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This paper presents the design of two Ant Colony Optimization (ACO) approaches 

and their improved variants on the degree-constrained minimum spanning tree (d-MST) 
problem. The first approach, which we call p-ACO, uses the vertices of the construction 
graph as solution components, and is motivated by the well-known Prim’s algorithm for 
constructing MST. The second approach, known as k-ACO, uses the graph edges as so-
lution components, and is motivated by Kruskal’s algorithm for the MST problem. The 
proposed approaches are evaluated on two different data sets containing difficult d-MST 
instances. Empirical results show that k-ACO performs better than p-ACO. We then en-
hance the k-ACO approach by incorporating the tournament selection, global update and 
candidate lists strategies. Empirical evaluations of the enhanced k-ACO indicate that on 
average, it performs better than Prüfer-coded evolutionary algorithm (F-EA), problem 
search space (PSS), simulated annealing (SA), branch and bound (B&B), Knowles and 
Corne’s evolutionary algorithm (K-EA) and ant-based algorithm (AB) on most problem 
instances from a well-known class of data set called structured hard graphs. Results also 
show that it is very competitive with two other evolutionary algorithm based methods, 
namely weight-coded evolutionary algorithm (W-EA), and edge-set representation evo-
lutionary algorithm (S-EA) on the same class of data set. 
 
Keywords: ant colony optimization, degree-constrained minimum spanning tree, Kruskal, 
metaheuristic, NP-hard, Prim, swarm intelligence 
 
 

1. INTRODUCTION 
 

The ant colony optimization (ACO) is a metaheuristic approach for solving hard 
combinatorial optimization problems. The inspiring source of ACO is the pheromone 
trail laying and the behaviour of artificial ant following the foraging behaviour of real 
ants which use pheromones as a communication medium [1]. An ant, while going from 
the colony to the food source lays a chemical substance, called pheromone. When the ant 
returns from the food source, it reinforces the pheromones on the path that it had used. 
Pheromone trail laying is used to attract other ants to follow a particular path. When a 
large number of ants forage for food, the minimum cost path to the food source will 
eventually contain the highest concentration of pheromones, thereby attracting all the 
ants to use that minimum cost path. The pheromones on higher cost path which is not 
reinforced often enough will progressively evaporate. ACO algorithms are modelled after 
this behaviour, and have been used to solve minimum cost path problems and problems 
that can be reduced to a kind of shortest path problems [1]. 
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This work proposes ACO algorithms to find the degree-constrained minimum span-
ning tree (d-MST). The problem of finding a d-MST of a graph is a well-studied NP-hard 
problem and important in the design of telecommunication networks, design of networks 
for computer communication, design of integrated circuits, energy networks, transporta-
tion, logistics, sewage networks and plumbing for maximum network reliability, and 
optimality such as rerouting of traffic in case of vertex failures, and improve the network 
performance by distributing the traffic across many vertices [2]. There might be con-
straints imposed on the design such as the number of vertices in a subtree, degree-con- 
straints on vertices, flow and capacity constraints on any edge or vertex, and type of ser-
vices available on the edge or vertex.  

The d-MST problem is obtained by the modification of the MST problem from a 
given connected, edge weighted, undirected graph G, such that no vertex of the spanning 
tree has degree greater than d. It is because when d = 2, the MST meeting the constraint 
will take the form of a path. This is the path of least total weight which includes every 
vertex in the graph. In other words, this is a Hamiltonian path. Hence an algorithm which 
solves the d-MST problem also solves the Hamiltonian path problem, which is NP-com- 
plete. Therefore, the d-MST is NP-hard problem. The d-MST is in P if d = |V| − 1, 
whereby |V| is the number of vertices. When d = |V| − 1 there is no degree constraint and 
this is equal to MST problem that could be solved using a polynomial amount of compu-
tation time. 

The d-MST problem was first studied by Deo and Hakimi in 1968 [3]. Since com-
puting a d-MST is NP-hard for every d in the range 2 ≤ d ≤ |V| − 2, a few heuristics had 
been introduced to solve the d-MST problem such as ant colony optimization [4, 5], 
branch and bound [2], evolutionary algorithms [2, 6-8], genetic algorithms [2, 9-11], La-
grangean relaxation [2, 12], parallel algorithms [13], problem space search [2], simulated 
annealing [2] and variable neighbourhood search [14]. Recently, Soak, Corne and Ahn [6] 
have proposed a new encoding based on tree construction rule for d-MST to be used with 
EAs. The d-MST problem has also been studied for the complete graphs of points in a 
plane where edge costs are the Euclidean distance between these points coordinate. 
Euclidean problems are relatively simple to solve [2]. For these Euclidean problems there 
always exists a MST with degree no more than five and it is also being described in [15]. 
Using exact algorithms such as branch and bound and Lagrangean relaxation as de-
scribed by Krishnamorrthy et al. [2], one can find optimal solutions even for large prob-
lem instances including several hundred vertices in polynomial time. This showed that 
there exist effective polynomial-time heuristics for finding d-MST in the plane.  

In practice, the costs associated with the graph’s edge are arbitrary and need not sat-
isfy the triangle inequality [7]. For example, where edge costs are defined to be commu-
nications costs between vertices, physical distance can be very minor factor in compari-
son to others such as the type, capacity, quality of line, maintainability, speed, corporate 
provider of the link, and etc. In this case, a MST may have degree up to |V| − 1. Exact 
approaches and existing heuristics have no guaranteed bounds on the quality of the solu-
tions and it becomes ineffective for graphs with large number of vertices. However, in 
this paper we present the design of two Ant Colony Optimization (ACO) approaches and 
their improved variants on the degree-constrained minimum spanning tree (d-MST) 
problem. The first approach, which we call p-ACO, uses the vertices of the construction 
graph as solution components, and is motivated by the well-known Prim’s algorithm for 
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constructing MST. The second approach, known as k-ACO, uses the graph edges as so-
lution components, and is motivated by Kruskal’s algorithm for the MST problem. The 
proposed approaches are evaluated on two types of non-Euclidian graph problems for 
d-MST problem. We then enhance the k-ACO approach by incorporating the tournament 
selection, global update and candidate lists strategies.  

2. PROBLEM FORMULATION FOR d-MST 

The degree-constrained minimum spanning tree (d-MST) problem can be stated as 
follows: Let graph G = (V, E) be a connected weighted undirected graph, where V = {v1, 
v2, …, vn} is a finite set of vertices, and E = {eij | i ∈ V, j ∈ V, i ≠ j} is a finite set of edges 
representing connections between these vertices. Each edge has a nonnegative real num-
ber denoted by W = {w1, w2, …, w|E|}, representing weight or cost. Note that in a com-
plete graph having |V| vertices, the number of edges, |E|, is |V|(|V| − 1)/2, and the number 
of spanning trees is |V||V|-2. A spanning tree always consists of |V| − 1 edges. Any sub-
graph of G can be described using a vector x = (x1, x2, …, xm) where each xi is a binary 
decision variable defined as: 

1, if edge  is part of the subgraph
.

0, otherwise
ij

i
e

x
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

                             (1) 

Let S be a subgraph of G. S is said to be a spanning tree in G if S: 
 

(a) contains all the vertices of G and the vertices can be in non-order form;  
(b) is connected, and graph contains no cycles.  

 
Now let T be the set of all spanning trees corresponding to the simple graph G. In 

the MST problem, if we assume that there is a degree constraint on each vertex such that 
the degree value dj of vertex j is at most a given constant value d, the number of edges 
incident to each vertex is constrained. Then the problem is denoted as a d-MST and can 
be formulated as follows: 

| |

1
min ( ) | , , .

E

i i j
i

z w x j V d d x T
=

⎧ ⎫⎪ ⎪= ∈ ≤ ∈⎨ ⎬
⎪ ⎪⎩ ⎭

∑x                              (2) 

3. RELATED WORK 

ACO have been applied to solve constrained MST problems such as the capacitated 
MST [16] and generalized MST [17] problems. However, for solving the d-MST prob-
lem that we are doing, there are several approaches found in the literature. Among the 
approaches that were used for our comparison study were Prüfer-coded evolutionary al-
gorithm (F-EA) [2], problem search space (PSS) [2], simulated annealing (SA) [2], 
branch and bound (B&B) [2], Knowles and Corne’s evolutionary algorithm (K-EA) [7], 
weight-coded evolutionary algorithm (W-EA) [9], edge-set representation evolutionary 
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algorithm (S-EA) [8] and ant-based algorithm (AB) [5]. Krishnamoorthy et al. [2] pre-
sented F-EA, PSS, SA and B&B for the d-MST problem. F-EA employs Prüfer coding 
based evolutionary algorithm (EA) and uses standard single point crossover. PSS is 
metaheuristic which combines a simple constructive heuristic with a genetic algorithm. 
They use Prim’s based heuristic to construct randomized minimum spanning tree. The 
SA approach provides a means to escape local optima by allowing some downhill moves 
during stochastic hill climbing in hopes of finding a global optimum. As the SA tem-
perature parameter is decreased to zero, uphill moves occur less frequently to minimize 
the spanning tree cost. In their SA implementation, they set initial temperature at 1% of 
the standard deviation in edges weight over a random walk of length 20 neighbouring 
solutions. The temperature is reduced by 2% until either 3 successive chains produce the 
same result or when 300 temperature decrements have been performed. B&B is in gen-
eral an exact technique. Since complete runs would have been too time-demanding, each 
run is terminated after 10 minutes CPU time and the best solution found so far was re-
ported as final solution. Knowles and Corne [7] described another EA for the d-MST 
problem. In their algorithm, chromosomes are sequences of integer values that influence 
the order on which edge vertices to connect to form the growing spanning tree. Raidl and 
Julstrom [9] presented W-EA for the d-MST problem. In this W-EA approach, a feasible 
spanning tree is represented by a string of numerical weights associated with the vertices. 
During decoding, these weights temporarily bias the graph’s edge costs. Raidl [8] also 
presented S-EA for the d-MST problem. In this S-EA approach, spanning trees in EA is 
represented directly as sets of their edges. Special initialization, crossover, and mutation 
operators are used to generate new, always feasible candidate solutions. Bui T. N. and 
Zrncic C. M. [5] presented AB for the d-MST problem. In their algorithm they use cu-
mulative pheromone levels to determine candidate sets of edges from which degree-con- 
strained spanning trees are built. 

4. THE ACO APPROACHES 

This section details two of our proposed ACO approaches and their improved vari-
ants on the degree-constrained minimum spanning tree (d-MST) problem. The first ap-
proach uses the graph edges as solution components, and is motivated by Kruskal’s algo-
rithm [18] for the MST problem, which we refer to as k-ACO’s in this paper. The second 
approach uses the vertices of the construction graph as solution components, and is mo-
tivated by the well-known Prim’s algorithm [19] for constructing MST, which we refer to 
as p-ACO in this paper. Then we detail our enhanced k-ACO approach by incorporating 
the tournament selection strategy, global update strategy and candidate lists strategy. 
 
4.1 The k-ACO 
 

The set of edges, E = {eij | i ∈ V, j ∈ V, i ≠ j} will serve as solution components from 
which ant will use to incrementally construct a degree-constrained spanning tree (d-ST) 
during each iteration of the algorithm. Firstly, we sort the edges in E into non-decreasing 
order by their edge weight. Then we let edge set ET be a set of edges and let ET be ini-
tially empty. The Kruskal’s algorithm starts by selecting the first edge in the sorted edges. 
This edge will be the first minimum weight edge added to the ET. At each step, Kruskal’s 
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algorithm only allows edges that connect any two different trees in the forest to be added 
to the current growing tree until ET contained cardinality of |V| − 1 to form a spanning 
tree. This step implies that Kruskal’s algorithm allows a spanning tree to be formed by 
more than one different tree components. The artificial ants follow this construction step, 
except that the selection of the next solution component is probabilistic to avoid the pit-
falls of the greedy approach. To ensure the degree constraint is adhered to, we do not add 
next edges that violate the degree constraint. 

The objective function f returns the cost of the degree-constrained spanning tree Sk 
found by ant k. Let wij be the weight between vertices i and j for edge eij and the amount 
of pheromone on the edge that connects vertex i and vertex j for edge eij. τeij is initially 
set to small value as τ0 = 10-6 where τ0 is the initial pheromone. The algorithm consists of 
a series of iterations: 

 
(1)  A set of mAnts artificial ants are initially located at randomly selected edges mAnts = 

|V|; 
(2)  Each ant, denoted by k, constructs a valid d-ST, selecting until |V| − 1 edges, always 

maintaining a set list Jk of feasible edges that remain to be visited. For this case, 
d-ST is valid if it adhere to its degree constraint. For efficient implementation of fea-
sible edges we test whether two vertices are already connected via some edges or not 
by using a union-find data structures [20]; 

(3)  At step r of iteration t, an ant will select an edge among the feasible edges that have 
not yet been visited. This edge will connect two different components of the forest in 
the graph that does not violate the degree constraint to be included in its partially 
constructed solution, according to probability: 

[ ( )] [ ] 1, ( ),  
[ ( )] [ ]( )

0,  otherwise

ij ij

ij

l lij
k

e e
k ij ek ije ee r

l J

t
l J e

wtp t

α β

α β

τ η
η

τ η
∈

⎧ ⎫
⎪ ⎪∀ ∈ =⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∑                    (3) 

where 

0

, if 0

, if 0
ij ij

ij
ij

w w
w

wτ

>⎧ ⎫⎪ ⎪= ⎨ ⎬=⎪ ⎪⎩ ⎭
                                              (4) 

where α and β are two positive parameters which govern the respective influences of 
pheromone and distance visibility on ants’ decision and η as inverse distance visibil-
ity measure.  

(4)  When every ant has completed a d-ST, pheromone trails are updated: 

1
( 1) (1 ) ( )

ij ij ij

mAnts
k

e e e
k

t tτ ρ τ τ
=

+ = − + Δ∑                                    (5) 

where 

0 ,
ij

k
eτ ρτΔ = as local update                                           (6) 
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/ , if -

0, otherwiseij

gb gb
ijk

e
Q L e d ST

τ
⎧ ⎫∈⎪ ⎪Δ = ⎨ ⎬
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 as global update                        (7) 

where ρ is the evaporation rate τ 0 = 10-6 is the initial pheromone, Lgb is the weight of 
global-best degree-constrained spanning tree d-STgb and Q is a positive integer.  
 
Pheromone evaporates at a fixed rate after all ants have constructed their d-ST. τeij is 

the amount of reinforcement received by edge eij. Δτeij is proportional to the quality of the 
solutions in which edge eij was used for construction. While ant k is building a solution a 
local update rule is applied [21]. The local update rule was needed to yield better per-
formance by encouraging ants’ exploration. Only the globally best degree-constrained 
spanning tree Lgb by ant k is allowed to deposit additional amount of pheromone. This is 
used as the elitist strategy [22]. The ACO approaches proposed in this paper follows that 
of the Ant Colony System in [21], and incorporates the elitist strategy from Ant System 
[22].  
 
4.2 The p-ACO 
 

The p-ACO uses the vertices of the construction graph as solution components. 
During each iteration of the p-ACO, every ant will use these solution components to con-
struct a degree-constrained spanning tree (d-ST) incrementally. Initially we let vertex set 
CS be an unordered list of vertices and let CS be initially empty. The Prim’s algorithm 
starts from an arbitrary root vertex in graph. This arbitrary root vertex will be the first 
vertex added to the CS. At each step, Prim’s algorithm select edge eij whereby the vertex 
i contains in the CS and the second unconnected vertex j does not contains in the CS to 
be added to the current growing tree. CS is grown until it contains all the vertices in V to 
form a spanning tree. This step implies that Prim’s algorithm always form a spanning 
tree by a single tree component. The artificial ants follow this construction step, except 
that the selection of the next solution component is probabilistic to avoid the pitfalls of 
the greedy approach. To ensure the degree constraint is adhered to, we do not add next 
vertices that violate the degree constraint. The p-ACO description had been given in our 
previous paper [4]. 
 
4.3 The Enhanced k-ACO 
 

We enhanced k-ACO by incorporating three strategies. Strategy 1 is the tournament 
selection strategy. Strategy 2 is the global update strategy. And lastly, strategy 3 is the 
candidate lists strategy. 
 
4.3.1 Strategy 1: tournament selection 
 

An ant selects a set of other feasible edges using Eq. (3) with tournament selection 
of size 2 [23] instead of using typical roulette wheel selection [24, 25] method. Fig. 1 
shows our enhanced k-ACO incorporated with tournament selection of size 2 pseu-
docode. Tournament selection can be likened to the natural process of individuals  
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Algorithm  Tournament selection of size 2 
Input: Feasible edges, E* of ant k from Eq. (3) into the tournament 
Output: Only one feasible eij as a winner 
begin 
Set max_probability ← 0 
for count ← 1 to |E*|/2 do 

1. Randomly select two edges from E* to compete 
2. Compare the probability of the two edges with max-probability: the edge with higher 

probability compare to max_probability will be the winner and then update max_prob- 
ability as winner probability 

return winner eij 
end 

Fig. 1. Pseudocode for tournament selection of size 2. 

 
competing with each other in order to become winner. Selection pressure can be easily 
adjusted by changing the tournament size. 

4.3.2 Strategy 2: using global pheromone trail update rule 

We adapt the global pheromone trail update rule /
ij

k gb
e Q LτΔ =  by defining Lgb as 

follows:  

degree( ) degree( )( ) .
2

gb gb gb
ij

i jL e L L
d

+
= +

×
                               (8)  

This strategy introduces degree constraint knowledge into global pheromone trail 
update instead of solely using the total weight of global-best degree-constrained span-
ning tree, Lgb. The Eq. (8) decreasing some amount of pheromone for higher degree con-
straint edge eij vertices. 

4.3.3 Strategy 3: using candidate lists 

For each ant, a list containing the N least expensive edge yet to be included in the 
partial solution. Our candidate lists comprise a top N size of the sorted feasible edges, E* 
set by its weight. The reason we apply the candidate lists strategy is to reduce large 
neighbourhood in our solution construction caused by the large number of edges in the 
graph. This allows our enhanced k-ACO algorithm to focus on more promising edges of 
the current state. We apply candidate lists of size 30 in our experiment. This value is ob-
tained from the parameter tuning process. 

5. COMPUTATIONAL SETUP 

This section first describes two different data sets containing difficult d-MST in-
stances: structured hard (SHRD) graph and misleading graph (M-graph). After that, we 
describe how the parameters for both p-ACO and k-ACO are tuned for better solution 
quality. 
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5.1 Data Sets 
 

The structured hard (SHRD) graphs are constructed by using non-Euclidean dis-
tance. These are difficult to solve optimally compared to other data sets such as Euclid-
ean data sets of degree 3 or more [2]. The MST for SHRD is a star graph where one ver-
tex has degree |V| − 1 and the all other vertices have degree 1. The misleading graph 
(M-graph) data set consists of randomly generated weights with a positive sign, greater 
than or equal to 0.0 and less than 1.0 attached to the edges in such a way that they will 
mislead greedy algorithms [7]. The M-graph is based on constructing the unconstrained 
MST to contain star patterns of degree d. Both data sets are complete graphs with undi-
rected non-negative weighted edges. 
 
5.2 Parameter Settings 
 

The range for β was 2, 4, 6, 8, and 10, and ρ was 0.01, 0.02, 0.05, 0.10, and 0.20. 
For each β and ρ combinations used for p-ACO and k-ACO parameter settings, we re-
cord average solution costs over 20 independent runs. Each run is terminated after 30 
iterations. The lowest average solution costs for each β and ρ combinations will be our 
p-ACO and k-ACO algorithms parameter values used in SHRD and M-graph data sets. 
This is because the lower the average solution costs indicate that the solution quality is 
higher. Tables 1 to 4 show parameter tuning results for p-ACO and k-ACO. The lowest 
value from the 5 × 5 parameter setting table is in bold print. It happened that for SHRD 
problem instance the k-ACO uses the same parameter values of β = 10 and ρ = 0.01 as 
p-ACO. Separate parameter values are used for p-ACO and k-ACO for the M-graph 
problem instances. The parameter values of β = 4 and ρ = 0.02 are chosen for p-ACO 
while values of β = 2 and ρ = 0.10 are chosen for k-ACO. Table 5 shows our final pa-
rameter setting for artificial ant k used for both p-ACO and k-ACO in our experiment on  

 
Table 1. Parameter tuning for p-ACO average results, problem shrd305, iterations = 30, 

runs = 20. 
 ρ = 0.01 0.02 0.05 0.10 0.20 

β = 2 1590.50 1585.80 1599.65 1625.50 1680.60
4 1529.45 1533.00 1533.85 1540.00 1572.00
6 1518.95 1517.30 1521.90 1524.55 1545.15
8 1515.25 1515.65 1515.75 1518.25 1533.80
10 1513.55 1514.15 1514.95 1515.25 1526.75

 
Table 2. Parameter tuning for k-ACO average results, problem shrd305, iterations = 30, 

runs = 20. 
 ρ = 0.01 0.02 0.05 0.10 0.20 

β = 2 1609.45 1608.75 1618.35 1635.50 1700.70
4 1538.80 1541.35 1546.25 1550.85 1579.40
6 1526.10 1523.95 1525.90 1533.00 1548.90
8 1518.00 1518.40 1521.45 1524.55 1538.25
10 1514.95 1515.95 1517.40 1521.75 1531.00
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Table 3. Parameter tuning for p-ACO average results, problem m50n1, iterations = 30, 
runs = 20. 

 ρ = 0.01 0.02 0.05 0.10 0.20 
β = 2 7.8744 7.9141 8.0041 9.0343 10.2777

4 8.0163 7.7700 7.9464 8.6402 9.7540
6 8.4264 8.3399 8.3438 8.8363 9.7434
8 9.0393 8.9501 9.0304 9.2558 9.6575
10 9.4282 9.4468 9.3318 9.3614 9.6826

 
Table 4. Parameter tuning for k-ACO average results, problem m50n1, iterations = 30, 

runs = 20.  
 ρ = 0.01 0.02 0.05 0.10 0.20 

β = 2 8.2915 7.9525 7.6415 7.4913 9.4632
4 7.9661 7.6310 7.5096 7.8329 8.5959
6 8.7173 8.2863 8.2706 8.2072 8.5624
8 8.9102 8.4881 8.6286 8.5700 8.8353
10 9.0634 9.0570 8.9409 8.7352 8.9876

 

Table 5. Final parameter setting artificial ant for p-ACO and k-ACO on SHRD and 
M-graph problem instances.  

p-ACO k-ACO  
SHRD M-graph SHRD M-graph 

mAnts |V| 50 |V| 50 
Q 1.0 1.0 1.0 1.0 
α 1 1 1 1 
τ 0 10-6 10-6 10-6 10-6 
β 10 4 10 2 
ρ 0.01 0.02 0.01 0.10 

 
SHRD and M-graph problem instances. The maximum number of ants, mAnts is re-
stricted to 50 because the cost of constructing solutions in our algorithms is quite high. 
The best parameter value of α is set to 1; it is consistent with other ACO research works 
[22, 26]. Parameter values of β and ρ used for enhanced k-ACO was the same with 
k-ACO. 
 
5.3 Experiment Setup 
 

The p-ACO, k-ACO and the enhanced k-ACO’s approaches are implemented in 
Java v5.0 using the RePast v3.1 multi-agent simulation framework. For p-ACO, k-ACO 
and the enhanced k-ACO approaches, 50 independent runs were performed for each 
problem instance. Each run is terminated after 100 iterations. We have tried up to 300 
iterations but the improvement found is too small to justify the additional computation 
time. All the results that we present in this paper were obtained on PCs with Pentium 4 
3000 Mhz CPU running under Windows XP Professional. 
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6. EMPIRICAL RESULTS 

The solution quality is measured by the relative difference between the final objec-
tive value C obtained by a specific approach and the objective value Cd-Prim of the solu-
tion found by the d-Prim heuristic where the first vertex is used as starting point in per-
cent. This measure is called quality gain: 

quality gain = (Cd-Prim – C)/Cd-Prim ⋅ 100%.                                (9) 

In other words, we use d-Prim as a reference algorithm and calculate relative quality 
improvements for the other approaches; where larger values indicate better results. 

6.1 Performance Comparisons on Structure Hard Graph (SHRD) Data Set 

Table 6 shows results for the SHRD data set. The numbers of vertices are in the 
range 15, 20, 25, and 30 where the maximum degree was set to 3, 4 and 5. The results for 
F-EA, PSS, SA, B&B, W-EA, S-EA, AB and p-ACO are adopted from [4, 5, 8] and 
printed for comparison purposes only. Besides average gains, the gains of the best run 
are reported in Table 6. The enhanced k-ACO, incorporating the tournament selection of 
size 2, global update strategy and candidate lists of size 30 are referred to as k-ts-gu-cl- 
ACO. 

We can conclude that k-ts-gu-cl-ACO has higher total average results compared to 
k-ACO. In turn, k-ACO has higher total average results compared to p-ACO. Overall our 
k-ts-gu-cl-ACO approaches attain the highest total average results compared to all other 
approaches such as F-EA, PSS, SA, B&B, W-EA, S-EA and AB. The k-ts-gu-cl-ACO 
gave the highest average gains for three problem instances, namely SHRD153 d = 3, 
SHRD253 d = 3 and SHRD305 d = 5 instances, where the improvement is better than all 
other non-ACO approaches. The figures of this are in bold print and we can refer it from 
the Table 6. For other problem instances, the k-ts-gu-cl-ACO is at least performed better 
than one of the other compared approaches. The better results produced by k-ts-gu-cl- 
ACO demonstrates the effectiveness of the enhancement strategies.  

6.2 Performance Comparisons on Structure Hard Graph (SHRD) Data set 

Table 7 shows results for misleading problem instances from Knowles and Corne 
[7]. The numbers of vertices are 50 and 100. The maximum degree was set to 5. The re-
sults for K-EA, W-EA, S-EA and p-ACO are adopted from [4, 8] and printed for com-
parison purposes only. Besides average gains, the gains of the best runs are reported in 
Table 7.  

From the experiments, we can conclude that the k-ts-gu-cl-ACO has higher total 
average results compared to p-ACO and k-ACO. Among the ACO approaches, k-ts-gu- 
cl-ACO used here gave the best average results for graph of 50 vertices. On average, k-ts- 
gu-cl-ACO performed better than W-EA and K-EA for graph of 50 vertices. However, 
when the graph size is increased to 100 vertices, k-ACO without any enhancement per-
formed very badly. One of the probable reasons is the increase of the number of edges in 
the graph (quadratic growth rate). Notice the drastic improvement, when we incorporated 
the three enhancement strategies for k-ACO. The three problem instances with 100 ver-
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tices namely, m100n1 average result increased from − 1.23 to 24.66, m100n2 average 
result increased from 5.41 to 27.92 and m100n3 average result increased from − 0.28 to 
20.54. 

7. CONCLUSIONS 

We have presented the design of k-ACO, an ACO algorithm for the degree-con- 
strained minimum spanning tree problem. Performance studies have revealed that k-ACO 
is competitive with a number of other metaheuristic approaches. The incorporation of 
enhancement strategies such as tournament selection, utilisation of candidate lists and the 
deployment of a global pheromone update strategy have improved the performance of 
k-ACO to obtain the best performance for three instances on the SHRD data sets. Despite 
not being able to produce the best results for the misleading graph data set, the use of 
enhancement strategies enabled k-ACO to achieve results very close to S-EA, and bet-
ter than the other approaches for most of the problem instances under the SHRD class. 
We believe that the proposed ACO approaches extend naturally to the capacitated MST 
problem. 
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