denote the transpose and the inverse of a 
matrix, respectively. Tr denotes the trace of matrix. Ep(x)() denotes expectation with re-
spect to p(x). Ui[a, b] and N(, ) denote integer uniform distribution in the interval [a, b] 
and multivariate Gaussian distribution with mean vector  and covariance , respectively. 
IN denotes the MN identity matrix. ||||0, ||||p and ||||2 denote 0-norm, p-norm and 
2-norm, respectively.   

2. BACKGROUND 

In the following, we will briefly review the principle of compressive sensing and 
sparse Bayesian learning (SBL) [18, 32], which is a centralized CS algorithm. 

As a framework for signal sensing and compression, CS theory claims that if a sig-
nal is sparse in one basis, it can be recovered from a small number of projections onto a 
second basis that is incoherent with the first one. If sN represents the signal to be 
sensed, then noisy sensing process may be represented as   

z = s + w.     (1) 

Where z = M is the measurement vector, MN denotes the sensing matrix, and w  
M denotes the measurement noise. Signal s can be expressed in representation basis as s 
= x, where x  N is k-sparse vector, representing projection coefficients of s on . 
The basis  can be a predefined one depending on the characteristics of signal, e.g., 
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wavelet basis, Fourier basis, etc. While ||x||0 = k  N, the signal s is said to be sparse 
over the predefined basis. Thus, measurement vector z can be rewritten in terms of x as 
follows   

z = Ax + w.    (2) 

Where A =  = MN is also referred as equivalent sensing matrix. 
In order to recover x from the noisy measurements z, the solution of Eq. (2) formal-

ly be translated into the following optimization problem:  

0 2
min .s t    

x
x Ax z �    (3) 

Where ò > 0 is an estimate of the measurement noise level? However, the problem (3) is 
NP-hard and impractical to solve in the general case. For this reason, conventional CS 
reconstruction approaches resort to solve the following unconstrained optimization 
problem by relaxing 0 to p:  

1
2 2

min .
p

 
x

Ax z x     (4) 

Where 0 < p  1, and the Lagrange multiplier  > 0 is a function of A, z and ò. For the 
case p = 1, the problem (4) is known as LASSO (Least Absolute Shrinkage and Selection 
Operator), the solution of which can be obtained with overwhelming probability. While 
p < 1, the problem (4) is non-convex, but the solution of which shows superior perfor-
mance by using non-convex optimization techniques [33, 34], e.g., SBL, Bayesian com-
pressed sensing (BCS), etc. 

From a Bayesian perspective, the CS problem can also be formulated by SBL whose 
close relationship to non-convex p-norm minimization problem is revealed in [35, 36]. 
In SBL framework, sparse signal is assumed to be distributed according to a parameter-
ized zero-mean Gaussian prior 

1

( ) ( 0 ).
N

i i
i

p x 


   x      (5) 

Where MN is a diagonal matrix composed of N hyperparameters i(i = 1, …, N), 
whose ith diagonal entry i models the variance of xi for 1 < i  N. In [18, 32, 36], the 
rationale of using this prior have been elaborated. With uninformative hyperpriors p(i) 
and p(2), one can infer these hyperparameters by maximizing  

2 2 2ln ( ) ln ( ) ln ( ) ( ) .p p p p d          z z z x x x    (6) 

In fact, the solution of Eq. (6) is equivalent to minimizing the cost function expressed as  

1ln .T    z z    (7) 

Where  = 2IM + A  AT. In [18], authors apply the expectation-maximization (EM) 
algorithm to solve Eq. (7). Once the hyperparameters obtained, the MAP estimate of x 
can be inferred 
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 (8) 

In addition, the effectiveness of SBL for sparse signal recovery are presented in [32, 36].  

3. PROBLEM STATEMENT AND SYSTEM MODEL 

Consider a network composed of K nodes whose connectivity is described by an 
undirected graph G = (V, E, A) of the order K. Accordingly, node KV represent a sensor 
and can communicate with node lV if the edge (k, l) in the set EVV, and the adja-
cency matrix A = [kl]KK with nonnegative adjacency element kl, namely, kl > 0  (k, 
l)E. Node l is called a neighbor of node k if (k, l)E and l  k. The neighborhood set of 
node k is denoted by Nk. The degree of vertex k is set as di = |Nk|, and the maximum de-
gree is dmax = maxkdk. Each node is able to process the data and collaborate with its sin-
gle-hop neighbors. See Fig. 1 for an example graph.  

 

 
Fig. 1. An example of network structure.  

 

Assume that each node k is interested in reconstructing an unknown sparse signal 
xN from mk noisy measurements zk

mk. Thus, the sensing model at node k is  

zk = Akx + wk, 1  k  K.  (9) 

Where Ak
mkN is the local sensing matrix for node k, and wk

mk is the zero-mean 
Gaussian noise with covariance -1Imk. Let M be the total number of measurements from 
all the nodes, i.e., M = K

k=1mk. We have the global measurement ZM, the global 
sensing matrix, AMN, and the global measurement noise WM as follows 

1 1 1

.

K K K

     
     
     
     
     
     
     
     

    
z A w

Z A W

z A w

    (10) 

Then the global sensing model is given by  
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Z = Ax + W. (11) 
 
The construction of A satisfies so-called restricted isometry property (RIP) imposed 

in the design of compressive sensing schemes, i.e., the elements of A are drawn from 
N(0,1/M). From the sensing model (3) and noise statistics, the measurements likelihood 
function is given by   

1

/ 2
2

/ 2
1

( | , ) ( | , )

exp .
(2 ) 2

k

k

K

k
k

mK

k km
k

p p 

 








     





Z x z x

z A x

 (12) 

Moreover, as stated previously, the estimate of x is constrained to be sparse. To this end, 
the likelihood should be complemented by suitable conjugate priors over x and . Spe-
cifically, a Gamma prior with parameters c and d is selected for precision   

1 exp[ ]
( ) ( ) .

( )

c cd d
p c d G c d

c

  
 

     


 (13) 

From a probabilistic point of view, a heavy-tailed distribution is well-suited to re-
flect prior knowledge about sparsity of signal. Here, two levels prior is set for our 
Bayesian model. For the first level, a Gaussian distribution is adopted for x similar to 
SBL, i.e., 

1

1

1 2 1 2 2

1

( ) ( 0 ) ( )

1
(2 ) exp .

2

N

i i
i

N

i i i
i

p p x

x



  





 
    

 
  

     

 





x α x 
 (14) 

Where  = [1, 2, …, N]T and  = diag(). In the second level, a Gamma distribution 
is selected for the precision parameters is  

1 exp[ ]
( ) ( ) .

( )

i ia a
i i i i

i i i i i i
i

b b
p a b G a b

a

  
 

     


 (15) 

 
Fig. 2. DAG of the Bayesian model. 
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Heretofore, the Bayesian system model is developed for sparse signal reconstruction 
in WSN. Fig. 2 illustrates the directed acyclic graph (DAG) of the proposed Bayesian 
model. Comparing the proposed model with that in [18], the difference is the normaliza-
tion of the variances of xis by  in Eq. (6), which ensures the unimodality of posterior 
joint distribution. Based on the proposed Bayesian model, our goal is to recover the 
sparse signal x at each node using distributed processing. Next, we firstly derive central-
ized variational Bayesian method to facilitate the distributed algorithm design.  

4. VARIATIONAL BAYESIAN APPROXIMATION FOR CENTRALIZED 
SPARSE SIGNAL RECONSTRUCTION  

In this section, we briefly review the variational approximation technique and de-
rive the centralized VSBL for aforementioned full Bayesian model. The obtained cen-
tralized algorithm facilitates our distributed algorithm design, which is presented in the 
next section. For ease of notation, we define  = [x1, …, xN, , 1, …, N]T as the un-
known parameters and hidden variables of the model which are referred to as unknown 
variables, and  = [1, …, N, b1, …, bN, c, d]T as the hyperparameters of the imposed 
prior. Based on the Bayesian model previous, variational Bayesian is to approximate the 
posterior of , p(|Z), by a more tractable distribution Q(). To this end, the hyperpa-
rameters  is inferred by maximinzing the following log-likelihood  

ln p(Z|) = F(Q()) + KL(Q())||p(|Z, ). (16) 

Where F is the free energy  

( | ) ( | )
( ( ), ) ( ) ln .

( )

p p
F Q Q

Q

 
  

 


Z ψ ψ θ
ψ θ ψ

ψ
 (17) 

and 

( )
( ( ) || ( | , )) ( ) log

( | , )

Q
KL Q p Q

p

 
  

 


ψ
ψ ψ Z θ ψ

ψ Z θ
 (18) 

is the Kullback-Leibler (KL) divergence between the posterior p(|Z, ) and a tractable 
distribution Q(). In Eq. (1), since the KL divergence is non-negative and the log-like- 
lihood ln p(Z, ) is fixed with respect to Q(), the variational free energy can be viewed 
as lower bound for ln p(Z, ). Therefore, minimizing the KL divergence is equivalent to 
maximizing the variational free energy. From an optimization point of view, the model 
parameters of Q() is well-suited selected so that the lower bound can be minimized. In 
order to make it tractable, we resort to a simpler variational free form Q() to approxi-
mate the posterior based on the mean-field theory from statistical physics. Specifically, 
Q() can be factorized into a family of q-distribution w.r.t. some partitions  = {1, …, 
L} as follows 

1

( ) ( )
L

j j
j

Q q


   (19) 
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i.e., each partition j of the unknown variables is mutually independent given the meas-
urements. In fact, if we let i denote the jth partition of the vector  = [x1, …, xN, , 
1, …, N]T containing the parameters of the Bayesian hierarchical model, and -j refers 
to the other parameters after removing jth partition. Maximizing the free energy in Eq. (2) 
is realized by taking functional derivatives with respect to each of the q() distributions 
while fixing the other distributions and setting F(q)/q() = 0 [37]. Furthermore, the 
computation of F(q)/q() = 0 can be expressed as  

lnq*(j)  Eq(-j)[ln(p(Z|)p(|))]. (20) 

Where Eq(-j) denotes the expectation w.r.t. ijq(i). From Eq. (5), it is noted that q* 
don’t represent explicit solution since it depends on the other factors q(i) for i  j. Thus, 
the optimum solution q*(j) is sought by first initializing all the q(j) appropriately and 
then cycling through the factors and replacing each in turn with updated estimate given 
by Eq. (5) using current estimates for all of the other factors. Since the lower bound is 
convex w.r.t. q(j), the convergence is guaranteed. 

By applying the variational bayesian techniques to our model, we first take the fol-
lowing logarithm of the joint distribution over Z and all unknown variables  

1 1

1

ln( ( | ) ( | )) ln ( | , ) ln ( | )

ln ( | , ) ln ( | , ).

K N

k i i
k i

N

i i i
i

p p p p x

p a b p c d

 

 

 



 

 

 



Z ψ ψ θ z x
 (21) 

For each factor, averaging w.r.t. those variables not in that factor by making use of 
Eq. (5), we can express the re-estimation equations for the factors analytically, namely 

 ( ) ( )

( ) ( )
1 1

1

1 1

ln ( ) ln( ( | ) ( | ))

ln ( | , ) ln ( | )

[ ] 1
( ) ( ) diag( [ ])

2 2

1
(diag( [ ]) [ ] ) [ ]

2

( | , ).

q q

K N

q k q i i
k i

K
T T

k k k k i
k

K K
T T T T

i k k k
k k

q E p p

E p E p x

E
E

E E E



  

 

  

 



 



          

    

   



 



 

α

α

x Z ψ ψ θ

z x

z A x z A x x x

x A A x x A

x

z

Γ μ

 (22) 

Where  

1

1

1

diag( [ ]) [ ]

[ ]

K
T

i k k
k

K
T
k k

k

E

E

E  









   
 







Γ A A

ΓA zμ

 (23) 
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and  

 

( ) ( )

( )
1

1

1

1

ln ( ) [ln( ( | ) ( | ))]

ln ( | , ) ln ( | , )

( [ ] [ ] [ ])
2

ln ( 1) ln
2

( [ ] [ ] Tr [ ] )
2

ln
2

q q
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q k
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k k k k k k k k
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K
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T T T T T
k k k k k k k k
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q E p p
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x α
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( | , )
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 (24) 

and  

 



( ) ( )

( )
1 1

2

1

ln ( ) ln( ( | ) ( | ))

ln ( | ) ln ( | , )

1
( 1) ln ln [ ]

2

( | , ) ( | , ).

q q

N N

q i i i i i
i i

N

i i i i i i i
i

i i i

q E p p

E p x p a b

a b E x

G a b G a b

 

   



 





    
      
 

 

 



x β

x

α Z ψ ψ θ

 α

 (25) 

From Eqs. (22)-(25), we recognize that q(x) is Gaussian distribution, q() and q() are 
Gamma distributions, i.e., q(x) = N(x|, ), q() = G(|c, d ), and q() = G(|a , b ). Now 
given q(x), q() and q(), the hyperparameters can be updated by arg max ( ( ), ).F Q


    

Specifically, we have   

1
,

2
i aa    (26a) 

2[ ]
,

2
i

i

E x
bb    (26b) 

,
2

M
c c   (26c) 

 
1 1

1

1
[ ]

2

1
Tr .

2

K K
T T T
k k k k

k k

K
T T
k k

k

d d E
 



   

   
 

 



z z x A z

A A Γ



μ μ

 (26d) 
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In the above, the required moments can be easily computed as follows  

2 2

[ ]

[ ]

[ ] /

[ ] /

i ii i

i i i

E

E x

E a b

E c d







 





x









 (27) 

The variational optimization proceeds by iteratively updating Eqs. (7)-(12) until 
convergence to stable hyperparameters . From the aforementioned formulas, it is noted 
that a fusion center is required to gather all the measurements and then reconstruct the 
sparse signal. Thus, the centralized variational sparse bayesian algorithm for solving the 
joint sparse signal reconstruction can be summarized by the following steps:  

 
(1) Input local measurements {zk}kV, local sensing matrices {Ak}kV and adjacency ma-

trix A;  
(2) Initialize the hyperparameters ai, bi, c, d with 10-6, and  by 0,  by IN;  
(3) All the nodes transmit the local measurements ZK to fusion center;  
(4) Fusion center receives the measurements from network-wide nodes and computes su- 

fficient statistics E[i], E[],  and  using Eq. (8), thus the variational distributions 
are calculated;  

(5) Update the hyperparameters as in Eq. (12);  
(6) Unless the hyperparameters converge to fixed values, Steps 3, 4 and 5 are iterated 

continually;  
(7) Fusion center returns the estimate of sparse signal x to all the nodes.  

However, there is no fusion center in the distributed scenario and formulas derived 
above can’t be implemented directly. In order to develop the distributed counterpart, 
we attempt to reformulate the centralized formulas which will be presented in the 
following section.  

5. DISTRIBUTED VARIATIONAL SPARSE BAYESIAN LEARNING 
ALGORITHM 

In this section, we propose a distributed variational Bayesian algorithm for jointly 
reconstructing sparse signal, which is developed from the previous variational Bayesian 
inference. Hereinafter, the distributed algorithm will be referred to as DVSBL. From the 
aforementioned centralized algorithm, it is noted that both Steps 4, and 5 are performed 
at a fusion center, which gathers all the nodes’ measurements and does the centralized 
variational inference. However, for a distributed scenario, it is assumed that each node 
performs the inference severally and has no knowledge of other nodes’ measurement 
matrices and measurements. Therefore, by inspecting the former equations, we define the 
following global information quantities  

(1)

1

K
T
k k

k

A A  
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(2)

1

(3)

1

K
T
k k

k

K
T
k k

k













A z

z z





 (28) 

and define the following local quantities  

(1)

(2)

(3)

T
k k k

T
k k k

T
k k k







A A

A z

z z







 (29) 

so the Eqs. (23) and (26d) can be reformulated as follows  

  1(1)diag( [ ]) [ ] ,iE E 


    (30) 

(2)[ ] ,E    (31) 

  (3) (2) (1)1 1
[ ] Tr .

2 2
T Td d E     x        (32) 

It is obvious that the calculation of required parameters involves three global quan-
tities. However, each sensor only interacts solely with its neighbors in the distributed 
scenario, thus the global quantities I(1), I(2), I(3) can’t be calculated locally. It is noted that 
these global information quantities can also be redetermined by averaging the local 
quantities from all nodes in Eq. (18).  

(1)(1)

1

(2)(2)

1

(3)(3)

1

1

1

1

K

k
k

K

k
k

K

k
k

K

K

K

























 (33) 

Note that the redefinition of global quantities has no impact on the parameter ap-
proximation in Eqs. (23) and (26). To obtain the global average at each node, an average 
consensus filter suggested in [38] can be employed to approximate the global infor-
mation quantities defined in Eq. (33). Particularly, the local information quantities pos-
sessed by each node are interchanged with their neighbors, then the global average is 
approximated asymptotically at each node depending upon the local information quanti-
ties input from others by using consensus filer. Hence, the DVSBL algorithm can be de-
veloped by employing such average consensus filter. 

According to [38], a consensus filter can be formulated by following continuous 
compact form  
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( ) ( ).
k k

k l k l k
l l k

u
  

    
 

x x x x  (34) 

Where xk is the filter state of node k, which approximates the filter input ul. The dis-
crete-time form of consensus filter suggested in [38] is as follows:  

1 ( ) ( ) .
k k

t t t t t t t
k k l k l k

l l k

u

  

 
     

 
 
 

x x x x x  (35) 

Where the superscript t denotes the number of iteration;  is the updating rate and should 
be  

1t

maxd
  , 

1

t

t






  , (36) 

2

1

( )
t






  . 

Eq. (36) is the stableness condition of the discrete consensus filter according to the Ger- 
shgorin theorem [39]. Thus, the filtering algorithm can be carried out in a distributed 
manner if the averages Eq. (33) can be obtained by every node. Before the distributed 
algorithm is presented, we use uk

t
 = {Ik

(1)
, Ik

(2)
, Ik

(3)
} to denote the local information quanti-

ties in the node k, and xk

t
 denote the estimated global information quantities. Here, both uk

t
 

and k

t
 are referred as vector. In particular, the vector factors xk

t
(1), xk

t
(2), xk

t
(3) are the ap-

proximations of I-(1), I-(2), I-(3). The consensus filter in node k takes the local quantities uk 
and neighbors’ approximated global quantities xl

t
 as inputs. The filter states asymptoti-

cally converge to  

(1)
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x

x
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 (37) 

Simultaneously, the hyperparameters {âk,i, b̂k,i, ĉk,i, d̂k,i, k, k} at each node will be 
approached by their estimate {âk,i, b̂k,i, ĉk, d̂k, ̂ k, k}, as the exact global information 
quantity vector is approached by its estimated value. Thus   

  1
ˆ diag( [ ]) [ ] (1)t t t t

k i k kk E E K  


   (38a) 

ˆˆ [ ] (2)
tt t t

k kk k
E K x  (38b) 
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Where the according moments are given by  
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Heretofore, the DVSBL algorithm has been developed above. The algorithm dia-
gram is illustrated in Fig. 3. In the following, we will analyze the convergence property 
and scalability of the proposed distributed algorithm. 

 

 
Fig. 3. Algorithm architecture. 

 

Remark: As the variational approximation is essentially an EM-like scheme, the log-like- 
lihood P(Z|) is guaranteed to be increased for each update iteration until a fixed point is 
reached. Hence, the proposed algorithm is guaranteed to converge [40]. Moreover, it is 
noted that the consensus update is independent of EM update in DVSBL, i.e., the updat-
ed result of EM has no impact on consensus update. So, it is obvious that the output of 
consensus update finally converges to average of local information quantity as iteration 
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increasing. In the end, the updates of Eq. (2) will convergence to the true hyperparame-
ters values as the global quantities obtained by consensus filter. 
  
5.1 Scalability Analysis 

 
Next, we investigate the scalability of the proposed algorithm by showing that the 

computational burden of each node will not be influenced by size of the network (K). For 
this purpose, a formula for the average computational burden will be given later. It will 
be shown that the computational burden of each node does not depend upon size of net-
work but it depends only upon the average number of its neighboring nodes (Navg). 

Assume that T denotes total number of required iterations. From the distributed al-
gorithm presented above, it is noted that the computational burden of each node can be 
given by  

 =   (f1(mk) + f2(Navg) + f3(N)).  

Where f1, f2, f3 are three functions, which represent the three different stages causing 
computational burden for each iteration. In the first stage, each node calculate the local 
information quantities. Thus, the computational burden of this stage is a function of the 
dimension of local measurement at each node, which is denoted by f1(mk). The second 
stage involves updating the global information quantities using the consensus filter, and 
its computational load is dependent on number of neighboring nodes i.e. f2(Navg). In the 
last stage, the model parameters are updated; thus, its computational burden depends 
upon N, which is represented by f3(N). As a consequence, it is easy to see that the com-
putational complexity of the proposed algorithm does not depend upon size of the net-
work, namely, the algorithm is performed in a scalable manner. 
 
Remark: In [11], it is hard to know the number of consensus iterations that are necessary 
in different scenarios. In [12], two thorough ADMM procedures are required in each EM 
iteration, which is inevitable to consume large time and energy. Compared with the 
works in [11, 12], our approach only need once average-consensus iteration in each VB 
step. It means the communication resource and energy can be saved to the great extent.  

6. SIMULATIONS 

In this section, simulation results are provided to demonstrate the performance of 
the proposed distributed algorithm by experiments with synthetic signals and real humid-
ity signals. In our experiments, three approaches are compared:  

 
(1) Distributed VSBL: each node reconstructs the signal severally in a distributed man-

ner by the proposed algorithm;  
(2) Independent VSBL: signal is reconstructed independently at each node by VSBL, 

which only exploits the local information;  
(3) Centralized VSBL: signal is jointly reconstructed at a fusion center by VSBL, where 

FC can gather all the information from nodes.  
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For comparison purposes, the reconstruction performance is evaluated by normal-
ized mean square error (NMSE) and averaged relative error (ARE), which are defined as 
follows:  

2

2

ˆ
NMSE ,k


x x

x
 (40) 

2

21
2

2

ˆ
ARE .

K

kk

K






 x x

x
 (41) 

In addition, the computer simulations involve two different networks. The first one 
is an L-connected Harary graph model, where each node is only available to communi-
cate with L adjacent neighbors to exchange information. The other one is Erdös-Rényi 
graph model, which is constructed by connecting nodes randomly, i.e., each edge is in-
cluded in the graph with probability p independent from every other edge. In the pro-
posed distributed algorithm, the updating rate of the consensus filter is chosen as  

1
 where 0 1.

maxd t
 


   


 (42) 

6.1 Experiments with Synthetic Data 
 
Fig. 4 shows a simulated set of sensor nodes placement. The sensors are located in a 

1km1km square randomly. According to underlying scheduling scheme, a network with 
6 nodes is employed to observe linear combinations of sparse signal, which is represent-
ed by an undirected graph G = (V, E, A) with the set of nodes A = (1,2,3,4,5,6), the set of 
edges E = {(1,2), (1,4), (1,6), (2,3), (2,5), (3,4), (3,6), (4,1), (4,5), (5,2), (5,6), (6,1), (6,3)} 
and the adjacency matrix  

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1
.

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

 
 
 
 

  
 
 
 
 


 (43) 

In this example, the signal x = 256 is assumed to be sparse itself. There are alto-
gether 10 non-zero elements x{i}  0 in the sparse signal, where i is the index of support 
and x{i} denote the value of support. Here, the index and value are unknown and sam-
pled over iUi[1, 256] and x{i}N(0, 52), respectively. We randomly generate a set of 
mk 256 measurement matrices {Ak, k = 1, 2, …, 6} from the standard independent and 
identically distributed (i.i.d) Gaussian ensemble. Then, we generate the local measure-
ments {zk, k = 1, 2, …, 6} for each node. The received measurements are corrupted by 
additive zero-mean Gaussian noise to yield signal noise ratio (SNR), i.e.

2
2

2
2

|| ||

|| ||
,k k

k

A x

w
 of 20dB. 
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Fig. 4. Random placement.            Fig. 5. Evolution of global information quantity I
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Fig. 6. Normalized MSE versus iteration (K = 6, mk = 12).   Fig. 7. Estimation of x (K = 6, mk = 12). 

 

The convergence rate of algorithm is given in Figs. 5 and 6, which show the local 
quantity Ik

(3)
 versus the number of iteration and Normalized MSE versus iteration, respec-

tively. As expected, our numerical simulation results confirm that all the nodes reach a 
consensus on the local quantity and estimate of sparse signals as the iteration increasing. 
Moreover, it is easy to see that both the NMSE and local quantity have almost identical 
convergence rate.   

In addition, Fig. 7 compares the estimates of x from three nodes using DVSBL al-
gorithm. It is obvious that all nodes give satisfactory estimates of the actual sparse signal. 
Furthermore, it is noted that the performance is achieved with far fewer measurements 
than the unknowns (< 5%) for each node. For instance, in this example, only 20% of the 
lower bound 10ln256  56 are required by each node.   

In order to show scalability of the proposed algorithm, the size of network is in-
creased to 24 nodes and the network is modeled as a 5-connected Harary graph which is 
illustrated in Fig. 8. Here, the performance of the centralized VSBL is also given as a 
benchmark, but the performance of aforementioned optimization-based algorithms is not 
provided due to their huge computational complexity. As a final illustration to highlight 
the consensus property of the algorithms, Fig. 9 shows the evolution of the signal sup-
ports estimated by each node as the iteration index grows. For each one of the s = 10 
supports, K = 24 different curves are shown, one per node. As we can see, all local esti-
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Fig. 12. ARE versus iterations for different instances.           Fig. 13. Erdös-Rényi model. 

mates reach a common limiting value after several iterations. We also give the NMSE of 
24 nodes shown in Fig. 10. From the figure, we can see that the convergence rate has no 
significant changes compared with Fig. 6. In Fig. 11, it is noted that the reconstruction 
quality is very close to that of the centralized VSBL and the difference can be ignored. 

Fig. 12 shows the Average Relative Error of the proposed algorithm with different 
instances for a Erdös-Rényi model, which is illustrated in Fig. 13. In addition, the itera-
tion steps while convergence attained for different network settings are provided in Ta-
ble 1. 
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Fig. 8. Harary graph.                 Fig. 9. Evolution of the per node estimates. 
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24, mk = 3). 
  Fig. 11. Comparison of NMSE after t = 100. 
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Fig. 14. Reconstructed results of environmental humidity signal (K = 24, mk = 3 and Harary graph 

model with L = 3). 
 

Table 1. The iterations of convergence in the proposed algorithm. 
 K = 24 K = 24 K = 24 K = 72 K = 72 
 mk = 3 mk = 6 mk = 9 mk = 1 mk = 3

Harary graph model (L = 2) 23 12 9 52 16 
Harary graph model (L = 3) 20 9 6 26 12 
Erdös-Rényi model (p = 0.3) 15 12 5 27 10 
Erdös-Rényi model (p = 0.5) 19 8 4 24 7 

 

Table 2. The average relative error for different approach. 
 K = 24 K = 24 K = 72 K = 72 
 mk = 3 mk = 6 mk = 1 mk = 3

Independent VSBL 0.9631 0.9611 0.9976 0.9856 
Harary graph model (L = 3) 3.3×10-4 4.3×10-4 4.4×10-4 2.8×10-4 
Erdös-Rényi model (p = 0.5) 6.3×10-4 4.4×10-4 7.8×10-4 1.4×10-3 

 
6.2 Experiments with Real Data 

 
Next, we verify the effectiveness of the proposed algorithm with real signal. Dif-

ferent from the synthetic signal previous, the real signal itself may not be sparse but 
sparse over some representation basis. To this end, we adopt the humidity signals ob-
tained from the Intel Berkeley Research lab. Moreover, the discrete cosine transform 
(DCT) is employed as the sparse representation basis. In the experiments, the length of 
signal is also restricted to N = 256. The samples of humidity signal are sensed by K = 24 
nodes severally. By exploiting the samples, both centralized and distributed reconstruct-
ed results are evaluated. 

From Fig. 14, it is obvious that both the proposed distributed algorithm and central-
ized algorithm successfully reconstruct the humidity signal. For our proposed algorithm, 
the reconstructed result is only for one of the 24 nodes. In fact, the other nodes have a 
nearly consensus reconstructed results. For the centralized VSBL, all the nodes’ samples 
need to be gathered at an FC for joint reconstruction, while the proposed distributed al-
gorithm enables joint reconstruction without an FC. Table 2 gives more performance 
comparisons under different settings, and further evaluates the effectiveness of algo-
rithm.  
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7. CONCLUSION 

In this paper, we tackle the sparse signal reconstruction in WSNs, where all the 
nodes cooperate and interact with each other without centralized coordination. A distrib-
uted variational Bayesian algorithm is proposed for full Bayesian system model. First, 
we have addressed the centralized scenario, where all node measurements are available 
at fusion center. In this case, a centralized approach is derived to facilitate the design of 
distributed counterpart. Next, a distributed reconstruction algorithm is obtained by means 
of consensus filter due to its efficiency and low-complexity. In particular, there exists 
merely one-step average-consensus iteration in each VB update. To evaluate the effec-
tiveness of the proposed algorithm, the numerical simulations on both synthetic and real 
data demonstrate that the proposed algorithm has comparable recovery performance and 
convergence properties.   
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