
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 37, 1211-1229 (2021)
DOI: 10.6688/JISE.202109_37(5).0015

1211

High Performance Post-Quantum Key Exchange on FPGAs

PO-CHUN KUO1, YU-WEI CHEN1, YUAN-CHE HSU1, CHEN-MOU CHENG1,

WEN-DING LI2 AND BO-YIN YANG2

1Department of Electrical Engineering
National Taiwan University

Taipei, 116 Taiwan
2Institute of Information Science

Academia Sinica
Taipei, 115 Taiwan

E-mail: kbj@crypto.tw; r05921032@ntu.edu.tw; r05921056@ntu.edu.tw;
doug@crypto.tw; thekev@crypto.tw; by@crypto.tw

Lattice-based cryptography is a highly potential candidate that protects against the

threats of quantum attack. At Usenix Security 2016, Alkim, Ducas, Pöpplemann, and
Schwabe proposed a post-quantum key exchange scheme called NewHope, based on a
variant of lattice problem, the ring-learning-with-errors (RLWE) problem. In this work,
we propose a high performance hardware architecture for NewHope. Our implementation
requires 6,680 slices, 9,412 FFs, 18,756 LUTs, 8 DSPs and 14 BRAMs on Xilinx Zynq-
7000 equipped with 28mm Artix-7 7020 FPGA. In our hardware design of NewHope key
exchange, the three phases of key exchange costs 51.9, 78.6 and 21.1 s, respectively. It
achieves more than 4.8 times better in terms of area-time product compared to previous
results of hardware implementation of NewHope-Simple from Oder and Güneysu at Latin-
crypt 2017.

Keywords: cryptography, post-quantum cryptography, lattice-based cryptography, LWE,
RLWE, key exchange, FPGA implementation

1. INTRODUCTION

In the last decade, post-quantum cryptography has drawn widespread interest. Not
only will postquantum cryptography potentially save us from the threats from large quan-
tum computers, but also provide provable security in many cases. Lattice-based cryptog-
raphy is a candidate for post-quantum cryptography that provides strong theoretical secu-
rity guarantees such as worst-case to average-case reduction. It also provides the initial
constructions of many new cryptographic functionalities, e.g., fully homomorphic encryp-
tion [1]. Furthermore, such cryptosystems are usually very efficient. For example, the com-
putation of some public-key encryption based on (Ring-) LWE is faster than RSA/ECC,
even though the key size is usually larger [2, 3].

Recently, National Institute of Standards and Technology (NIST) announced a post-
quantum crypto project, aiming to select new standard cryptographic primitives for the
post-quantum era [4]. The key establishment algorithm is one of the most important prim-
itives in this project. At Usenix 2016, Alkim, Ducas, Pöpplemann, and Schwabe proposed
the NewHope post-quantum key agreement scheme, based on the ring-learning-with-errors
(RLWE) problem [5]. Google conducted a set of experiments using NewHope on internet

Received September 28, 2019; accepted December 11, 2019.
Communicated by Fu-Hau Hsu.
* This work was supported by the Ministry Of Science and Technology (MOST) for support under Grants No.

MOST 1082218-E-002-045 and 108-2221-E-002-066.

P.-C. KUO, Y.-W. CHEN, Y.-C. HSU, C.-M. CHENG, W.-D. LI, B.-Y. YANG

1212

through the Google Chrome Canary Browser starting from July, 2016. The results show
that NewHope is computationally inexpensive, with only a slight increase in latency for
some slow internet connections.

In the era of heterogeneous computing, special purpose computing device can be ac-
cessed by the CPU to offload the computation to achieve lower cost or higher power effi-
ciency. However, application specific integrated circuits (ASICs) are very expensive, so a
more cost-effective way to deploy hardware accelerators is to use Field-Programmable
Gate Arrays (FPGAs).

As a result, FPGAs are one of the most popular ways today to deploy hardware ac-
celerators. An FPGA contains an array of programmable logic components and a hierarchy
of reconfigurable interconnects. In fact, people can now launch instances with FPGAs at-
tached on Amazon Web Service (AWS). Therefore, many foresee the use of cloud services
with on-demand FPGAs to increase computation resource when load is high.

Our contribution: In this work, we implement the NewHope key exchange protocol
which achieves:

 4.8 times better than the best previous results in terms of time-area product,
 the first work adapts Longa-Naehrig modular reduction on hardware implementation,
 and the pipeline framework is finely configured.

In detail, our implementation requires 6,680 slices, 9,412 FFs, 18,756 LUTs, 8 DSPs
and 14 BRAMs on Xilinx Zynq-7000 equipped with 28mm Artix-7 7020 FPGA, and, in
our hardware design of NewHope key exchange, the three phases of key exchange costs
51.9, 78.6 and 21.1s, respectively. Based on our implementation and analysis on the per-
formance bottleneck, our results can also apply to other RLWEbased cryptography, as the
new standards are still evolving.

2. BACKGROUND

2.0.1 Notation

Let χ be a probability distribution over a set S. We use x←$ χ(S) to denote x sampled

from S according to χ, and x←$ S to denote x uniformly sampled from S. We define ring R
= [X]/(Xn + 1) as the ring of integer polynomials modulo Xn + 1 and Rq = R /qR as the
ring of R, where each coefficient is reduced modulo q.

2.0.2 LWE and RLWE

The LWE problem is first introduced by Regev [6] and can be quantum-reduced to

certain worst-case lattice problems. Moreover, Peikert [7] and Brakerski et al. [8] further
improve the situation by providing classical reductions to lattice problems. LWE based
public key cryptosystem is proposed in various variant schemes [7, 9-13]. One important
variant of LWE is Ring-LWE, which introduces ring structure into play [14]. The RLWE
problem is defined as following: let sRq be the secret, generate a←$

Rq and e←$ χ(Rq),
compute b = a ∗ s + e, and the search version of RLWE is to find s given a list of (a, b).

HIGH PERFORMANCE POST-QUANTUM KEY EXCHANGE ON FPGAS 1213

For the setting of most cryptosystems, only one pair of (a, b) is given.

2.0.3 Post-quantum key exchange

Recently there are two majority ways to construct a post-quantum key exchange: lat-

tice-based and isogeny-based. Super-singular isogeny Diffie-Hellman key exchange is the
key exchange scheme based on isogeny [15]. However, the best hardware implementation
of SIDH to date has the running time which is typically an order of magnitude larger than
similar schemes based on (R-)LWE. Thus, RLWE may still be the most efficient choice of
post-quantum key exchange scheme so far.

The first LWE-based key exchange is proposed by Ding [16], subsequently modified
by Peikert [17]. At Bos et al. 2015, implemented Peikert’s version of RLWE key exchange
with a parameter set of their choice [18]. They also integrated their implementation into
the TLS protocol into OpenSSL.

NewHope is the key exchange scheme proposed by Alkim et al. [5], which further
improves the performance from [18] by choosing a different set of parameters. Their anal-
ysis shows that the new scheme still remains secure while using a smaller modulus, effi-
cient noise sampling, and fast reconciliation. The details of NewHope will be introduced
in next section. Frodo is the key exchange scheme based on LWE problem instead of
RLWE problem, proposed by Bos et al. after NewHope [19]. Without the additional as-
sumption of ring-structure, they selected the parameter with a smaller security margin.
Because it based on LWE rather than RLWE, Frodo is still less efficient than NewHope.
More precisely, the computation cost of Frodo is around ten times larger, and the commu-
nication size is around six times larger than NewHope. However, Frodo is an alternative
for post-quantum key exchange since RLWE-based cryptosystem might be potentially in-
secure [20, 21] due to the ring structure.

2.1 NewHope Protocol

As mentioned earlier, NewHope is a variant of Ding’s and Peikert’s protocols [16,

17]. The protocol is described in Protocol 1. All the variables except for r4 are in the
ring Rq = [X]/(Xn + 1), where n = 1024 and q = 12289. This parameter setting is suitable
for a number-theoretic transform (NTT) since q ≡ 1 mod 2n.

The key idea of the protocol is: Use the property of ass + es = bs  us = ass + es,
where Alice can compute the left-hand side part and Bob can compute the right-hand side
part. A problem arises in this situation: The codeword is decided by ass, so the rounding
technique usually used in an LWE-based cryptosystem does not work. More precisely, the
value of ass may be near the boundary between where a point rounds to 0 and where it
rounds to 1. Then Alice and Bob will add different noise vectors, which may lead to dif-
ferent rounding results. The technique to solve this problem is called reconciliation. The
main idea is that one party (in NewHope, Bob) sends a hint to the other party (in NewHope,
Alice), and the two parties can use the hint to decode the message into the same shared
secret. The algorithm to generate hint is shown in Algorithm 1, and the reconciliation al-
gorithm is shown in Algorithm 2.

Finally, to transmit a 256-bits key with 1024 coefficients, NewHope encodes 1 bit of
codeword into 4 coefficients in order to increase the error resilience and better security.

P.-C. KUO, Y.-W. CHEN, Y.-C. HSU, C.-M. CHENG, W.-D. LI, B.-Y. YANG

1214

Table 1. NewHope key exchange scheme.

2.2 Algorithms

2.2.1 Reconciliation

We follow [5] in implementing the reconciliation function. The main idea of the re-

covery mechanism is to encode and decode over the lattice D̃ 4, which is the densest lattice
sphere packing in Dimension 4 so that it provides the lowest failure rate. D̃ 4 consists the
two shifted copies 4 with the shift vector g = (1/2, 1/2, 1/2, 1/2)t. The basis of D̃ 4 is (e1,
e2, e3, g).

 D̃ 4 = 4(4 + g)

Algorithm 1: Help Rec

Require: r-bits reconciliation information,

4 .qw

Ensure: 4 dimension r-bits reconciliation information, {0, 1, …, 2r  1}4

1: b←$ {0, 1}

2: 2 1 1 1 1
(((, , ,)))

2 2 2 2

r
tb

q
  x w

3: v0  x

4: v1  x 

1 1 1 1
(, , ,)
2 2 2 2

t


5: k  (||x  v0|| < 1) 0 : 1
6: (v0, v1, v2, v3)t

  vk
7: return (v0, v1, v2, v3)t

 + v3(1, 1, 1, 2)t mod 2r

Algorithm 2: Rec

Require: r-bits reconciliation information,

4 ,qw r = (r0, r1, r2, r3)

Ensure: 1-bit shared information

1: 3 3 3 3
0 1 2

1 1
((, , , ,)))

2 2 2 2 2
t

r

r r r r
r r r

q
     x w

2: v  x  x
3: return 0 if ||v||1  1, and 1 otherwise

HIGH PERFORMANCE POST-QUANTUM KEY EXCHANGE ON FPGAS 1215

The encoding method is to equally split the 4-dimensional space by the 1-norm dis-
tance to g, that is, the regular 24-cells icositetrachoron shape. The r-bit assisted reconcili-
ation algorithm, the algorithm to generate hints, is shown in Algorithm 1, the reconciliation
algorithm is shown in Algorithm 2, and NewHope selects the parameter r = 2.

2.2.2 Number-theoretic transform

Direct multiplication (using school-book algorithm) between two elements in poly-

nomial ring costs n2 multiplications and roughly as many additions or subtractions. The
best way to accelerate the computation is to use fast Fourier transform. The number theo-
retic transform (NTT) is a discrete version of fast Fourier transform defined over a finite
ring p. The NTT algorithm is shown in Algorithm 3, and the inverse number theoretic
transform, INTT is very similar to NTT except for an additional final multiplication by n-1

for each coefficient of the polynomial.

2.2.3 Negative wrapped convolution

The NewHope uses the anti-cyclic ideal q[X]/(Xn + 1), which does not lead to a clas-

sical cyclic convolution when we multiply two ring elements. We use what is called “neg-
ative wrapped convolution” to solve the problem. Negative wrapped convolution is first
introduced in [22], and Chen et al. implemented the algorithm on FPGA [23]. Let c = (c0,
c1, …, cn-1) be the negative wrapped convolution of a = (a0, a1, …, an-1) and b = (b0, b1, bn-1),
it is defined by

1

0 1

.
i n

i j i j j n i j
j j i

c a b a b


  
  

  

This is exactly the polynomial multiplication over q[X]/(Xn + 1). Using the NTT mul-
tiplication with negative wrapped convolution, the complexity of multiplication over the
polynomial ring q[X]/(Xn + 1) becomes O(nlogn). The pseudo-code of negative wrapped
convolution is shown in Algorithm 4.

Algorithm 3: Number-Theoretic Transform, NTT
Require: aq[X]/(Xn+1),  is a primitive nth root of unity in q[X], n and q
Ensure: A = NTT

n(a)
 aOrder_revers(a)
 for i = 0 to log2n  1 do
 for j = 0 to n/2  1 do

 2

2

log 1
log 1

2
2

n i
ij n i

j
P  

 
    

2 2 1 modijP

j j jA a a q 

 end for
 if i  log2n  1 then
 a  A
 end if

P.-C. KUO, Y.-W. CHEN, Y.-C. HSU, C.-M. CHENG, W.-D. LI, B.-Y. YANG

1216

 end for
 return A

Algorithm 4: Polynomial Multiplication using NTT over q[X]/(Xn + 1)
Require: aq[X]/(Xn+1),  is a primitive nth root of unity in q[X], 2 = , n, and q
Ensure: c = a  bq[X]/(Xn+1)
 Precompute: i, -i, i, -i, where i = 0, 1, …, n  1
 for i = 0 to n  1 do

 mod

mod

i
i i

i
i i

a a q

b b q









 end for

 ()

()

n

n

NTT

NTT









A a

B b

 for i = 0 to n  1 do
 modi i iC A B q
 end for

c  NTT
n(

C)

 for i = 0 to n  1 do
 ci c -i mod q
 end for
 return c

2.2.4 Noise sampling

The Knuth-Yao algorithm [24] is a common way to sample high-precision discrete

Gaussian distribution, which is implemented in [25]. However, such near optimality may
result in non-constant execution time, which might lead to side-channel attack. Thus, we
do not use the algorithm in this work. NewHope samples the noise from the binomial dis-
tribution instead of discrete Gaussian distribution, which needs high precision and much
more computation resources. Moreover, sampling from the centered binomial distribution
ψ16 is cheap in both hardware and software. One can use the property that the centered bi-
nomial distribution follows 1

i
5
=0bi  bi, where the bi, bi are random bits. Thus, the sampling

algorithm needs 32 random bits to generate one coefficient.

2.3 FPGA

The basic building block of FPGAs is the look-up tables (LUTs). In Xilinx 7 series

FPGA, each LUT can be programmed either as a 6-input 1-output function or two 5-input
1-output functions. To implement sequential circuits, each LUT can be connected to two
flip-flops. Certain number of LUTs are then grouped into a slice, and a few slices are
grouped into a configurable logic block (CLB). Building around CLBs, FPGAs have other
circuitries for, e.g., multiplexing input and output, carry-propagation chains for accelerat-
ing arithmetic computation, as well as routing fabrics for connecting LUTs. Furthermore,
FPGAs also have fixed multipliers in so-called “DSP slices” that can carry out (fixed-point)

HIGH PERFORMANCE POST-QUANTUM KEY EXCHANGE ON FPGAS 1217

arithmetic operations, as well as block RAM as the fast on-die working memory. We use
Xilinx Zynq-7000 all programmable SoC (AP SoC), which is equipped with a dual-core
ARM Cortex-A9 processors running at 667 MHz and integrated with 28nm Artix-7 Z-7020
FPGA. This FPGA has 46,200 look-up tables and 220 DSP slices.

3. IMPLEMENTATION

The block diagram is in Fig. 1. There are three main blocks in the diagram represent-
ing the flowchart of our hardware implementation of NewHope. First, Alice (Server) uses
the TRNG and PRNG to generate the seed of â and b = as + e in NTT domain. Bob (Client)
receives the seed of â and b̂ (b in NTT domain), computes u = as + e in NTT domain and
the his shared secrete v = bs + e″, and compute the reconciliation information and the
shared key. In the last step, Alice (Server) receives û (u in NTT domain) and reconciliation
information r, compute their shared secret v = us, and derive shared key though the recon-
ciliation function with r. We explain the techniques in our implementation.

3.1 Random Number Generator

There are two phases in generating the randomness: TRNG (true random number gen-

erator) and PRNG (pseudorandom number generator). In the TRNG phase, we use a cred-
ible way from Wold and Tan’s work to generate the randomness by oscillator rings, which
has passed NIST and DIEHARD statistical tests [26]. The throughput of the implementa-
tion from Wold and Tan is 100Mbps with less than 100 logic elements in an Altera Cyclone
II FPGA. In our implementation, we use 32 oscillators rings to generate the randomness,
and their experiment showed if the number of oscillator rings exceeds 25, the result can
pass the statistical tests. In the PRNG phase, NewHope uses SHAKE128 as the PRNG,
which is the Extendable Output Functions (XOF’s) of SHA-3 family. NewHope uses the
extendable property to generate 1024 uniform coefficients in p with 256 bits true random-
ness since the randomness is sufficiently to resist either classic brute-force attack or quan-
tum attack (Grover’s algorithm). We extract the SHAKE128 portion from open-source
code [27], which usually provides only standard SHA-3 on FPGA.

Fig. 1. Flowchart of our implementation.

P.-C. KUO, Y.-W. CHEN, Y.-C. HSU, C.-M. CHENG, W.-D. LI, B.-Y. YANG

1218

3.2 Number-Theoretical Transform

We use the design of optimized NTT hardware implementation in [23, 28]. The main

differences are that we use 4 butterfly units, and the modulus is different.
Fig. 2 is the high level design of our NTT implementation, it combined both NTT and

INTT. For NTT, it processes multiplication on i, order reverse, and butterfly units in order.
In contrast, INTT processes order reverse, butterfly units and multiplication on i in order.

Fig. 2. Overview of our NTT implementation, which consists three components of circuit: multipli-
cation on i, order reverse, and butterfly units.

3.2.1 Order-reverse

Unlike software implementation, the order-reverse part, whose latency is shown in

Table 2, is one of the bottleneck of NTT in hardware implementation. We point out that
this part can be ignored since we can assume that either the input generated from random
number generator is ordered as the input of the butterfly units in NTT or it is not necessary
to reverse the order in INTT by both of two parties. But, both parties must agree to do or
not to do the order-reverse process in order to reconcile the same shared-key. Thus, we can
remove this part in order to accelerate NTT around 40%.

3.2.2 Butterfly units

In [23], they use 8 and 2 butterfly units and compare the performance. In [28]’s im-

plementation, they use a single butterfly unit to compute the NTT function in order to
optimize the area usage. We use 4 butterfly units to compute the NTT since our implement-
tation aims to be more speed-optimized. Also, we follow the idea of [23] we use the archi-
tecture shown in Fig. 3 that places the data into the memory in the correct positive in order
to achieve higher efficiency.

Fig. 3. Illustration of the design of the butterfly unit.

HIGH PERFORMANCE POST-QUANTUM KEY EXCHANGE ON FPGAS 1219

3.2.3 Modular reduction

A common way to do modular reduction is Barrett reduction.

1 32
12289mod () 32 12289c p c c     
 

In this viewpoint, we can use DSP to multiply the reciprocal of 12289 without com-
puting the floating number. Since the algorithm chops rather than rounds the result, the
result is possibly slightly large than p. Thus, the algorithm subtracts p if it is larger than p
in the final step. We can further improve the computation since 12289 = (113) + (112)
+ 1 by following equation, where ā is the complement of 1 32

12289() 32c   
 

c mod p = (c + (ā 13)) + ((ā 12) + ā).

So, a Barrett modular reduction with q = 12289 is around 5 cycles. But there is a

multiplication between 32 bit and 19-bit numbers leading to a long critical path and limit-
ing the frequency.

Therefore, we opt for the efficient reduction method from [29] for modular reduction.
The method is a variant of Montgomery reduction with the auxiliary modulus k, which is
defined by q = k ꞏ 2m + 1. For q = 12289, we have m = 12 and k = 3.

function K-RED(C)
C0 ← C mod 2m

 C1 ← C/2m

return kC0 − C1

function K-RED-2x(C)
C0 ← C mod 2m

C1 ← C/2m mod 2m

C2 ← C/22m

return k2C0 − kC1 + C2

This algorithm is suitable for hardware implementation, since the operations in the
function K-RED and K-RED2x are bit selections plus a final step which is equal to (C01)
+ C0 − C1 and (C0 3) + C0 − (C11) − C1 + C2, respectively. Using this technique, we
replace Line 5&6 in Algorithm 3 and get Algorithm 5.

Algorithm 5: Number-Theoretic Transform with K-RED
Require: a  q[X]/(Xn + 1), ω is a primitive nth root of unity in q[X], n and q
Ensure: A = NTT

n(a)
a ← Order_reverse(a)
for i = 0 to log2n − 1 do

for j = 0 to n/2 − 1 do
2

2

log 1
log 1

2
2

n i
ij n i

j
P  

 
    

U ← K-RED(a2j)
V ← K-RED2x(a2 j+1ωPi j)

P.-C. KUO, Y.-W. CHEN, Y.-C. HSU, C.-M. CHENG, W.-D. LI, B.-Y. YANG

1220

Aj ← U + V
Aj+n/2 ← U − V

 end for
if i  log2n − 1 then

a ← A
end if

end for
return A

We replace Line 3, 4, 8, 9 and 11 in Algorithm 4 to get Algorithm 6.
Note that K-RED function does not compute the exact value C mod q but kC mod q.

Correspondingly K-RED2x function computes k2C mod q, and we eliminate the extra factor
of k by storing ωP

ijk-1 instead of ωP
ij. Thus, after multiplication of ωP

ijk-1 and K-RED2x function,
the result kC has the correct value. Since n = 1024 = 210, there are ten stages in NTT
function, the output vector from NTT with K-RED is k10v, where v is the correct output
vector of NTT. It is easy to transform the output vector to correct one, but we wait until
the last step of INTT, which now becomes a final multiplication by the pre-computable n-

1k-14.
One trick in the modified algorithm is to pre-compute ik-(2+logn) instead of i. This

ensures that the output of our modified algorithm exactly is the same as that from the orig-
inal NTT. We also replace INTTn by NTTn, and multiply instead by n – 1  − i (which can
also be pre-computed and stored in the block RAM) in Line 11. This way we only need
1024 multiplications.

Note that the output of both functions are bounded by not a fixed value but by q + |C|/2m
which is related the input value C. Applying results of [29] to our algorithm, the input size
of function K-RED and K-RED2x are 16 bits and 32 bits, respectively. One technique to
maintain a plus sign for the output of these two functions (in order to multiply using DSP
slices in the next stage) is to add multiples of q = 12289. It can be verified that U + V and
U − V are larger than −2q and −4q, respectively. But directly adding 2q and 4q to U + V
and U − V causes a new problem: it may exceed 16 bits. BRAM reads 64 bit at a time, so
17 bits as the input of K-RED slows each BRAM read to 3 data points.

Thus, we propose the method to solve the problem:

Let s be bit 11 (corresponding to 2048) of a2j+1ωPij in Line 6 in Algorithm 5.
If s = 0, Aj ← U + V + 2q and Aj+n/2 ← U − V + 2q.
If s = 1, Aj ← U + V and Aj+n/2 ← U − V + 4q.

Algorithm 6: Polynomial Multiplication using NTT with K-RED over q[X]/(Xn + 1)
Require: a, bq[X]/(Xn + 1), ω is a primitive nth root of unity in q[X], 2 = ω, n, and q
Ensure: c = a  bq[X]/(Xn + 1)

Precompute: ωi, ω-i, i, -i, where i = 0, 1, ..., n − 1
for i = 0 to n − 1 do

āi ← K-RED2x(ai(ik-(2+logn)))
bi ← K-RED2x(bi(ik-(2+logn)))

 end for
 Ā  NTT

n(ā)

HIGH PERFORMANCE POST-QUANTUM KEY EXCHANGE ON FPGAS 1221

 B  NTT
n(b̄)

 for i = 0 to n  1 do
 Ci ← K-RED2x(AiBi)
end for

()nNTT c C
for i = 0 to n − 1 do

ci ← K-RED2x(c̄i(-ik-(4+logn)n-1))

end for
return c

Note that both sets of values are computed and then selected using s to avoid side-
channels. This modification makes sure that the results of that step are positive. This
method is a consequence of the properties of the K-RED and K-RED2x functions, and we
give the proof in Appendix A. Note that the outputs of function K-RED and K-RED2x are
signed 14 bits and signed 16 bits, respectively. Combined all the techniques describe above,
the design of K-RED in the butterfly unit is shown in Fig. 4.

Fig. 4. Illustration of the design of K-RED.

3.2.4 Previous method

According to our knowledge, most of the previous method to achieve modular reduc-

tion is long division with pipeline. A nature problem with this method is the stage number
of the pipeline is decided by log(dividend)-log(divisor). But our method for specific
modular number has much less stages (which is 4, long division is 13), which reduces the
area.

3.3 Reconciliation

A naive way to implement the HelpRec and Rec function on FPGA is to pre-compute

1/q and to use DSPs to compute the multiplication in runtime. This way is inefficient and
wastes many logic elements. In our implementation of reconciliation, instead of trying to
determine ∑3

n=0xi/q < 1 or not, we determine where ∑3
n=0xi is less than q or not, in order to

avoid floating-point number computation. Other divisors do not need this trick because
they are all powers of 2. We designed 6 stages pipeline architecture for HelpRec modulo
and 3 stages pipeline architecture for Rec modulo.

P.-C. KUO, Y.-W. CHEN, Y.-C. HSU, C.-M. CHENG, W.-D. LI, B.-Y. YANG

1222

4. RESULTS

The three phases of key exchange cost 51.9, 70.1 and 21.1s, respectively. The re-
source consumption of each component is shown in Table 2 and the design of hardware
architecture is shown in Fig. 5. The area of PRNG (SHAKE from SHA-3) is quite large
among the components. It occupies 44.3% of FFs and 18.7% of LUTs in our implementa-
tion. However, it is not the focus of this work. In theory we could have taken any FPGA
SHA-3 implementation, such as the area-optimized one from [30] which only uses one
tenth of the area. Alternatively, one can use a lightweight PRNG to generate the random-
ness for ψ16. The implementation of SHAKE outputs 1344 bits per 24 cycles with a few
cycles for setting up. To generate the uniform coefficient a, we use reject sampling with
16 bits: if the number is less than 5q, accept it, otherwise, reject it. Thus, the accept rate is
5 ∗ 12289/216∼93.76% and the expected number of SHAKE is 13. For the binomial random
variable ψ16, 32 bits randomness is required to generate one coefficient. Thus, the total
latency is around 2 times of the latency of generating ã. The area of NTT component is
reasonable since it is around 4 times that of [28]. Note that we use 4 butterfly units in each
NTT component, and they use only one. For the reconciliation, we use 2 copies of
HelpRec/Rec circuits in order to get high performance. Therefore, the latency of Help-
Rec+Rec and Rec in our implementation are 141 and 135 cycles, respectively. Note that,
the output of HelpRec immediately sends to Rec in Bob part. Thus, the latency can be
hidden and it is only 6 clocks slower than Rec in Alice part.

Table 2. The resource consumption of each component.

Component
Area

Clock Count Max Freq.
(MHz) #LUTs

#Slices
Registers

#DSPs #BRAMs

TRNG
PRNG (SHA-3)
generate a
generate ψ16

310
3,516



258
2,976



0
0



0
0



1
24
312
613


355



pipelined NTT
multiply i

Order Reverse
Butterfly Units

2,832




1,381




8




10




2616
132

1024
1330

150




HelpRec+Rec (Bob)
Rec (Alice)

968
557

406
127

0
0

0
0

269
263

229
229

To date, our implementation is the fastest post-quantum key exchange, which is 222,
138 and 19.1 times faster than that of SIDH [31-33], respectively.

In Table 3, we also show the best record of hardware implementations of lattice-based
key exchange and public key encryption (PKE).

Comparing to implementation of NewHope-Simple In [33], their implementation uses
1,483 and 1,708 slices for client and server side, and our implementation uses 6,680 and
7,153 slices. For postquantum key exchange, the resource we use is less than four times
larger than NewHope-Simple implementation [33], but the total time is 19.1 times faster.

HIGH PERFORMANCE POST-QUANTUM KEY EXCHANGE ON FPGAS 1223

That is, the time-area product is more than 4.8 times better. The first reason is that we
design 4 stages of pipeline in the K-RED modulo and second reason is we adapted the
Longa-Naehrig modular reduction to reduce the resource. Also, one can observe that the
reconciliation is relatively cheap and would not be the bottleneck of the key exchange
scheme.

(a) Alice (Server) side.

(b) Bob (Client) side.

Fig. 5. Our design of hardware architecture.

Comparing to lattice-based PKE At first glance, our results is worse than the hardware
implementation of PKE. But the computation of NewHope is about 3.3 times larger than
the computation of RLWE with (p, q, ) = (512, 12289, 4.92). The computation of NTTs
dominates both schemes (in fact, NewHope has higher load because it has to expand a and
compute Rec and HelpRec) Totally, NewHope has 6 NTT parts (include INTT) and
RLWE-based PKE typically has 4 NTT parts (include INTT). And considering that the
size of the NTT is n log n, the overall computation ratio is at least 3.3. The total time of
our implementation is 151.6s, and the total time of RLWE (512, 12289, 4.92) is 68.9s.
However, the two primitives are different. For a public-key encryption scheme to provide
forward secrecy, a one-time public key needs to be generated and transmitted every time
before being used. That would probably make up much of the difference.

P.-C. KUO, Y.-W. CHEN, Y.-C. HSU, C.-M. CHENG, W.-D. LI, B.-Y. YANG

1224

Table 3. Hardware comparison of post-quantum key exchange and some post-quantum
public key encryption. In the column of area and frequency, the slash serves to denote the
cost of Alice-modulo and Bob-modulo. In the column of latency and total time, the slash
serves to denote the cost of Alice0, Bob, and Alice1, the three phases.

Scheme Parameters
Security

Parameter

Area Time

#FFs #LUTs #DSPs #BRAMs
Freq

(MHz)
Latency
(×103)

Total time
(s)

SIDH [31] prime: 511 bits 128 bits 30,031 24,499 192 27 177 5,967 33,700
SIDH [32] prime: 503 bits 125 bits 26,659 19,882 192 40 181.4 3,800 20,900
NewHope

(This Work)
n = 1024, p = 12289,

noise dist. ψ16

128 bits 9,412
/9,975

18,756
/20,826

8/8 14/14 133/131 6.9/10.3
/2.8

51.9/78.6
/21.1

NewHope-
Simple [33]

n = 1024, p = 12289,
noise dist. ψ16

128 bits 4,452 5,142 2 4 125/117 171/179
988/1434

/473
RLWE(PKE)

[28]
n = 256, q = 7681,

 = 4.516
80 bits 860 1,349 1 2 313 6.3/2.8 20.1/9.1

 n = 512, q = 12289,
 = 4.92

128 bits 953 1,536 1 3 278 13.3/5.8 47.9/21

RLWE(PKE)
[34]

n = 256, q = 7681,
 = 11.32

80 bits 3,624 4,549 1 12 262 7.24/6.86/4.40

27.6/26.19/16.8

 n = 512, q = 12289,
 = 12.18

128 bits 4,760 5,595 1 14 251 14.5/13.8/8.8 57.9/54.9/35.4

LWE (PKE)
[35]

n = 256, q = 4096,
 = 3.39

128 bits 4,804 6,152 1 73 125 98.3/32.8

786/262

NT RU [36]
ees761ep1

n = 761, q = 2048,
p = 3 128 bits #logic elm: 42,642, #reg: 16,746 75.36

0.44

5.89

However, as we mentioned in the introduction, the functionality of key transport is

not the same as key agreement. Therefore, there is a need for a post-quantum key exchange
scheme as well as its hardware implementation.

Comparing to software implementation In [5], they implemented two versions of
NewHope: a C reference implementation and an optimized AVX2 implementation. The
three phases costs 73.95, 110.25, 24.71 and 25.46, 31.78, 5,56 s, respectively. Our im-
plementation is 1.38 times faster than a C reference implementation. The optimized AVX2
version is 2.41 times faster than our implementation. But an Intel Core i7-4770K (the CPU
they used) costs 350 USD, compared to a Xilinx Zynq-7000 costs only 100 USD. Thus,
the FPGA is more cost-effective than software implementation. Note that the price of all
CPUs equipped with AVX2 are much higher than 100 USD so far.

5. CONCLUSION

In this work, we propose a high performance hardware implementation of lattice-
based key exchange, which is also the fastest hardware implementation of post-quantum
key exchange so far. Compare to the previous NewHope-Simple hardware implementation,
our implementation did 4.8× better in time-area product. This is the first pipeline imple-
mentation of lattice-based key exchange, and is the first work to adapt Longa-Naehrig
modular reduction into hardware design. We also show the cost of reconciliation, which is
quite cheap. Our code will be made public available.

5.1 Future Work

A countermeasure for side channel attacks (SCA) is an urgent priority. For example,

HIGH PERFORMANCE POST-QUANTUM KEY EXCHANGE ON FPGAS 1225

we may use a method such as the masked RLWE decryption implementation resistant to
first-order SCA is proposed in [37] and apply it in our implementation. It is also interesting
to optimize the SCA countermeasures for post-quantum key exchange scheme.

REFERENCES

1. C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of
Annual ACM Symposium on Theory of Computing, 2009, pp. 169-178.

2. N. Göttert, T. Feller, M. Schneider, J. A. Buchmann, and S. A. Huss, “On the design
of hardware building blocks for modern lattice-based encryption schemes,” in Pro-
ceedings of the 14th International Workshop on Cryptographic Hardware and Embed-
ded Systems, 2012, pp. 512-529.

3. H. M. Fadhil and M. I. Younis, “Article: Parallelizing rsa algorithm on multicore cpu
and gpu,” International Journal of Computer Applications, Vol. 87, 2014, pp. 15-22.

4. N. I. of Standards and T. (NIST), “Post-quantum crypto project,” http://csrc.nist.gov/
groups/ST/post-quantum-crypto/, 2016.

5. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum key exchange a
new hope,” in Proceedings of the 25th USENIX Security Symposium, 2016, pp. 327-343.

6. O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,”
Journal of ACM, Vol. 56, 2009, pp. 1-40.

7. C. Peikert, “Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract,” in Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, 2009, pp. 333-342.

8. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé, “Classical hardness of
learning with errors,” in Proceedings of Symposium on Theory of Computing Confer-
ence, 2013, pp. 575-584.

9. S. Agrawal, D. Boneh, and X. Boyen, “Lattice basis delegation in fixed dimension and
shorterciphertext hierarchical IBE,” in Proceedings of the 30th Annual Cryptology
Conference, 2010, pp. 98-115.

10. S. Agrawal, D. Boneh, and X. Boyen, “Efficient lattice (H)IBE in the standard model,”
in Proceedings of the 29th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, 2010, pp. 553-572.

11. Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from ring-lwe
and security for key dependent messages,” in Proceedings of the 31st Annual Cryp-
tology Conference, 2011, pp. 505-524.

12. Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption from
(standard) lwe,” Electronic Colloquium on Computational Complexity, Vol. 18, 2011,
p. 109.

13. R. Lindner and C. Peikert, “Better key sizes (and attacks) for LWE-based encryption,”
in Proceedings of Cryptographers’ Track at the RSA Conference, 2011, pp. 319-339.

14. V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors
over rings,” in Proceedings of EUROCRYPT, 2010, pp. 1-23.

15. C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for super singular isog-
eny diffiehellman,” in Proceedings of the 36th Annual International Cryptology Con-
ference, 2016, pp. 572-601.

P.-C. KUO, Y.-W. CHEN, Y.-C. HSU, C.-M. CHENG, W.-D. LI, B.-Y. YANG

1226

16. J. Ding, “A simple provably secure key exchange scheme based on the learning with
errors problem,” IACR Cryptology ePrint Archive, Vol. 2012, 2012, p. 688.

17. C. Peikert, “Lattice cryptography for the internet,” in Proceedings of the 6th Interna-
tional Workshop on Post-Quantum Cryptography, 2014, pp. 197-219.

18. J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem,” in Proceedings of IEEE
Symposium on Security and Privacy, 2015, pp. 553-570.

19. J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghun-
athan, and D. Stebila, “Frodo: Take off the ring! practical, quantum-secure key ex-
change from LWE,” in Proceedings of ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 1006-1018.

20. Y. Elias, K. E. Lauter, E. Ozman, and K. E. Stange, “Provably weak instances of ring-
lwe,” in Proceedings of the 35th Annual Cryptology Conference, 2015, pp. 63-92.

21. W. Castryck, I. Iliashenko, and F. Vercauteren, “Provably weak instances of ring-lwe
revisited,” in Proceedings of the 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, 2016, pp. 147-167.

22. V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen, “SWIFFT: A modest pro-
posal for FFT hashing,” in Proceedings of the 15th International Workshop on Fast
Software Encryption, 2008, pp. 54-72.

23. D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung, D. Pao, and I.
Verbauwhede, “High-speed polynomial multiplication architecture for ring-lwe and
SHE cryptosystems,” IEEE Transactions on Circuits and Systems, Vol. 62-I, 2015, pp.
157-166.

24. D. Knuth and A. Yao, “The complexity of nonuniform random number generation,”
Algorithms and Complexity: New Directions and Recent Results, Academic Press, NY,
2006, pp. 156-169.

25. S. S. Roy, F. Vercauteren, and I. Verbauwhede, “High precision discrete gaussian
sampling on fpgas,” in Proceedings of the 20th International Conference on Selected
Areas in Cryptography, 2013, pp. 383-401.

26. K. Wold and C. H. Tan, “Analysis and enhancement of random number generator in
FPGA based on oscillator rings,” International Journal of Reconfigurable Computing,
Vol. 2009, 2009, pp. 501 672:1-501 672:8.

27. OpenCores, “SHA3(KECCAK),” https://opencores.org/project,sha3, 2012.
28. S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede, “Compact

ring-lwe crypto processor,” in Proceedings of the 16th International Workshop on
Cryptographic Hardware and Embedded Systems, 2014, pp. 371-391.

29. P. Longa and M. Naehrig, “Speeding up the number theoretic transform for faster ideal
lattice-based cryptography,” in Proceedings of the 15th International Conference on
Cryptology and Network Security, 2016, pp. 124-139.

30. S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni, G. M. de Dormale, and
F. Standaert, “Compact FPGA implementations of the five SHA-3 finalists,” in Pro-
ceedings of the 10th IFIP WG 8.8/11.2 International Conference on Smart Card Re-
search and Advanced Applications, 2011, pp. 217-233.

31. B. Koziel, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Post-quantum cryptography
on FPGA based on isogenies on elliptic curves,” IEEE Transactions on Circuits and
Systems, Vol. 64-I, 2017, pp. 86-99.

HIGH PERFORMANCE POST-QUANTUM KEY EXCHANGE ON FPGAS 1227

32. M. M. K. B. Koziel, and R. Azarderakhsh, “Fast hardware architectures for super sin-
gular isogeny Diffie-Hellman key exchange on FPGA,” Cryptology ePrint Archive,
Report 2016/1044, 2016.

33. T. Oder and T. Güneysu, “Implementing the newhope-simplekey exchange on low-
cost fpgas,” in in Proceedings of the 6th International Conference on Cryptology and
Information Security, 2017, pp. 128-142.

34. T. Pöppelmann and T. Güneysu, “Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware,” in Proceedings of SAC 20th International Confer-
ence, 2013, pp. 68-85.

35. J. Howe, C. Moore, M. O’Neill, F. Regazzoni, T. Güneysu, and K. Beeden, “Standard
lattices in hardware,” in Proceedings of the 53rd Annual Design Automation Confer-
ence, 2016, pp. 162:1-162:6.

36. B. Liu and H. Wu, “Efficient multiplication architecture over truncated polynomial
ring for ntruencrypt system,” in Proceedings of IEEE International Symposium on
Circuits and Systems, 2016, pp. 1174-1177.

37. O. Reparaz, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “A masked ring-lwe im-
plementation,” in Proceedings of the 17th International Workshop on Cryptographic
Hardware and Embedded Systems, 2015, pp. 683-702.

APPENDIX A: PROOF OF THE INPUT SIZE AND OUTPUT SIZE
OF K-RED BUTTERFLY

Here we consider the case of q = 12289, k = 3. The input U, V satisfies the following
condition.

V = V0 + V1 ꞏ 212 + V2 ꞏ 224 and U = U0 + U1 ꞏ 212

where 0 ≤ V0 < 212, 0 ≤ V1 < 212, 0 ≤ V2 < 26, 0 ≤ U0 < 212, and 0 ≤ U1 < 24

A = K-RED(U) = 3U0 – U1 and B = K-RED2x(V) = 9V0 − 3V1 + V2.

Thus, the output of the butterfly unit is:

A + B = 9V0 + 3U0 + V2 − (3V1 + U1) and A − B = 3(U0 + V1) − (9V0 + V2 + U1)

Define s = (V0  11) mod 2; let’s first consider s = 0, i.e. V0 < 211,
9V0 + 3U0 + V2 ≥ A + B ≥ −(3V1 + U1)
9 ꞏ 211 + 3 ꞏ 212 + 212 ≥ A + B ≥ −(3 ꞏ 212 + 212)
216 > A + B + 2q > 0
A − B ≥ −(9V0 + V2 + U1) ≥ −(9 ꞏ 211 + 26 + 24) > −2q
A − B ≤ 3(U0 + V1) < 3 ꞏ (211 + 211) < 216 − 2q
216 > A − B + 2q ≥ 0

Thus, we prove that when s = 0, adding 2q always make the output between 0 and 216:

P.-C. KUO, Y.-W. CHEN, Y.-C. HSU, C.-M. CHENG, W.-D. LI, B.-Y. YANG

1228

When s = 1, i.e., 211 ≤ V0 < 212,
9V0 + 3U0 + V2 ≥ A + B ≥ 9V0 − (3V1 + U1)
9 ꞏ 212 + 3 ꞏ 212 + 26 > A + B > 9 ꞏ 211 – 214
216 > A + B > 0
A − B ≥ −(9V0 + V2 + U1) ≥ −(9 ꞏ 212 + 212 + 212) > −4q
A − B ≤ 3(U0 + V1) − 9 ꞏ 211 < 3(212 + 212) − 9 ꞏ 211 < 216 − 4q
216 > A − B + 4q ≥ 0
We prove that adding 4q to B − A makes the output between 0 and 216.

Po-Chun Kuo received the BS, MS, and Ph.D. degrees in Elec-
trical Engineering from National Taiwan University in 2010, 2011
and 2020, respectively. His research interests include Post-Quantum
Cryptography, high-performance computing, and graph theory. Cur-
rently, his main research activities focus on the blockchain field such
as consensus algorithm, mining mechanism, and decentralized cryp-
tographic protocol.

Wen-Ding Li received his BS and MS degrees in Electrical En-
gineering from National Taiwan University. He is now a Research
Assistant at Research Center for Information Technology Innovation,
Academia Sinica, Taiwan. His research interests include high perfor-
mance computing, symbolic computation and cryptography.

Yu-Wei Chen received his BS degree in Computer Science from
National Chiao Tung University in 2016. He later enrolled in the mas-
ter’s program in Electrical Engineering at National Taiwan University,
under the supervision of Prof. Chen-Mou Cheng. His research interest
includes high-performance computing, cryptography, embedded sys-
tem. Focusing on topics that combine both cryptography and low la-
tency FPGA implementations.

HIGH PERFORMANCE POST-QUANTUM KEY EXCHANGE ON FPGAS 1229

Yuan-Che Hsu received his BS and MS degrees in Electrical
Engineering from National Taiwan University. He is now working
on AI Processing Unit for smartphones and Hardware Security
Module for automobiles. His research interests include efficient im-
plementations for cryptographic hardware and side-channel analysis.

Chen-Mou Cheng received his BS and MS in Electrical Engi-
neering from National Taiwan University in 1996 and 1998, respec-
tively, and his Ph.D. in Computer Science from Harvard University
in 2007. He joined the Department of Electrical Engineering of Na-
tional Taiwan University in 2007, where he is currently an Associate
Professor. His main research area is in cryptographic hardware and
embedded systems (CHES), as well as electronic system-level (ESL)
design. Currently, his main research activities focus on the design
and analysis of efficient algorithms to solve several important prob-

lems arising from cryptology, as well as the development and implementation of these
algorithms on massively parallel computers. These problems include solving systems of
polynomial equations over finite fields, integer factorization, elliptic-curve discrete loga-
rithm, and lattice reduction.

Bo-Yin Yang received his Ph.D. in Mathematics from Massa-
chusetts Institute of Technology in 1991. After teaching mathemat-
ics at Tamkang University in Taiwan, he started working with cryp-
tography in 2002. Eventually moved to the Institute of Information
Science at Academia Sinica in 2006. He is known for his work on
efficient crypto implementations, algebraic cryptanalysis, and post-
quantum public-key cryptography.

