
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 653-673 (2017)
DOI: 10.6688/JISE.2017.33.3.4

653

Large Branching Tree Based
Dynamic Provable Data Possession Scheme*

YONG LI1,2,3, GE YAO1, LI-NAN LEI1, HUA-QUN WANG4 AND CHANG-LU LIN2

1School of Electronic and Information Engineering
Beijing Jiaotong University
Beijing, 100044 P.R. China
E-mail: liyong@bjtu.edu.cn

2Fujian Provincial Key Laboratory of Network Security and Cryptology
Fujian Normal University

Fuzhou, 350007 P.R. China
3Guangxi Key Laboratory of Cryptography and Information Security

Guilin University of Electronic Technology
Guilin, 541004 P.R. China

4School of Computer Science and Technology
Nanjing University of Posts and Telecommunications

Nanjing, 210023 P.R. China

As the era of big data is coming, more and more users choose to store data in the

cloud. Cloud storage provides users with flexible, dynamic and cost effective data stor-
age service. However, the new paradigm of service introduces new security challenges
such as users loss control of the remote data and they cannot ensure data integrity in the
cloud. Moreover, supporting dynamic data updates is also a practical requirement of
cloud storage. It is imperative to provide an efficient and secure dynamic auditing proto-
col to check the data integrity in the cloud. In this paper, we first analyze the dynamic
performance of some prior works. In order to solve the inefficiency problem caused by
the Merkle Hash Tree (MHT) in dynamic update, the Large Branching Tree (LBT) data
structure was introduced in our Dynamic Provable Data Possession (DPDP) scheme.
LBT structure simplifies the process of updates and supports updating several blocks
synchronously, and reduces the auxiliary information during the challenge-respond pro-
cess as well. Our scheme is able to efficiently support fully dynamic data updates and
batch updates. Based on the LBT structure, we use bilinear algebraic maps to optimize
the authenticate process. A signature scheme is used to authenticate both the value and
the position of data blocks, which reduces computation overhead during the dynamic
update phase. The security and performance analysis show that our DPDP scheme is
provably secure and efficient.

Keywords: cloud storage, provable data possession, large branching tree, dynamic update,
public auditability

1. INTRODUCTION

Cloud computing paradigm has gained widespread popularity in the industry and
academia and it has been envisioned as the next-generation architecture of IT enterprise
[1]. It enables users to access to the infrastructure and application services on a subscrip-
tion basis. This computing service can be categorized into three service models: Infra-

Received June 30, 2016; revised August 17, 2016; accepted September 16, 2016.
Communicated by Balamurugan Balusamy.
* A preliminary version [2] of this paper was presented at the 11th International Conference on Green, Pervasive

and Cloud Computing (GPC 2016).

YONG LI, GE YAO, LI-NAN LEI, HUA-QUN WANG AND CHANG-LU LIN

654

structure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service
(SaaS) [3]. Due to the advantage characteristics including large scale computation and
data storage, virtualization, high scalability and elasticity, cloud computing technologies
have been developing fast, of which one important application is cloud storage system.
Cloud storage service is a new paradigm for delivering storage service on demand, over
network and billed for just what is used. Many international IT corporations now offer
cloud storage service on a scale from individual to enterprise, such as Amazon Simple
Storage Service (S3) and EMC Atoms Cloud Storage, and a growing number of users
choose to store their data in the cloud.

Although cloud storage is growing in popularity, data security is still one of the
major concerns in the adoption of this new paradigm of data hosting. For concerning
about data confidentiality and privacy, a general approach is to encrypt the data before
outsourcing it to the cloud service providers [4]. However, search techniques for en-
crypted data [5], and more generally, techniques for computing over encrypted data are
needed to balance data confidentiality and data utilization, which are not focus of this
paper. Let’s consider from another way. For example, the cloud service providers may
discard the data which has not been accessed or rarely accessed to save the storage space
or keep fewer replicas than promised [6]. And the storage service provider, which expe-
riences Byzantine failures occasionally, may decide to hide the data errors from the client
for the benefit of their own [1]. Furthermore, disputes occasionally suffer from the lack
of trust on cloud service provider (CSP) because the data change may not be timely
known by the cloud client, even if these disputes may result from the user's own improp-
er operations [7]. Therefore, clients would like to check the integrity and availability of
their stored data. However, the large size of the outsourced data and the limited resource
capability present an additional restriction: the client should perform the integrity check
without downloading all stored data.

To date, extensive researches are carried out to address this problem [8-17, 21-27].
Early work concentrated on enabling data owners to check the integrity of remote data,
which can be denoted as private verifiability. Although schemes with private verifiability
can achieve higher scheme efficiency, public verifiability (or public auditability) allows
anyone not just the client (data owner), to challenge the cloud server for correctness of
data storage while keeping no private information [1]. In cloud computing, instead of
performing frequent integrity checks by themselves, data owners are able to delegate the
verification of data integrity to a trusted third party  auditor (TPA), who has expertise
and capabilities to audit the outsourced data on demand.

Recently, public auditability has become one of the basic requirements of data stor-
age auditing scheme. However, there are still some major concerns need to be solved
before put the auditing schemes into practical use. Many big data applications keep cli-
ents’ data on the cloud and offer frequently update operations. A most typical example is
Twitter. Data stored in cloud may not only be accessed but also updated by the clients
through either modify an existing data block, or insert a new block, or delete any block.
To support the most general forms of update operation is important to broaden the scope
of practical application of cloud storage. Therefore, it is imperative to extend the audit-
ing scheme to support provable updates to outsourced data. Unfortunately, traditional
data integrity verification schemes are mainly designed for static data storage. The direct
extension of these schemes may lead to functional defect or security vulnerability. In this

LARGE BRANCHING TREE BASED DYNAMIC PROVABLE DATA POSSESSION SCHEME 655

paper, we will focus on better support for dynamic and efficient data integrity verification
for cloud storage applications. We employ a secure signature scheme from bilinear maps
[18] and the Large Branching Tree (LBT) to achieve that aim. Our contribution can be
summarized as follows:

(1) We formally define the framework of dynamic provable data possession scheme and
provide an efficient construction, which supports fully dynamic updates including
modification, insertion and deletion, and supports batch dynamic updates as well.

(2) We analyze the existing schemes and point out the disadvantages of the Merkle Hash
Tree (MHT) used as the data structure for dynamic updates. For better efficiency, we
replace MHT with LBT. This multiple branching data structure enables reduction in
size of auxiliary information, thereby causes less communication cost compared to
MHT-based schemes.

(3) We combine a secure signature algorithm with LBT data structure. The characteris-
tics of bilinear pairings in the signature algorithm only cause O(1) computation cost
on CSP for each dynamic update. Besides, the client no longer needs to construct LBT
structure to support dynamic operation. Consequently, this algorithm greatly reduces
computation cost both on CSP and client as well as simplifies the update process.

(4) We prove the security of our proposed construction and show the performance of our
scheme through comparisons with existing data integrity verification schemes [1,
8-10, 14, 15].

The rest of this paper is organized as follows. Section 2 discusses related works. In
Section 3 we introduce main techniques, system model and security model. Then, Sec-
tion 4 presents the specific description of our proposed scheme. Section 5 provides secu-
rity analysis. We further analyze the experimental results in Section 6. Section 7 con-
cludes the paper.

2. RELATED WORKS

Recently, the integrity verification for data outsourced in cloud has attracted exten-
sive attention. The existing provable data integrity schemes can be classified into two
categories: proof of retrievability (POR) and provable data possession (PDP). POR
scheme was first proposed by Juels et al. in 2007 [8]. In their scheme, the client can not
only check their remote data integrity, but also recover outsourced data in its entirety by
employing erasure-correcting code. The following researches of POR focused on pro-
viding security analysis [10] and improving the construction. However, most of existing
POR schemes can only be used to the static archive storage system, e.g., libraries and
scientific data sets [8, 10-12]. The reason is that the erasure-correcting codes using in
POR system bring a problem: the whole outsourced data is required to perform a small
update. This is the main issue towards making POR dynamic.

In cloud computing, the dynamic update is a significant issue for various applica-
tions which means that the outsourced data can be dynamically updated by the clients
such as modification, deletion and insertion. Therefore, an efficient dynamic auditing
protocol is essential in practical cloud storage systems [13].

In 2007, Ateniese et al. [9] first proposed PDP framework, which allows data owner
to verify the integrity of its data stored at an untrusted server without retrieving the entire
file. Compared to POR scheme, PDP did not use erasure-correcting codes, and hence

YONG LI, GE YAO, LI-NAN LEI, HUA-QUN WANG AND CHANG-LU LIN

656

was more efficient. Although PDP did not provide the retrievability guarantee, the dy-
namic techniques of PDP are developed well in follow-up studies. Ateniese et al. [14]
gave a dynamic PDP scheme based on their prior work [9], in which the client pre-
computes and stores at the server a limited number of random challenges with the corre-
sponding answers. This scheme cannot perform insertion since that would affect all re-
maining answers.

The first fully dynamic PDP protocol was proposed by Erway et al. [15] in 2009.
They considered using dynamic data structure to support data updates, so they con-
structed the rank-based authenticated dictionaries based on the skip list. However, the
skip list requires a long authentication path and large amount of auxiliary information
during the verification process. Wang et al. [1] employed homomorphic signature and
MHT data structure to achieve supporting fully dynamic updates. Zhu et al. [7] proposed
a dynamic auditing system based on fragment, random sampling and Index-Hash Tree
(IHT) that supports provable updates and timely anomaly detection. Later on, researches
are focus on supplying additional properties [19], distribute and replicate [16] or enhance
efficiency and using other data structure [20]. For instance, Wang et al. [21] firstly pro-
posed a proxy provable data possession (PPDP) system. Their protocol supports the gen-
eral access structure so that only authorized clients are able to store data to public cloud
servers. Lin et al. [22] proposed a novel provable data possession scheme, in which data
of different values are integrated into a data hierarchy, and clients are classified and au-
thorized different access permissions. Their scheme also allows the data owner to effi-
ciently enroll and revoke clients which make it more practical in cloud environment.

Recently, Gritti et al. proposed an efficient and practical PDP system by adopting
asymmetric pairings [23]. Their scheme outperforms other existing schemes because
there are no exponentiation and only three pairings are required. However, this scheme is
vulnerable to three attacks as they later pointed out [24]. Several solutions are proposed
by Gritti et al. corresponding to all the vulnerabilities of scheme [23]. They used IHT
and MHT techniques to resist the replace attack and replay attack. They also employed a
weaker security model to achieve data privacy. Although system security can be guaran-
teed, the performance of the system still needs improvement.

Zhang et al. proposed a new solution to provable data possession with support for
dynamic operations, access to shared data by multiple users, and revision control [25].
They used a new data structure called balanced update tree and removed the need for
interaction during update operations in addition to communicating the updates them-
selves. For dealing with outsourced data be replicated on multiple servers across multiple
data centers, Barsoum et al. proposed a map-based provable multi-copy dynamic data
possession scheme [26], which is considered as extension of dynamic single-copy PDP
scheme. In [27], Ren et al. proposed an efficient mutual verifiable provable data posses-
sion scheme, which utilizes Diffie-Hellman shared key to construct the homomorphic
authenticator.

3. PRELIMINARIES

3.1 Large Branching Tree

Compared to Merkle Hash Tree (MHT), Large Branching Tree (LBT) allows to in-

LARGE BRANCHING TREE BASED DYNAMIC PROVABLE DATA POSSESSION SCHEME 657

crease the number of a node’s children and decrease the depth of the tree. Each node of
the tree except leaves has more than 2 children nodes. That is, each node has only one
parent but has a number of sibling nodes. For the same number of leaf nodes, the depth
of the constructed LBT is much smaller than that of the MHT. This is one difference
between LBT and MHT. For concreteness, as shown in Fig. 1, we take the outdegree of
the tree to be n, the height of the tree is l, then the number of leaf nodes is nl and all
nodes except the leaf nodes have n children nodes. Each leaf node in the tree corre-
sponds to a hash value of a data block, and the non-leaf node is the link form of the hash
value of all its children nodes. The depth of the tree is l=2 in Fig. 1. The number of leaf
nodes is n2, corresponding to the n2 hash value of the data block. The value of node A1 is
H(H(m1)||H(m2)||…||H(mn)). The value of node Ai is H(H(mi)||H(mi+1)||…||H(mi+n-1)). The
value of node An and root node R is H(H(mn

2
-n+1)||H(mn

2
-n+2)||…||H(mn

2)), and H(H(A1)||
H(A2)||…||H(An)) respectively.

Fig. 1. LBT structure.

An authentication LBT scheme produces signatures that represent paths connecting

data blocks to the root of the tree. The authentication mechanism works inductively: the
root authenticates its children nodes, these nodes authenticate their children nodes, and
the authentication proceeds recursively down to the data blocks authenticated by its par-
ent [18]. Another difference between LBT and MHT is the way the sibling nodes are
authenticated. The authenticity of a node can be verified given its parent and its authen-
tication value, whose size is independent of the branching factor. In a LBT, each node is
labelled a number to denote its position among silibings with a unique authentication
value that can be verified independently. In our scheme, the way the sibling nodes are
authenticated is different. Since every node has multiple brother nodes, we label them
with a number to denote its position among siblings. And a unique authentication value
that can be verified independently has been generated for the verification.

3.2 Dynamic PDP System

The dynamic PDP system for outsourced data in cloud consists of three entities:
Client, who has limited storage resource and computational ability but large amount of
data to be stored in the cloud; Cloud Storage Server (CSS), an entity which has huge
storage space and is able to provide data maintenance and computation; Third Party Au-

YONG LI, GE YAO, LI-NAN LEI, HUA-QUN WANG AND CHANG-LU LIN

658

ditor (TPA), who specializes in verifying the integrity of outsourced data in cloud when
received a request from the client. The system model is shown in Fig. 2.

We assume the communication between any two of these three entities is reliable.
The whole auditing scheme is based on challenge-response protocol, which contains
three phases: first, the client completes initializing work and then hosts his/her data files
in cloud; second, the client makes an update operation by communication with CSS;
third, TPA and CSS work together to provide data auditing service through exchanging
the challenge and proof messages. TPA would report the audit results to the client.

Fig. 2. System model.

Definition 1: In a DPDP system, the client, CSS and TPA cooperate with each other to
accomplish the challenge-response procedure. A DPDP scheme consists of the following
algorithms:

 KeyGen(1k)  {sk, pk}. This probabilistic algorithm is run by the client. It takes as

input security parameter 1k, and returns private key sk and public key pk.
 TagGen(F, sk)  {T}. This algorithm is run by the client to generate the metadata. It

takes as input the data file F and private key sk and outputs the tag sets T, which is a
collection of signatures {i} on {mi}.

 Update(F, Info, Ω, pk)  {F , Pupdate}. This algorithm is run by CSS in response to an
update request from TPA. As input, it takes the data file F, update information Info, the
previous auxiliary information Ω and the public key pk. The output is the new version
of the data file F along with its proof Pupdate. CSS sends the proof to TPA.

 VerifyUpdate(Pupdate, sk, pk)  {accept, regect}. This algorithm is run by TPA to verify
CSS updated the data correctly. The input contains the proof Pupdate from CSS, the new
file F with its corresponding metadata T , and the private and public keys. The output
is accept if the proof is valid or reject otherwise.

 Challenge()  {chal}. TPA runs this algorithm to start a challenge and send the chal-
lenge information chal to CSS.

 GenProof(F, T, chal, pk)  {P}. This algorithm is run by CSS. It takes data file F,
metadata T, the challenge information chal and the public key as inputs, and outputs
the proof for the verification.

 VerifyProof(P, pk)  {accept, reject}. TPA run this algorithm to verify the response P
from CSS. It outputs “accept” if the proof is correct, or “reject” otherwise.

LARGE BRANCHING TREE BASED DYNAMIC PROVABLE DATA POSSESSION SCHEME 659

3.3 Security of Dynamic PDP

Following the security model defined in [15, 23], we define the security model for

our proposed DPDP scheme by a data possession game between a challenger C and an
adversary A. The challenger plays the role of verifier and the adversary acts as a mali-
cious CSS.

KeyGen: The challenger runs (pk, sk)  KeyGen(1k), then sends pk to the adversary.

ACF Queries: The adversary can make adaptively chosen file (ACF) queries as follows.
First, the adversary interact with the tag generation oracleTG. For each query, A
chooses a data block mi and sends it toTG. Then the oracle responds each query with a
corresponding verification metadata i  (H(mi)  mi)x. The adversary keeps making n
times queries. Then, it enables to create an ordered collection of metadata T = {i}1≤i≤n
for all the selected data blocks F = {m1, m2, ..., mn}. Second, the adversary is given ac-
cess to a data update oracleUP. A chooses a data block mi (i = 1, 2, ..., n) and generates
corresponding update information Infoi indicating what operation the adversary wants to
perform. Then the adversary runs Update algorithm and outputs a new version of data
file F' and an update proof Pupdate. After receiving these information submitted by the
adversary, the oracleUP verifies the proof Pupdate by running algorithm VerifyUpdate.
The output is accept or reject. The adversary can repeat the above interaction in polyno-
mial times.

Setup: The adversary decides on data block m*

i and corresponding update information
info*

i for all iI[0, n + 1]. The ACF Queries are performed again by the adversary, with
the first info*

i specifying a full re-write (this corresponds to the first time the client sends
a file to CSS). The challenger verifies the update information and update his local
metadata.

Challenge: The final version of data file F is created according to the data update re-
quested by A, and verified then accepted by the challenger. Now the challenger generates
a challenge chal and sends it to the adversary.

Forge: The adversary computes a data possession proof P based on chal. Then the chal-
lenger runs algorithm VerifyProof and outputs the result belonging to accept/reject. If the
output is accept, then the adversary wins.

Definition 2: We say that a DPDP scheme is secure if for any probabilistic polynomial
time (PPT) adversary A (i.e., malicious CSS), the probability that A wins the data posses-
sion game is negligible.

4. CONSTRUCTION

The main building blocks of our scheme include LBT, a secure signature scheme
proposed by Boneh et al. [18] and Homomorphic Verifiable Tags (HTVs) [9]. LBT data
structure is an expansion of MHT, which is intended to prove that a set of elements are

YONG LI, GE YAO, LI-NAN LEI, HUA-QUN WANG AND CHANG-LU LIN

660

undamaged and unaltered [1]. Naturally, we consider employing the hash algorithm used
in MHT structure to authenticate the values of nodes in LBT, but this algorithm brings
undesirable effects on the performance. During the update process, that the client modify,
insert, or delete the data if only for one block will affect the whole data structure, causing
O(n) computation overhead for both the client and CSS. Therefore, it is imperative to
find a better method to authenticate LBT data structure. Instead of using hash functions,
we employ the signature scheme [18] to improve the efficiency of verifying the elements
in LBT. The computation complexity decreases to O(1) in the update process. As for the
public auditability, we resort to the homomorphic verifiable tags. The reason is that
HVTs make it possible to verify the integrity of the data blocklessly.

The procedure of our scheme is summarized in three phase: Setup, Dynamic Opera-
tion and Periodical Auditing. The details are as follows:

4.1 Setup

In this phase, we assume the data file F is segmented into {m1, m2, ..., mn}, where

n=ql and q, l are arbitrary positive integers. Bilinear map e:GGGT is secure. Group G
has a prime order p. Let g be the generator of G. H:{0, 1}*G is a family of colli-
sion-resistant hash functions. Note that all exponentiations in following algorithms are
performed modulo p on G and for simplicity we omit writing “(mod p)” explicitly.

KeyGen(1k) The client runs this algorithm to generate a pair of private and public keys.
Choose a random xZp and compute y=gx. Pick 1, 2, …, q  Zp and   G. Com-
pute 1  1/1, 2  1/2, …, q  1/q  G. Pick   G, 0  Zp, then compute  =
e(, ) and e(, )0 where 0 denotes the root of LBT (the root of MHT is the hashes of
all the nodes). And for every node in LBT tree, the client chooses {j}1jn. The client
also generates a random signing key pair (spk, ssk). The public key is pk = {y, , , ,
{i}1iq, {i}1jn, spk} and the private key is sk = {x, 0, ssk}.

TagGen(F, sk) For each data block mi (i=1, 2, ..., n), the client chooses a random ele-
ment   G, and computes a signature tag i  (H(mi)  mi)x. The set of all the tags is
denoted by T={τi}1≤i≤n. Then the client computes  = Sigx(0)

and sends Ini = {F, T, t, }
to CSS. Let t = name||n||||Sigssk(name||n||) be the tag for file F. The client will then
compute sig = Sigssk(t) and sends sig along with the auditing delegation request to TPA
for it to compose a challenge later on.

Upon receiving the initialize information Ini, CSS first stores all the data blocks,
and then construct a LBT as follows: for the ith data block mi (i = 1, 2, ..., n), CSS gen-
erates the ith leaf of LBT together with a path from the leaf to the root. We denote the
leaf by lG, where l is the layer of the leaf and the nodes on its path to the root are (l,
il, l-1, il-1, …, 1, i1), where j is the ijth child of j-1, 1  j  l. The authentication values
for these nodes are computed as follow steps:

Step 1: For every node on the path from leaf l to the root, CSS generates j  e(,
ij)

j.

Step 2: The authentication value of node j, the ijth child of j-1, is fiij(i-1+(j)).
Step 3: The authentication value of H(mi), the child of the leaf node l, is f l+H(mi).

LARGE BRANCHING TREE BASED DYNAMIC PROVABLE DATA POSSESSION SCHEME 661

Therefore, the signature on data block mi is i = (f, fl, il, …, f1, i1) which is also the
auxiliary information for authentication in the dynamic update process. The construction
of LBT is illustrated in Fig. 3.

Fig. 3. Construction of LBT.

4.2 Dynamic Operation

(1) Modification: The client composes an update request Info = (m, i, mi, i), it denotes
that the client wants to modify mi to mi, and i  (H(mi)  mi)x is the signature of mi.
Then he/she sends the update information Info to CSS.

Update(F, Info, Ω, pk) Upon receiving the update request, CSS first modifies the data
block mi to mi, and replaces the H(mi) with H(mi) in LBT. As shown in the Fig. 4, CSS
generates the new authentication value f l+H(mi) and updates the signature Ω into Ω.
Note that, CSS only consumes O(1) computation overhead. Finally, CSS responds Pupdate
= (H(mi), , ) to TPA.

VerifyUpdate(Pupdate, sk, pk) TPA generates root 0 based on H(mi),  as follows:
Step 1: Compute l  e(f  , )  -H(mi).
Step 2: Computes j-1  e(f j, ij)  -H(j) for j = l, ..., 1.
Step 3: The proof is accepted if e(, g) = e(0, y) or otherwise rejected.

(2) Insertion: As the insert operation would change the structure of LBT, this process is
different from data modification. We assume the client wants to insert block m* after the
ith block mi. First, the client generates a tag *(H(m*)  m*)x. Then the client chooses
two parameters l+1, 

*
l+1 and sends an update request Infor = (i, m*, *, l+1, 

*
l+1) to CSS.

Update(F, Info, Ω, pk) Upon receiving the update information, CSS updates data files
and turns the leaf node l into a father node whose first child node is l+1 and the second

YONG LI, GE YAO, LI-NAN LEI, HUA-QUN WANG AND CHANG-LU LIN

662

one is *
l+1. Data blocks mi and m* are authenticated with respect to the leaves l+1 and

*
l+1. As shown in the Fig. 4, CSS computes the authentication values fl+1 and f*

l+1 by l+1.
and *

l+1 respectively. The authentication values of the two blocks are computed as f 
i+1+H(mi) and f*  *

l+1+H(m*). Finally, CSS responses TPA with a proof Pupdate = {(i,
H(mi)), (*, H(m*)), }. The process is shown in Fig. 5.

VerifyUpdate(Pupdate, sk, pk). This process is similar to the update verification process in
modification operation except that the data blocks and the auxiliary information are dif-
ferent.

 Fig. 4. LBT update under modification. Fig. 5. LBT update under insertion.

(3) Deletion: Suppose the client wants to delete the block mi. The update process is very
simple. The only thing CSS needs to do is deleting mi from its storage space and taking
out the H(mi) from LBT structure. The subsequent update verification process is same as
Modification operation. Since other nodes are not affected by deleting leaf node, CSS
needn’t recalculate node values on authentication path. Therefore, LBT don’t need to be
reconstructed and computation overhead of CSS was reduced significantly.

4.3 Batch Dynamic Operation

In MHT-based scheme, dynamic update applies to only single data block. For each
insertion, the new data block should be no more than 160 bits, otherwise the block needs
to be divided into equal small blocks and be inserted separately. Moreover, each update
operation leads to reconstruction of the MHT structure, which costs huge computation
overhead. On the contrast, our scheme support batch dynamic data updates, which was
not discussed in [2]. The LBT structure allows multiple child nodes attached to one fa-
ther node. Therefore, when the client request to update a large block, CSS only needs to
update several corresponding leaves while the whole structure remain unchanged. Spe-
cifically, our scheme allows insertion of data block with no more than 160(q1)bits. The
insertion process is as follows (shown in Fig. 6):

LARGE BRANCHING TREE BASED DYNAMIC PROVABLE DATA POSSESSION SCHEME 663

Suppose client wants to insert data f (size is 160(q1)bits) after data block mi. Data
that are smaller than 160(q1)bits can be padded to the length by appending null data
blocks. First, client divides this data into data blocks f = (m1, m2, …, mq-1), and generates
authentication tags i  (H(mi)  mi)x for each block 1  i  (q  1). Then client chooses
parameters l+1, (l+1,1), …, (l+1,q-1) and sends an update request Info = (i, f, i, l+1,
(l+1,1), …, (l+1,q-1)) to CSS.

Update(F, Info, Ω, pk) Upon receiving the update information, CSS updates data files
and turns the leaf node l into a father node whose first child node is l+1 and following
child nodes are (l+1,1), …, (l+1,q-1). Data blocks mi and m1, m2, …, mq-1 are authenticated
with respect to the leaves l+1 and (l+1,1), …, (l+1,q-1). As shown in the Fig. 6, CSS com-
putes the authentication values fl+1 and f(l+1,1), …, f(l+1,q-1) by l+1 and (l+1,1), …, (l+1,q-1)
respectively. The authentication values of these blocks are computed as fl+1+H(mi) and
f 1(l+1,1)+H(m1), …, f q-1(l+1,q-1)+H(mq-1). Finally, CSS responses TPA with a proof

Pupdate = {(i, H(mi)), (1, H(m1)), …, (q-1, H(mq-1)), }.

VerifyUpdate(Pupdate, sk, pk) This process is similar to the update verification process
in modification operation except that the data blocks and the auxiliary information are
different.

Batch modification is similar to the modification of single block in Section 4.2, ex-

cept that multiple leaf nodes update at the same time. Besides, batch deletion is the in-
verse of batch insertion. Since the operation process is simple, the concrete update pro-
cess is omitted here.

H(mi) H(m1) H(mq-1)

Fig. 6. Batch insertion.

YONG LI, GE YAO, LI-NAN LEI, HUA-QUN WANG AND CHANG-LU LIN

664

4.4 Auditing

After the Setup process, no matter whether the update operation is executed or not,
the integrity verification is available for TPA to perform his/her duty as an auditor. The
integrity verification process is a challenge-response protocol, TPA generates a chal-
lenge information chal and sends it to CSS. CSS responds with a proof P. Then TPA
verifies the correctness of the proof and outputs accept/reject.

Challenge() Before challenging, TPA first use ssk to verify the signature on t to re-
cover ω. Suppose TPA wants to challenge c blocks. The indexes of these blocks are
randomly selected from [1, n]. Namely, let I = {i1, i2, …, ic} be the indexes of the chal-
lenged blocks. For each iI, TPA chooses a random element iZp. TPA then sends
chal = {(i, i)iI} to CSS.

GenProof(F, T, chal, pk) Upon receiving the challenge, CSS takes the data F, tags T
and challenge information chal as inputs, and outputs: i i

i I

m 


 and
i

i
i I

 


  .

Moreover, CSS also provides TPA with the auxiliary information {i}iI, which
denotes the authentication path from the challenged data blocks to the root. CSS sends
proof P = {, , {H(mi), {i}iI, } to TPA.

VerifyProof(P, pk) For each challenged block mi, iI, TPA first use the auxiliary in-
formation to reconstruct the nodes l, l-1, …, 0 in a bottom-up order by the following
steps:

Step 1: Compute le(f, )-H(mi).
Step 2: For j = l, l  1, …, l, compute j-1e(fj, ij)-H(j).
Step 3: Verify e(, g) = e(0, y).

If the equality in step 3 holds, TPA continues to verify (,) (() ,)i
i

i I

e g e H m y  


  .

If so, the proof is accepted, otherwise rejected.

5. CORRECTNESS AND SECURITY

Correctness The correctness of our scheme is that both the proof generated for dy-
namic auditing and integrity checking passes the verification algorithm. The correctness
of the proof for dynamic auditing is easy to prove. Indeed, Step 1 of the verification al-
gorithm results in

e(f, )-H(mi) = e(l+H(mi), ) e(, )-H(mi) = e(l, ) = l.

For any j{l, l  1, …, 1}, the result of computation in step 2 of the verification algo-
rithm is

e(fj, ij)-H(j) = e(ij(j-1+H(j)), 1/ij)  e(, )-H(j)

LARGE BRANCHING TREE BASED DYNAMIC PROVABLE DATA POSSESSION SCHEME 665

= e(j-1+H(j)), )  e(, )-H(j), ) = e(j-1, ) = j-1

The proof for integrity checking is also based on the properties of bilinear maps.

(,) ((()) ,) (() ,) (() ,)i i i i i im x m x
i i i

i I i I i I

e g e H m g e H m g e H m y       
  

       

Now we show that our proposed scheme is secure in the random oracle model. The
security of our scheme is depending on responding correctly generated proof. We divide
the security analysis of our scheme into two parts:

(1) Prove that if the challenger accepts the proof P = {, , {H(mi), i}iI, }, where 

denotes the tag proof which aggregates some forged tags for all the challenged
blocks, the Computational Diffie-Hellman (CDH) problem is tractable within non-
negligible probability.

(2) Prove that if the challenger accepts the proof P = {, , {H(mi), i}iI, }, where 
denotes the data proof generated by the adversary with all the challenged blocks
{mi}iI, the Discrete Logarithm (DL) problem is tractable within non-negligible
probability.

Security During the analysis of existing schemes, we found that different schemes have
different security levels. We classify some typical schemes’ security level by their key
techniques. Most of MAC-based schemes are semantically secure. RSA-based schemes
and BLS-based schemes are both provably secure since they rely on public keys. Like
most homomorphic tag-based schemes, our scheme is provably secure in the random
oracle model.

Theorem 1: If the tag generation scheme we use is existentially unforgeable, CDH
problem and DL problem is intractable in bilinear groups in the random oracle model,
there exists no adversary against our provable data possession scheme could cause the
verifier to accept a corrupted proof in the challenge-verify process, within non-negligible
probability, except by responding the correctly computed proof.

Proof: We firstly prove that the tag generation scheme is existentially unforgeable with
the assumption that BLS short signature scheme is secure. We prove this by reduction.
Assume BLS signature scheme is secure and its public key is pk = gx. If there exists an
adversary who can win the challenge game with non-negligible probability, then the ad-
versary must be able to forge a signature in BLS scheme. Pick xZp, and compute u=gx.
When the adversary queries about a data block mi, he/she sends the block to BLS signa-
ture oracle, and the oracle responds with the signature si=H(mi)

x. The adversary queries
the oracle about the same block in our scheme, and be replied with the tag i = (H(mi) 
mi)x. Let  = g, then i = si  mi. Suppose that the adversary can forge a new tag j =
(H(mj)  mj)x for the block mj that has never been queried. Therefore, the adversary can
compute BLS signature on mj as sj = j/mj. This completes the proof of the security of
the tag generation scheme.

Now we prove the Theorem 1 by using a sequence of games.

YONG LI, GE YAO, LI-NAN LEI, HUA-QUN WANG AND CHANG-LU LIN

666

Game 1: The first game is the data possession game as we defined in section 3.3.
Game 2: Game 2 is the same as Game 1, with one difference. When the challenger re-
sponds the ACF Queries made by the adversary, he/she keeps a list of all his/her re-
sponses. Then the challenger observes each instance of the challenge-response process
with the adversary. If in any of these instances the adversary responds a valid proof
which can make the challenger accept, but the adversary’s tag proof is not equal to the

i
i

i I

 


 , which is the expected response that would have been obtained from an hon-

est prover, the challenger declares reject and aborts.

Analysis Before we analyzing the difference in probabilities between Game 1 and
Game 2, we firstly describe the notion and draw a few conclusions. Suppose the data file
that causes the abort is divided into n blocks, and the tags of data blocks are i = (H(mi) 
mi)x for i[1, n]. Assume chal = {i, i}iI is the query that causes the challenger to abort,
and the adversary’s response to that query was P = {, , {H(mi), i}iI, }. Let the
expected response be P = {, , {H(mi), i}iI, }. The correctness of H(mi) can be veri-
fied through {H(mi), i}iI and . Because of the correctness of the scheme, the expected
response can pass the verification equation, that is

(,) (() ,).i
i

i I

e g e H m y  


 

Because the challenger aborted, we know that   and that  passes the verifica-

tion equation (,) (() ,)i
i

i I

e g e H m y   



   . Observe that if  =, it follows from the

verification equation that  =, which contradicts our assumption above. Therefore, it
must be the case that  is nonzero, here we define  = .

With this in mind, we show that if the adversary win Game 2 and causes the chal-
lenger to abort, we can construct a simulator to solve CDH problem.

Given the values g, gx, hG as inputs, the goal of the simulator is to output hx. The
simulator behaves like the challenger in Game 2 and interacts with the adversary as fol-
lows:
(1) To generate a tag key, the simulator sets the public key y to gx, and then forwards y to

the adversary.
(2) The simulator programs the random oracle H and keeps a list of queries to respond

consistently. Upon receiving the adversary’s queries, the simulator chooses a random
rZp and responds with grG. It also responds queries of the form H(mi) in a special
way, as we will see below.

(3) When requested to store the data file which is divided into n blocks {mi}1≤i≤n, the
simulator responds as follows. It firstly chooses a random block mi. For each 1in,
the simulator chooses a random value riZp and sets  = gahb for a, bZp, then it
outputs H(mi) = grih-mi. Therefore, the simulator can compute the tag i = (H(mi) 
mi)x = (grih-mi  (gahb)mi)x.

(4) The simulator continues interacting with the adversary until the adversary succeeds in
responding with a tag  that is not equal to the expected tag . After receiving the
valid proof P from the adversary, the simulator is able to compute e(/, g) = e(,
g) = e((gahb), g).

LARGE BRANCHING TREE BASED DYNAMIC PROVABLE DATA POSSESSION SCHEME 667

Rearranging terms yields e(-1y-a, g) = e(h, y) b.
Since y=gx, we obtain hx = (-1y-a)

1
b  . To analyze the probability that the chal-

lenger aborts in the game, we only need to compute the probability that b = 0(mod p).
Because b is chosen by the challenger and hidden from the adversary, the probability that
b = 0(mod p) will be only 1/p, which is negligible.

Therefore, if there is a non-negligible difference between the adversary’s probabili-
ties of success in Games 1 and 2, we can construct a simulator that solves CDH problem
by interacting with the adversary.

Game 3: Game 3 is the same as Game 2, with one difference. When the challenger re-
sponds the ACF Queries made by the adversary, he keeps a list of all his responses. Then
the challenger observes each instance of the challenge-response process with the adver-
sary. If in any of these instances the adversary responds a valid proof which can make

the challenger accept, but the adversary’s data proof is not equal to the

i I

 


 , which is

the expected response that would have been obtained from an honest prover, the chal-
lenger declares reject and aborts.

Analysis Again, let us describe some notation. Suppose the data file that causes the
abort is divided into n blocks. Assume chal = {i, i}iI is the query that causes the chal-
lenger to abort, and the adversary’s response to that query was P = {, , {H(mi), i}iI,
}.

Let the expected response be P = {, , {H(mi), i}iI, }, among which the data
proof should be  =

i I



imi. Game 2 already guarantees that we have  = . It is only

the values of  and  that can differ. Define  =   , again, it must be the case that
 is nonzero.

We now show that if the adversary causes the challenger in Game 3 to abort with
non-negligible probability, we can construct a simulator to solve DL problem.

Given the values g, hG as inputs, the goal of the simulator is to output  such that
h = g. The simulator behaves like the challenger in Game 2 and interacts with the ad-
versary as follows:
(1) When requested to store the data file which is divided into n blocks {mi}1≤i≤n, the

simulator first sets  = gahb for a, bZp. Then, it responds to the adversary accord-
ing to the TagGen algorithm.

(2) The simulator continues interacting with the adversary until the adversary succeeds
in responding with a data proof  that is not equal to the expected . After receiving
the valid proof P' from the adversary, the simulator is able to compute

' '(() ,) (,) (,) (() ,)i i
i i

i I i I

e H m y e g e g e H m y     
 

      .

From this equation, we have 1 =  = (gahb).
Thus, the solution to DL problem has been found, that is h = g

a
b







, unless the de-
nominator is zero. However,  is not equal to zero, and the value of b is chosen by the
challenger and hidden from the adversary, the probability that b = 0(mod p) will be
only 1/p, which is negligible.

YONG LI, GE YAO, LI-NAN LEI, HUA-QUN WANG AND CHANG-LU LIN

668

Therefore, if there is a non-negligible difference between the adversary’s probabili-
ties of success in Games 2 and 3, we can construct a simulator that solves DL problem
by interacting with the adversary.

Wrapping Up As we analyzed above, there is only negligible difference probability of
the adversary between game sequences Game i (i=1, 2, 3), if the tag generation scheme is
existentially unforgeable, CDH problem and DL problem are hard in bilinear groups.
This completes the proof of Theorem 1.

6. PERFORMANCE

In this section, we analyze the performance of our scheme in the terms of storage
overhead, computation cost and communication complexity.

6.1 Storage Overhead

Through analysis of the state-of-the-art, we find that what affects the storage over-
head most is the metadata. For example, in [8], the verifier (the client) has to store the
sentinels for verification. In [17], the verifier (the client) needs to store MACs.

In our scheme, the metadata is stored in CSS instead of the verifier (TPA). The cli-
ent sends the metadata together with data to CSS during the setup phase. For each chal-
lenge, CSS responds both the data proof and the tag proof to TPA.

Table 1 shows the comparison of the storage overhead of different schemes. In the
table, k denotes the total number of the sentinels, n denotes the total number of the data
blocks, λ is the security parameter, p denotes the order of the group G and N is RSA
modulus.

Table 1. Comparison of the storage overhead.

Schme CSS Verifier
[6] k  |sentinel| k  |sentinel|
[7] O(λ) n  |N|
[13] O(λ) n  |N|

[8](BLS) O(λ) n  |p|
[1] O(λ) n  |p|

Our scheme O(λ) n  |p|

6.2 Computation Complexity

There are three entities in our scheme: the client, CSS and TPA. We discuss their
computation cost respectively in different phase. In the setup phase, the client needs to
compute 2 pairings, 2n+2 exponentiations and n multiplications on G.

For better comparison, we implemented both our scheme and MHT-based scheme
[1] in Linux. All experiments are conducted on a system with an Intel Core i5 processor
running at 2.6GHz, 750MB RAM. Algorithms such as paring and SHA1 are employed
by installing the Paring-Based Cryptography (PBC) library and the crypto library of
OpenSSL. All experimental results represent the mean of 10 trials. Fig. 7 shows the
pre-processing time as a function of block numbers for client. The MHT-based scheme

LARGE BRANCHING TREE BASED DYNAMIC PROVABLE DATA POSSESSION SCHEME 669

Fig. 7. Comparison of pre-processing time.

[1] exhibits slower pre-processing performance. Our scheme only performs an exponen-
tiation on every data block in order to create the metadata. However, in scheme [1], cli-
ent needs to perform the exponentiation as well as constructing a MHT to generate the
root.

Besides, in the dynamic update phase, CSS only needs to compute 1 exponentiation
in modification, 2 exponentiations in insertion and causes no computation in deletion.
Note that the computation complexity of CSS in scheme [1] is O(n) in all three update
operations, where n is the number of data blocks. Therefore, the secure signature scheme
based on bilinear maps [18] introduced in our scheme has greatly reduced the computa-
tion overhead during the dynamic update phase. In the auditing phase, TPA needs to do
2c summations and 2c multiplications, where c is the number of challenged data blocks.
The computation complexity of TPA is O(n).

6.3 Communication Cost

The main communication cost we concern is the communication cost between CSS
and TPA during each challenge-response query. Since the metadata is stored in CSS, the
proof sended from CSS to TPA is increased. There is a trade-off between the storage
overhead and the communication cost. The major component of the communication cost
is the proof sent to TPA by CSS. We compare our scheme with MHT scheme [1]. Fig. 8
shows the proof size as a function of the number of challenged blocks. Apparently, our

Fig. 8. Comparison of communication cost.

YONG LI, GE YAO, LI-NAN LEI, HUA-QUN WANG AND CHANG-LU LIN

670

scheme causes less communication cost between CSS and TPA. The auxiliary infor-
mation accounts for that gap. In our scheme, the size of auxiliary information grows lin-
early as the number of challenged blocks increase, while it grows exponentially as the
number of challenged blocks increase in the MHT scheme [1].

7. CONCLUSION

In this paper, we propose an efficient dynamic provable data possession scheme
based on a secure signature scheme [18] and LBT data structure. LBT structure enables
reduction in size of auxiliary information, thereby causes less communication cost com-
pared to MHT-based schemes. Moreover, the characteristics of bilinear pairings in the
signature algorithm only cause computation cost on CSS for each dynamic update. And
the client no longer needs to construct LBT structure to support dynamic operation.
Therefore, our scheme reduces computation cost both on CSS and client as well as sim-
plify the update process. Through security analysis and performance analysis, our
scheme is provably secure and efficient.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referees for useful comments. This
research is supported in part by National Natural Science Foundation of China under
Grant Nos. 61472032, 61272522, 61572132, the Fundamental Research Funds for the Cen-
tral Universities (No. 2016YJS003), and Fujian Provincial Key Laboratory of Network
Security and Cryptology Research Fund (Fujian Normal University) (No. 15007), and
Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS201609).

REFERENCES

1. Q. Wang, C. Wang, J. Li, K. Ren, and W. J. Lou, “Enabling public verifiability and
data dynamics for storage security in cloud computing,” in Proceedings of ESORICS,
LNCS, Vol. 5789, 2009, pp. 355-370.

2. G. Yao, Y. Li, L. N. Lei, H. Q. Wang, and C. L. Lin, “An efficient dynamic prova-
ble data possession scheme in cloud storage,” in Proceedings of the 11th Interna-
tional Conference on Green, Pervasive and Cloud Computing, LNCS, Vol. 9663,
2016, pp. 63-81.

3. P. Mell and T. Grance, “The NIST definition of cloud computing,” NIST SP 800-145,
2011. http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf.

4. Z. H. Xia, X. H. Wang, X. M. Sun, and Q. Wang, “A secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 27, 2015, pp. 340-352.

5. Z. J. Fu, K. Ren, J. G. Shu, X. M. Sun, and F. X. Huang, “Enabling personalized
search over encrypted outsourced data with efficiency improvement,” IEEE Trans-
actions on Parallel and Distributed Systems, Vol. 27, 2016, pp. 2546-2559.

LARGE BRANCHING TREE BASED DYNAMIC PROVABLE DATA POSSESSION SCHEME 671

6. K. Yang and X. H. Jia, “An efficient and secure dynamic auditing protocol for data
storage in cloud computing,” IEEE Transactions on Parallel and Distributed Sys-
tems, Vol. 24, 2013, pp. 1717-1726.

7. Y. Zhu, G. J. Ahn, H. X. Hu, S. S. Yau, H. G. An, and S. Chen, “Dynamic audit ser-
vices for outsourced storages in clouds,” IEEE Transactions on Services Computing,
Vol. 6, 2013, pp. 227-238.

8. A. Juels and B. S. Kaliski Jr., “PORs: proofs of retrievability for large files,” in
Proceedings of the 14th ACM Conference on Computer and Communications Secu-
rity, 2007, pp. 584-597.

9. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song,
“Provable data possession at untrusted stores,” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, 2007, pp. 598-609.

10. H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proceedings of
ASIACRYPT, Vol. 5350, 2008, pp. 90-107.

11. Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability via hardness amplifica-
tion,” in Proceedings of the 6th Theory of Cryptography Conference, LNCS, Vol.
5444, 2009, pp. 36-53.

12. G. Ateniese, S. Kamara, and J. Katz, “Proofs of storage from homomorphic identifi-
cation protocols,” in Proceedings of ASIACRYPT, LNCS, Vol. 5912, 2009, pp. 319-
333.

13. K. Yang and X. H. Jia, “Data storage auditing service in cloud computing: challeng-
es, methods and opportunities,” in Proceedings of WWW, LNCS Vol. 15, 2012, pp.
409-428.

14. G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable and efficient
provable data possession,” in Proceedings of ACM SecureComm, 2008, pp. 1-10.

15. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic provable data
possession,” in Proceedings of ACM International Conference on Computer and
Communications Security, 2009, pp. 13-222.

16. H. Wang, “Identity-based distributed provable data possession in multicloud stor-
age,” IEEE Transactions on Services Computing, Vol. 8, 2015, pp. 328-340.

17. M. A. Shah, R. Swaminathan, and M. Baker, “Privacy-preserving audit and extrac-
tion of digital contents,” Cryptology ePrint Archive, 2008/186, http://eprint.iacr.org/
2008/186.

18. D. Boneh, I. Mironov, and V. Shoup, “A secure signature scheme from bilinear
maps,” in Proceedings of CT-RSA, LNCS, Vol. 2612, 2003, pp. 98-110.

19. A. Barsoum and A. Hasan, “Enabling dynamic data and indirect mutual trust for
cloud computing storage systems,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 24, 2013, 2375-2385.

20. C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward secure and dependable
storage services in cloud computing,” IEEE Transactions on Services Computing,
Vol. 5, 2012, pp. 220-232.

21. H. Wang and D. He, “Proxy provable data possession with general access structure
in public clouds,” in Proceedings of International Conference on Information Secu-
rity and Cryptology, LNCS, Vol. 9589, 2016, pp. 283-300.

22. C. Lin, F. Luo, H. Wang, and Y. Zhu, “A provable data possession scheme with data
hierarchy in cloud,” in Proceedings of International Conference on Information Se-

YONG LI, GE YAO, LI-NAN LEI, HUA-QUN WANG AND CHANG-LU LIN

672

curity and Cryptology, LNCS, Vol. 9589, 2016, pp. 301-321.
23. C. Gritti, W. Susilo, and T. Plantard, “Efficient dynamic provable data possession

with public verifiability and data privacy,” in Proceedings of Australasian Confer-
ence on Information Security and Privacy, LNCS, Vol. 9144, 2015, pp. 395-412.

24. C. Gritti, W. Susilo, T. Plantard, and R. Chen, “Improvements on efficient dynamic
provable data possession protocols with public verifiability and data privacy,” Cryp-
tology ePrint Archive, 2015/645, 2015, http://eprint.iacr.org/2015/645.

25. Y. Zhang and M. Blanton, “Efficient dynamic provable possession of remote data
via update trees,” ACM Transactions on Storage, Vol. 12, 2016, Article 9.

26. A. F. Barsoum and M. A. Hasan, “Provable multicopy dynamic data possession in
cloud computing systems,” IEEE Transactions on Information Forensics and Secu-
rity, Vol. 10, 2015, pp. 485-497.

27. Y. Ren, J. Shen, J. Wang, J. Han, and S. Lee, “Mutual verifiable provable data au-
diting in public cloud storage,” Journal of Internet Technology, Vol. 16, 2015, pp.
317-324.

Yong Li (李勇) received his M.S. degree in Computer Sci-
ence from Wuhan University in 2003, and the Ph.D. degree from
State Key Laboratory of Information Security, Graduate University
of Chinese Academy of Sciences in 2007. Currently, he is an As-
sociate Professor at the School of Electronic and Information En-
gineering, Beijing Jiaotong University. He has over 30 publica-
tions and filed 6 patents. His research interests include crypto-
graphic protocols and cloud computing security.

Ge Yao (姚戈) received Master degree in Information Secu-
rity from Beijing Jiaotong University in 2016. She will work to-
ward the Ph.D. programme in University of Melbourne this year.
Her research interest includes cryptography and cloud computing.

Li-Nan Lei (雷丽楠) received B.S. degree in Computer Sci-
ence from Huaqiao University in 2014. Currently, she is an M.S.
student at the School of Electronic and Information Engineering,
Beijing Jiaotong University. Her research interests include crypto-
graphic protocols and cloud computing security.

LARGE BRANCHING TREE BASED DYNAMIC PROVABLE DATA POSSESSION SCHEME 673

Hua-Qun Wang (王化群) received the BS degree in Mathe-
matics Education from the Shandong Normal University and the
MS degree in Applied Mathematics from the East China Normal
University, both in China, in 1997 and 2000, respectively. He re-
ceived the Ph.D. degree in Information Security from Nanjing
University of Posts and Telecommunications in 2006. He is cur-
rently a Professor of Nanjing University of Posts and Telecommu-
nications, China. His research interests include applied cryptog-
raphy, network security, and cloud computing security.

Chang-Lu Lin (林昌露) received the Ph.D. degree in Infor-
mation Security from the state key laboratory of information secu-
rity, Graduate University of Chinese Academy of Sciences, P.R.
China, in 2010. He was a Visiting Scholar in the Information Se-
curity Group at Royal Holloway, University of London from July
2011 to January 2012. He was a Visiting Scholar in the Division of
Mathematical Science, School of Physical and Mathematical Sci-
ences, Singapore Nanyang Technological University from Febru-
ary 2015 to February 2016. He is interested in cryptography and
network security, and has conducted research in diverse areas, in-

cluding secret sharing, secure multi-party computation, public key cryptography and
their applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

