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Test suite reduction (TSR) is a frequently adopted approach to improve the efficiency 

of regression testing while spectrum-based fault localization (SBFL) is a famous approach 

to shorten the tedious debugging process. Both approaches can be incorporated into the 

continuous integration (CI) environment. A configuration for a CI is relevant to the settings 

of three TSR factors (namely the coverage granularity level, the metric to evaluate test 

cases, and the TSR strategy) and the selection of SBFL technique. Since different TSR 

techniques will produce different test logs and test logs are the inputs to SBFL techniques, 

the selections of TSR and SBFL techniques both impact the effectiveness of fault locali-

zation (FL). Thus, it is important for software developers to choose a suitable TSR tech-

nique and determine which SBFL technique will assort well with it. This paper also aims 

to investigate how each of the aforementioned parameters in a CI configuration affects FL 

effectiveness. Our experiment results indicate that applying TSR may be harmful to FL 

effectiveness and the Jaccard SBFL technique is the most effective to locate faults no mat-

ter which of the TSR techniques (including using the original test suite directly) is adopted 

to run regression testing. Additionally, the experimental results also indicate that it is better 

to perform TSR based on branch coverage information if TSR must be included in the CI. 

In comparison with coverage granularity level, the other two TSR factors do not cause 

statistically significant impact on FL effectiveness. Our findings should be useful for soft-

ware developers to configure their CI. 

 

Keywords: software testing, debugging, continuous integration, test suite reduction, fault 

localization 

1. INTRODUCTION 

In software development process, developers may frequently modify the source code 

in order to upgrade the system or fix bugs. The modified software needs to be validated 

before being released to ensure that it still works properly [1, 2], which is called regression 

testing. Regression testing may execute all test cases that have been run for the previous 

version together with new test cases that are designed for validating the new/modified 

functionalities in the current version [3], i.e., retest-all. This means that the size of test suite 

may increase as software under test (SUT) evolves. Yet, it is sometimes unsuitable to run 

all test cases because time and cost are generally limited in practice. 

In the literature, test suite reduction (TSR) (e.g., [4-7]) is a frequently adopted ap-

proach to decrease the cost of regression testing. More specifically, TSR techniques aim 
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to reduce the size of test suite by removing the redundant test cases; on the other hand, 

software debugging [8, 9] is an important activity in software development and mainte-

nance. This activity attempts to pinpoint the locations of faults, namely fault localization 

(FL), and then design and implement the fixes. Software developers usually remove faults 

manually [10], thus resulting in a time-consuming, tedious, and expensive debugging pro-

cess. An automated debugging approach can address this problem and make software more 

reliable and maintainable [11]. According to the classification described in [12], the exist-

ing FL techniques can be classified into eight categories. Spectrum-based fault localization 

(SBFL) achieves significant result with low overheads in comparison to the other types of 

approaches [13]. Thus, we focus our study on SBFL in this paper. 
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Fig. 1. The CI process enhanced by including TSR and FL techniques. 

 

Continuous integration (CI) [14, 15] is a software development strategy in which soft-

ware developers frequently and regularly integrate the new or modified code to the repos-

itory of source code. When a part of the program is changed/added and submitted to the 

repository, the modifications should be tested in order to ensure that they will not result in 

unexpected side effects. CI may become more desirable if TSR techniques and FL tech-

niques are included. For example, before regression testing, software developers can use a 

TSR technique to choose test cases so as to render the regression testing more cost-effec-

tive. After testing, software developers can apply a SBFL technique to accelerate the fault 

removal. That is, after developers submit the modified modules to codebase, TSR tech-

niques can be used together with SBFL techniques to decrease the time taken for testing 

and debugging. Fig. 1 shows an example of the enhanced CI process. Yet, different TSR 

techniques produce different test logs (e.g., revealed faults and code coverage). Further-

more, since the test logs are the inputs to SBFL techniques, the locations of faults that are 

identified by SBFL techniques based on different test logs will be significantly diverse. 

Thus, the selection of TSR technique has observable consequences on the effectiveness of 

regression testing, and further has observable consequences on the FL effectiveness. In the 

literature, some studies (e.g., [8, 9, 16]) aim to propose TSR techniques so as to produce a 

subset of test cases that can achieve better FL effectiveness than the original test suite 

(OTS). 

Actually, the FL effectiveness is relevant to the adopted test suite and the source code 

of the SUT. Since there exist a lot of TSR and SBFL techniques in the literature, it is 



EVALUATING HOW TSR INFLUENCES SBFL ON CI 359 

difficult for software developers to choose a suitable TSR technique and determine which 

SBFL technique will assort well with it. In our preliminary study [17], we have described 

this tough problem and this study aims to tackle it. In Section 2, we will discuss 3 TSR 

factors that may affect FL effectiveness and then define the CI configuration in our work. 

In addition to the created test suites, this study will cover OTS, 36 TSR techniques, and 4 

SBFL techniques, resulting in (1+36)4=148 CI configurations. We will empirically eval-

uate the FL effectiveness achieved by them. 

The remainder of this paper is organized as follows. Section 2 will give the necessi-

ties for developing our empirical study (i.e., the fundamentals of TSR and SBFL). Section 

3 will outline our research questions, describe the criterion used to evaluate FL effective-

ness in our study, and the experimental setup. Section 4 will answer the research questions 

by reporting and discussing the experimental results and highlight our findings. Section 5 

will discuss the related work. Finally, Section 6 will show the concluding remarks. 

2. BACKGROUND 

2.1 TSR Techniques 

TSR [18, 19] aims to produce a subset of the OTS, called the representative set (RS), 

by repeatedly removing the redundant test cases according to specific rules until all test 

requirements are satisfied. Thus, the TSR problem can be defined as follows: 

Given:  An original test suite OTS = {t1, t2, t3, ..., tm}, where ti (i = 1 to m) represents the 

ith test case in the test suite. 
 A set of test requirements REQ = {r1, r2, r3, ..., rn}, where rj (j = 1 to n) represents 

the jth test requirement. 
 A binary relation COV = {(t, r) | t  OTS, r  REQ, and the test case t can satisfy 

the test requirement r}. 
Objective: Find a representative set RS, which is a subset of OTS, in which the test cases 

can satisfy all test requirements satisfied by OTS. 

The coverage granularity level, the metric to evaluate test cases (hereafter called reduction 

metric for simplicity) and the TSR strategy are the important factors to design a TSR tech-

nique. That is, a TSR technique is defined as a combination of a TSR strategy, a reduction 

metric, and a coverage granularity level. Section 2.1.1 will review the coverage granularity, 

while Sections 2.1.2 and 2.1.3 will review the reduction metrics and several well-known 

TSR strategies, respectively. 

2.1.1 Review of code coverage granularity 

In the literature, many studies (e.g., [20-23]) regard the test requirement as a code 

entity (e.g., a code statement, a branch, or a function). “Satisfying test requirements” indi-

cates the program path covers a set of code entities when running test cases. For example, 

if the coverage granularity level adopted by software developers to perform TSR is state-

ment, the test cases in the RS should cover all code statements that are covered by those in 
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the OTS. Because performing TSR at different coverage granularities will produce differ-

ent RS and then impact the consequent SBFL, we also consider coverage granularity as an 

important factor for TSR. 

 

2.1.2 Review of reduction metrics 

 

In [20], Lin et al. adopted 4 reduction metrics, namely Coverage, Ratio, Irreplacea-

bility, and EIrreplaceability, to evaluate the importance of test cases during TSR from dif-

ferent standpoints. The descriptions of these 4 metrics are given as follows. 

 

Coverage: This metric indicates the number of test requirements (e.g., code statements, 

branches, or functions in the SUT) that are covered by test cases and it can be considered 

a criterion to assess the completion of a test [24]. Many code-based TSR techniques (e.g., 

[21, 23, 25]) adopt this metric (hereafter called Cov) to evaluate test cases. 

 

Ratio: Lin et al. [20] indicated that there may be significant difference in execution time 

among test cases. Thus, minimizing the size of test suite may not minimize the time taken 

to run test cases. Ma et al. [26] and Smith and Kapfhammer [27] also suggested that, in 

addition to the code coverage achieved by test cases, the cost of running test cases should 

be considered for TSR. Thus, the studies in [26, 27] evaluate test cases according to a cost-

aware metric, called Ratio hereafter in this paper. 

 

Irreplaceability: If a test requirement that is satisfied by the test case t can also be satisfied 

by many of the other test cases, the probability of that test requirement being still covered 

by the other test cases should be high even though t is not included in the RS. In other 

words, the test cases that satisfy such test requirements can be regarded as replaceable. In 

contrast, the irreplaceability of a test case is high if it is not easy to find the other test cases 

to replace it in order to satisfy a specific set of test requirements. Based on the concept of 

irreplaceability and the cost of running each individual test case, Lin et al. [20] proposed 

a cost-aware metric called Irreplaceability (hereafter called Irre for simplicity) to evaluate 

test cases’ contribution on increasing code coverage. 

 

EIrreplaceability: Since the essential test case should be included in the RS as early as 

possible to avoid choosing redundant test cases, Lin et al. [20] also considered the essen-

tials strategy and posited that the irreplaceability of essential test cases should be given the 

highest priority. They further proposed an enhancement of Irre, called EIrreplaceability 

(hereafter called EIrre for simplicity). 

 

2.1.3 Review of TSR strategies 

 

In the literature, a lot of TSR strategies have been proposed. In order to avoid blurring 

the scope of this work, this review is focused on the 3 well-known TSR strategies that will 

be empirically compared in our study. 

 

Additional Greedy: The Additional Greedy algorithm [28], hereafter called AG, takes 

into account the number of test requirements that are satisfied by each test case during the 
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reduction process. Yet, AG only considers the test requirements that are not yet satisfied 

by the test cases in the RS when computing the coverage achieved by test cases. In other 

words, AG will repeatedly choose the test case that can satisfy the most unsatisfied test 

requirements until all test requirements are satisfied.  
 

GRE: Chen and Lau [29] proposed a heuristic, called GRE, based on 3 strategies including: 

(1) the essentials strategy: first select the test cases that satisfy test requirements that cannot 

be satisfied by the others; (2) the 1-to-1 redundancy strategy: remove the test case if all 

requirements satisfied by it can also be satisfied by another in the RS; and (3) the Greedy 

strategy: perform the AG algorithm. Some essential test cases may appear after applying 

the 1-to-1 strategy, and vice versa. Thus, the essentials and the 1-to-1 redundancy strategies 

are complementary to each other and should be alternately applied. The AG algorithm will 

be applied if both of the other two strategies cannot be applied. 
 

HGS: This strategy is called HGS [30] due to the abbreviations of the authors’ last names, 

Harrold, Gupta, and Soffa. Let Sj (for j = 1, 2, 3, …, n) represent the subsets of the OTS, 

with each subset Sj including all unselected test cases in the OTS that can satisfy the jth 

test requirement. This strategy will start from the subset Sj with the smallest cardinality, 

select the test cases in Sj that belongs to the most subsets of the same cardinality, mark all 

test requirements that are satisfied by the selected test case, and remove that test case from 

all subsets. If a tie occurs during selecting test cases in Sj, it will recursively consider the 

number of unsatisfied test requirements that are satisfied by the candidates and choose the 

test case that can satisfy the most unsatisfied test requirements. The HGS will focus on the 

subset Sj with the smallest cardinality and iteratively repeat the aforementioned steps until 

all test requirements have been satisfied. 

2.2 SBFL Techniques 

Performing SBFL [9, 12] techniques is one of frequently used approaches to identify 

the locations of the bugs. These techniques use the test logs (including the program execu-

tion/code coverage information and the result of test cases) to calculate the probability of 

each code statement being faulty, called the suspiciousness, and then produce a ranking 

list of all code statements according to their suspiciousness in descending order. Many 

SBFL techniques (e.g., Tarantula [31], Ochiai [32], Jaccard [32], and SBI [33]) have re-

ceived considerable attention and were frequently used to be the baseline techniques for 

comparing with the new ones [34, 35]. The remaining of this section is dedicated to the 

review of these 4 SBFL techniques which are adopted in our empirical study. 
 

Tarantula: Jones et al. [31] proposed the technique, called Tarantula, to pinpoint the 

faulty statements. The main idea underlying this technique is that the statement has a high 

probability to be faulty if it is executed by most of the failed test cases in the test suite. 

Additionally, the statements that are covered by more test cases will be assigned higher 

confidence values. If a tie occurs when ranking the statements based on their suspicious-

ness, their confidence values will be further evaluated. The statement in the tie will be 

examined first if it has the highest confidence value. Moreover, if the statements in the tie 

also have the same confidence value, these statements will then be given the same ranking 

according to Renieris and Reiss’s approach [36]. 
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Ochiai: Ochiai [37] proposed a metric to computing genetic similarity in molecular biol-

ogy (e.g., [38, 39]). Abreu et al. [32] and Naish et al. [40] adopted a variant of Ochiai’s 

metric to calculate the suspiciousness of code statements and then sorted the statements by 

the similar manner that is described for Tarantula. 

 

Jaccard: Abreu et al. [32] also used the Jaccard similarity coefficient which was proposed 

by Baudrey et al. [41] to compute the statements’ suspiciousness when performing SBFL. 

Similar to Tarantula, this technique also considers confidence values if ties occur. 

 

SBI: The Statistical Bug Isolation (SBI) was originally proposed by Liblit et al. [33] for 

computing the predicates’ suspiciousness. Yu et al. [10] adopted it to compute the state-

ments’ suspiciousness in order to facilitate the comparison with the other SBFL techniques.  

3. EXPERIMENTAL SETUP 

This section will show and explain our research questions, the metric for evaluating 

FL effectiveness, and the statistical tests, respectively. Additionally, this section will also 

design the experiment in order to answer these research questions. 

3.1 Research Questions 

We will carry out the experiment to answer the following research questions: 

RQ1: If adopting the reduced test suite instead of the original test suite, is the FL effective-

ness still preserved? 

RQ2: Does each factor of the CI configurations affect FL effectiveness? 

In order to answer this research question, we will analyze the influence on FL effec-

tiveness caused by adjusting each of the 4 factors in the CI configuration. Thus, RQ2 will 

be further divided into RQs2.1 through 2.4. 

RQ2.1: Does the selection of coverage granularity level affect FL effectiveness? 

RQ2.2: Does the selection of the reduction metric affect FL effectiveness? 

RQ2.3: Does the selection of TSR strategy affect FL effectiveness? 

RQ2.4: Does the selection of SBFL technique affect FL effectiveness? 

RQ3: What is the most recommended CI configuration for optimizing FL effectiveness? 

3.2 Evaluation Criterion and Statistical Tests 

In our experiment, we performed TSR and SBFL based on a lot of different configu-

rations. We adopted the criterion, EXAM score [11, 34, 35], to evaluate the FL effective-

ness achieved by each of these configurations. The EXAM score represents the percentage 

of statements in a program that have to be examined until the first faulty statement is lo-

cated. In the literature, it has been commonly used to evaluate FL effectiveness. The lower 

EXAM score is, the more effective FL is. 
To confirm the comparisons on the FL effectiveness, we adopted the Kruskal-Wallis 

test, the Mann-Whitney U test, and the Vargha and Delaney test for reporting the statistical  

tests. We used these non-parametric tests because the assumption of one-way ANOVA is 
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not met in our study, i.e., the EXAM scores are not normally distributed [42] and the null 

hypothesis is that the EXAM scores from two groups share the same distribution. First, the 

Kruskal-Wallis test was performed to assess whether there exists significant difference 

among all groups. If the significant difference is observed (i.e., the p-value < 0.05), we 

further performed the two statistical tests (i.e., the Mann-Whitney U test and the Vargha 

and Delaney test) for pairwise comparisons. If the p-value of the Mann-Whitney U test is 

less than 0.05, it indicates that the values in two groups are significantly different. The 

Vargha and Delaney test is used to calculate the effect size A12 between the values of two 

groups X and Y. The value of A12 ranges from 0 to 1. A12  0.50 means that X has higher 

chances to obtain a higher EXAM score than Y and vice versa. A12 = 0.50 means that two 

groups are equivalent in terms of EXAM score. Additionally, if the value of A12 is close to 

0.50, it indicates that the difference in EXAM score between the two groups is small. Var-

gha and Delaney [43] suggested that A12 > 0.64 (or < 0.36) is indicative of “medium” effect 

size while A12 > 0.71 (or < 0.29) can be indicative of a promising “large” effect size. 

3.3 Descriptions of Subject Programs 

Our experiment uses 9 subject programs which were written in C language, namely 

the 7 programs in the Siemens suite (including print_tokens, print_tokens2, replace, sched-

ule, schedule2, tcas, and tot_info), flex, and gzip. These subject programs together with 

the test pools are available at the Software-artifact Infrastructure Repository (SIR) [44] and 

are the benchmarks frequently used in prior studies (e.g., [11, 16, 31, 34]). Some faulty 

versions were excluded in order to facilitate our experiment. For example, for some ver-

sions, no faults are revealed by all test cases, or the faults are located in the header files. 

We used this criterion to exclude those faulty versions in order to make our experimental 

results comparable to prior studies. In addition, we conducted the experiment based on flex 

and gzip’s single-fault versions (i.e., separately seeding each of the faults in each version). 

We totally adopted 226 faulty versions attached to these subjects and the details are de-

scribed in Table 1. 

 

Table 1. Description of the subject programs. 

Subject Program #Faulty Versions #Used Faulty Versions LOC1 Size of Test Pool2 

print_tokens 7 3 564 4130 

print_tokens2 10 8 512 4115 

replace 32 24 563 5542 

schedule 9 4 412 2650 

schedule2 10 4 307 2710 

tcas 41 37 173 1608 

tot_info 23 18 406 1052 

flex (v1-v5) 82 48 12421-14244 525 

gzip (v1,v2,v4,&v5) 49 16 6576-7996 214 
1 It indicates the number of code statements in the subject program. 
2 It indicates the number of test cases in the test pool. 

 

3.4 Experiment Steps 

 

In our experiment, we created 1,000 different OTS for each faulty version, obtained 

an RS by performing TSR on each OTS, used both of the OTS and the RS to run regression 
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testing, and then performed SBFL based on the test results. The framework of our experi-

ment is depicted in Fig. 2. In order to avoid too lengthy descriptions, the 4 reduction met-

rics (namely Cov, Ratio, Irre, and EIrre) will be denoted by C, R, I, and E while the 3 

coverage granularity levels (i.e., branch, function, and statement) will be denoted by B, F, 

and S, respectively. Thus the CI configurations that are compared in our study and the way 

to produce them are shown in Fig. 2. For example, HGS-I-F represents the TSR technique 

that adopts the HGS algorithm to reduce test suites according to the metric Irre to evaluate 

test cases’ importance based on function coverage. It is noted that OTS will also be re-

garded as a TSR technique that removes no test cases from the test suites. Similarly, the 

SBFL techniques (i.e., Jaccard, Ochiai, and Tarantula) will also be denoted by J, O, and T, 

respectively, and keep the abbreviation SBI in this figure. Additionally, HGS-I-F-J repre-

sents the CI configuration that adopts the TSR technique HGS-I-F and then locates faults 

using Jaccard while OTS-T represents the one that excludes TSR from the CI and then 

locates faults using Tarantula. The detailed steps of our experiment are given below. 
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Fig. 2. The framework of our experiment. 

 

Step 1: Create an OTS for each faulty version by randomly picking v test cases from the 

test pool, where 1 ≤ v ≤ LOC  0.5 for the Siemens suite and 1 ≤ v ≤ LOC  0.01 for 

flex and gzip. We adopted different ways to generate this random integer due to 

the variety of the subjects’ scales. If the created OTS does not satisfy all test re-

quirements, a new test case is randomly chosen to determine if it can cover at least 

one of the unsatisfied test requirements. If yes, this test case will be included in 

the OTS; otherwise, it will not be included in the OTS. This operation will be 

repeated until all test requirements are satisfied. Additionally, if the created OTS 

does not contain any failed test cases, we will generate a random integer vf, where 

1 ≤ vf ≤ Nf and Nf represents the total number of failed test cases in the test pool, 

further randomly choose vf failed test cases from the test pool, and include them 

in the OTS.  
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Step 2: Perform each of the 36 TSR techniques (i.e., the combinations of 3 coverage gran-

ularities, 4 reduction metrics, and 3 TSR strategies) on OTS and obtain the RS. 

Step 3: Run test cases in each OTS/RS and obtain the test logs. 

Step 4: Perform each of the 4 SBFL techniques based on test logs, compute the suspicious-

ness, suggest the ranking list of statements, and compute the EXAM score. 

Step 5: Repeat Steps 1-4 1,000 times to ensure the experiment’s diversity and generality. 

 

Overall, for each faulty version in our experiment, we created 1,000 OTS, 1,000×3× 

4×3=36,000 RS, and 1,000×(3×4×3+1)×4=148,000 EXAM scores (including the SBFL re-

sult based on OTS). Because 226 faulty versions are attached to the 9 subject programs, 

we totally created 226×1,000=226,000 OTS, 226×1,000×3×4×3=8,136,000 RS, and 226× 

1,000×(3×4×3+1)×4=33,448,000 EXAM scores. Thus, the experiment results shown in 

Section 4 are reported based on these 33,448,000 EXAM scores. 

4. EXPERIMENTAL RESULTS 

Sections 4.1 through 4.3 will reply to RQs 1 through 3, respectively, while Section 

4.4 will summarize our findings from the experiment. Finally, Section 4.5 will discuss the 

threats to internal and external validity for our experiment. 

 

4.1 Answer to RQ1: If adopting the reduced test suite instead of the original test suite, 

is the FL effectiveness still preserved? 
 

Table 2 summarizes the statistics for each TSR technique in terms of EXAM score. 

Please notice that the mean and median values were computed across the EXAM scores 

produced by 4 SBFL techniques. According to this table, the p-value of the Kruskall-Wallis 

test shown in the rightmost column indicates that the null hypothesis is rejected (i.e., p-

value < 0.05). Thus, we further performed the statistical tests for pairwise comparison and 

showed the results in Table 3. Because there are 37(37−1)/2=666 pairs for comparison in 

our study and showing all of them will take a lot of space, this table only includes OTS that 

achieves the best FL effectiveness, the two TSR techniques that achieve the second and 

third best (i.e., AG-I-B and AG-I-S), and the two TSR techniques that achieve the worst 

result (i.e., GRE-E-F and GRE-C-F). As seen from this table, OTS significantly outper-

forms the others since the effect size A12 and the p-value in each cell of the 2nd row are 

less than 0.50 and 0.05, respectively, thus indicating that locating faults based on RS will 

lead to significantly worse effectiveness in comparison with that based on OTS. Even 

though there is a significant difference in EXAM score between OTS and AG-I-B, A12 for 

this pair is close to 0.50, which is indicative of “small” effect size. Yet, the values of A12 

for the pair of OTS and GRE-E-F and the pair of OTS and GRE-C-F are 0.10, thus indicat-

ing a promising “large” effect size. This phenomenon is consistent with our finding from 

Table 2 (i.e., the EXAM score of AG-I-B is close to that of OTS and is clearly better than 

those of GRE-E-F and GRE-C-F). As such, reducing test suites based on a suitable TSR 

technique is important for efficient debugging.  

In general, TSR is not recommended in order to maximize FL effectiveness unless 

software developers carefully analyze the influence caused by different coverage granu- 
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larity levels, reduction metrics, and TSR strategies and then determine the most suitable 

technique. This finding motives us to further investigate the next research question. 

 

4.2 Answer to RQ2: Does each factor of the CI configurations affect FL effectiveness? 

 

Since RQ2 aims to study the influence on FL effectiveness caused by each of the 4 

factors in a CI configuration (i.e., the 3 TSR factors and the selection of SBFL technique), 

we will reply the result for each of factors in Sections 4.2.1 through 4.2.4, respectively. 

 

Table 2. The statistics in terms of EXAM score for OTS and 36 TSR techniques. 

Statistics 

EXAM score (%) 

p-value3 

TSR Techniques  

OTS 

Algo1 

& 

Gra2 
 

 

Metric 

AG Algo 

& 

 Gra 
 

 

Metric 

GRE Algo 

& 

 Gra 
 

 

Metric 

HGS 

B F S B F S B F S 

Mean 13.16 

C 19.01 38.47 23.44 C 18.95 40.65 23.52 C 18.59 39.09 23.15 

0.00 

R 18.11 39.18 22.33 R 18.74 40.12 23.00 R 18.13 38.24 22.25 

I 13.71 35.93 16.14 I 18.54 39.40 22.88 I 18.34 39.04 22.92 

E 18.67 39.45 22.84 E 18.88 40.31 23.11 E 18.13 38.24 22.25 

Median 6.37 

C 15.98 39.84 21.73 C 15.85 40.27 22.19 C 15.09 40.18 21.77 

R 15.31 38.70 20.91 R 15.61 40.27 21.49 R 14.66 39.35 20.87 

I 8.99 34.81 12.21 I 15.13 40.24 21.35 I 14.88 40.16 21.26 

E 15.78 39.27 21.71 E 15.87 40.28 21.68 E 14.66 39.35 20.87 
1 It means the TSR algorithm. 2 It means the coverage granularity level. 3 It indicates the statistical result of the Kruskal-Wallis test. 

 

Table 3. The pairwise comparisons for RQ1. 
Pairwise TSR techniques AG-I-B AG-I-S GRE-E-F GRE-C-F 

OTS 0.46/0.00 0.37/0.00 0.10/0.00 0.10/0.00 

AG-I-B − 0.40/0.00 0.11/0.00 0.10/0.00 

AG-I-S − − 0.13/0.00 0.13/0.00 

GRE-E-F − − − 0.48/0.00 
* Each cell contains x/y, where x and y are A12 and p-value for pairwise comparison, respectively. 

 

4.2.1 Answer to RQ2.1: Does the selection of coverage granularity level affect FL ef-

fectiveness? 
 

The statistics in terms of EXAM score for different coverage granularity levels are 

shown in Table 4. Let us consider the TSR based on branch coverage information as an 

illustrative example. If we use branch coverage information together with 1 out of 3 TSR 

strategies and 1 out of 4 reduction metrics to perform TSR, there will be totally 3×4×1=12 

TSR techniques. We adopted each of 12 TSR techniques to reduce the 226×1,000 OTS, 

performed each of 4 SBFL techniques on the RS, and then obtained 226×1,000×3×4×1×4 

EXAM scores. Finally, we took the average across the 226×1,000×3×4×1×4 EXAM scores. 

Because the p-value of the Kruskal-Wallis test is 0.00, we further performed the sta-

tistical tests for pairwise comparison. According to the p-values for all pairs, the difference 

between any two of the three coverage granularity levels is statistically significant. Fur-

thermore, only the A12 values of the two pairs including function coverage level are less 
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Table 4. The statistics in EXAM score (%) and the pairwise comparisons for RQ 2.1. 

Coverage granularity level Mean Median p-value1 Pairwise coverage granularity levels A12 p-value2 

branch 18.15 15.12 

0.00 

branch vs statement  0.38 0.00 

function 39.01 40.00 branch vs function 0.16 0.00 

statement 22.32 20.84 statement vs function 0.21 0.00 
1It indicates the statistical result of the Kruskal-Wallis test. 2It indicates the statistical result of the Mann-Whitney U test. 

 

than 0.29, which is indicative of a “large” effect size. That is, performing TSR based on 

branch coverage information can achieve significantly but not considerably better FL ef-

fectiveness than that based on statement coverage information. Yet, the results show that 

the FL effectiveness achieved by performing TSR based on function coverage information 

is significantly and considerably worse than those based on the others.  

According to the aforementioned descriptions, performing TSR based on branch cov-

erage information should be a desirable choice for maximizing FL effectiveness. We also 

posit that the selection of coverage granularity level may lead to considerable impact on 

FL effectiveness. 

4.2.2 Answer to RQ2.2: Does the selection of the reduction metric affect FL effective-

ness? 

To facilitate the explanation, let us consider the EXAM score achieved by the reduc-

tion metric Cov as an illustrative example. We utilized Cov together with 1 out of 3 TSR 

strategies and 1 out of 3 coverage granularity levels to reduce test suites, thus resulting in 

3×1×3=9 different TSR techniques. We reduced the 226×1,000 OTS by means of each of 

9 TSR techniques, adopted each of the 4 SBFL techniques to locate faults based on each 

of the 226×1,000×3×1×3 RS, and then obtained the 226×1,000×3×1×3×4 EXAM scores. 

Finally, we took the average across the 226×1,000×3×1×3×4 EXAM scores. The statistics 

in terms of EXAM score for different reduction metrics are shown in Table 5. 

 

Table 5. The statistics in EXAM score (%) and the pairwise comparisons for RQ2.2. 

Reduction metric Mean Median p-value1 Pairwise reduction metrics A12 p-value2 

Cov 27.21 25.01 

0.00 

Irre vs Cov 0.46 0.00 

Ratio 26.68 24.36 Irre vs Ratio 0.47 0.00 

Irre 25.21 22.78 Irre vs EIrre 0.46 0.00 

EIrre 26.88 24.56 Ratio vs Cov 0.49 0.00 

 Ratio vs EIrre 0.50 0.00 

EIrre vs Cov 0.49 0.00 
1It indicates the statistical result of the Kruskal-Wallis test. 2It indicates the statistical result of the Mann-Whitney U test. 

 

According to Table 5, we found that there exists the difference among these 4 reduc-

tion metrics because the p-value of the Kruskal-Wallis test is less than 0.05. The results of 

the statistical tests for pairwise comparison further indicate that the FL effectiveness 

caused by Irre is significantly better than that of the others; on the other hand, Cov works 

significantly worse than any of the other reduction metrics (i.e., A12<0.50 and p-value=0.00 

for the corresponding pairs). It is also noted that A12 between Irre and Cov is close to 0.50, 

thus indicating a “small” effect size. That is, the difference in FL effectiveness between 

the best and the worst reduction metrics is not considerable. 



JUTARPORN INTASARA AND CHU-TI LIN 

 

368 

 

Therefore, it is better to adopt Irre as the reduction metric during TSR in order to 

maximize FL effectiveness. Yet, our experiment also indicate that reduction metric may 

not be a key factor to affect FL effectiveness. 

4.2.3 Answer to RQ2.3: Does the selection of TSR strategy affect FL effectiveness? 

Table 6 gives the statistics in terms of EXAM score for adopting different TSR strat-

egies. For each EXAM score in this table, we adopted 1×4×3=12 TSR techniques (i.e., a 

single TSR strategy together with 1 out of 4 reduction metrics and 1 out of 3 coverage 

granularity levels) to reduce the 226×1,000 OTS. We further performed each of 4 SBFL 

techniques based on each of the 226×1,000×1×4×3 RS, calculated the EXAM score for 

each RS, and took the average across these 226×1,000×1×4×3×4 EXAM scores. 

As seen from Table 6, the p-value of Kruskal-Wallis test indicates that there is a sig-

nificant difference in EXAM score among these 3 TSR strategies. Thus, we performed the 

statistical tests for pairwise comparison. As is clear from the last two columns, AG works 

significantly better than GRE and HGS because both of the A12 values and the p-values for 

these two pairs are less than the thresholds, while HGS performs significantly better than 

GRE. Therefore, our experiment shows that AG significantly outperforms the others from 

the standpoint of FL effectiveness. It is noted that all three A12 values are close to 0.50.  

Therefore, the AG algorithm is recommended to perform TSR for retaining FL effec-

tiveness. Yet, similar to the selection of reduction metric, the selection of TSR strategy 

may not be the most important factor to affect FL effectiveness. 

 

Table 6. The statistics in EXAM score (%) and the pairwise comparisons for RQ2.3. 

TSR strategy Mean Median p-value1 Pairwise TSR strategies A12 p-value2 

AG 25.61 23.51 

0.00 

AG vs HGS 0.48 0.00 

GRE 27.34 24.75 AG vs GRE 0.47 0.00 

HGS 26.53 23.93 HGS vs GRE 0.48 0.00 
1It indicates the statistical result of the Kruskal-Wallis test. 2It indicates the statistical result of the Mann-Whitney U test. 

 

4.2.4 Answer to RQ2.4: Does the selection of SBFL technique affect FL effectiveness? 

Similar to the replies of RQs 2.1 through 2.3, we performed each of 4 SBFL tech-

niques on 226×1,000 OTS and 226×1,000×3×4×3 RS, respectively, obtained the (226× 

1,000)+(226×1,000×3×4×3) EXAM scores, and then took the average across these EXAM 

scores. Table 7 exhibits the statistics in terms of EXAM score for different SBFL tech-

niques. Because the p-value of Kruskal-Wallis test is 0.00, we performed the statistical 

tests for pairwise comparison. The p-values of the Mann-Whitney U test show that Jaccard 

performs the best and Tarantula the worst. Additionally, the values of A12 for all 6 pairs 

are far from 0.50, thus indicating that the difference between any two of these techniques 

is almost considerable. As such, in comparison to the other 3 SBFL techniques, Jaccard is 

recommended for including in the CI. 

4.3 Answer to RQ3: What is the most recommended CI configuration for optimizing 

FL effectiveness? 

In our study, the number of all CI configurations combining the 37 TSR techniques 

(including OTS) and 4 SBFL techniques is 37×4=148 and showing all of them will take a 
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Table 7. The statistics in EXAM score (%) and the pairwise comparisons for RQ 2.4. 
SBFL technique Mean Median p-value1 Pairwise SBFL techniques A12 p-value2 

Jaccard 26.01 22.54 

0.00 

Jaccard vs Ochiai 0.29 0.00 

Ochiai 30.95 27.37 Jaccard vs SBI 0.22 0.00 

SBI 36.22 32.51 Jaccard vs Tarantula 0.19 0.00 

Tarantula 41.38 37.55 Ochiai vs SBI 0.28 0.00 

 
Ochiai vs Tarantula 0.22 0.00 

SBI vs Tarantula 0.28 0.00 
1It indicates the statistical result of the Kruskal-Wallis test. 2It indicates the statistical result of the Mann-Whitney U test. 

 

Table 8. The statistics in EXAM score (%) and the pairwise comparisons for RQ3. 

Configuration Mean Median p-value1 Configuration pair A12 p-value2 

OTS-J 13.04 6.39 

0.00 

OTS-J vs AG-I-B-J 0.27 0.00 

AG-I-B-J 13.59 8.92 OTS-J vs AG-I-S-J 0.01 0.00 

AG-I-S-J 16.01 12.16 AG-I-B-J vs AG-I-S-J 0.04 0.00 
1It indicates the statistical result of the Kruskal-Wallis test. 2It indicates the statistical result of the Mann-Whitney U test. 

 

lot of space. Thus, Table 8 only includes the best 3 CI configurations in terms of EXAM 

score and shows their statistics. As seen from this table, the difference in EXAM score 

among these 3 configurations is statistically significant (the Kruskal-Wallis test’s p-value 

< 0.05). Hence, the statistical tests for pairwise comparison were further performed. The 

A12 values and the p-values for all 3 pairs indicate that the differences between any two of 

the best 3 CI configurations are not only statistically significantly different but also con-

siderable. Thus, we suggest OTS-J in order to maximize the FL effectiveness in a CI. In 

addition, this finding can be justified by the findings from RQ1 and RQ2.4 (i.e. the OTS 

and Jaccard are recommend for TSR and SBFL, respectively, to optimize the FL effective-

ness in a CI). 

4.4 Summary of the Experiment Results 

We summarized our findings from the experimental results as follows: (1) The FL 

effectiveness achieved by the OTS is significantly better than that achieved by the RS that 

is produced by any of the 36 TSR techniques; (2) If software developers decide to adopt 

TSR in the CI, our experiment results suggest reducing test suites using AG-I-B. Yet, please 

notice that although the FL effectiveness of AG-I-B is close to that of OTS, their difference 

is statistically significant; (3) The selection of coverage granularity level may lead to more 

considerable impact on FL effectiveness than the other two TSR factors; (4) The SBFL 

technique, Jaccard, is recommended to locate faults in terms of EXAM score; (5) Finally, 

we evaluated the 148 configurations and found that the CI configuration OTS-J works sig-

nificantly better than the others from the standpoint of FL effectiveness. 

On the whole, the replies to RQs 2.1 through 2.3 confirm our finding in the reply to 

RQ1. More specifically, RQs 2.1 through 2.3 recommend the branch coverage information, 

the Irre metric, and the AG algorithm while RQ1 suggests that AG-I-B achieves the best 

SBFL effectiveness among all TSR techniques except for OTS. 

4.5 Threats to Validity 

Threats to internal validity: The implementation of TSR and SBFL techniques is our 

primary threat to internal validity. To mitigate this threat, we manually inspected our im- 
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plementation with small examples to check whether the results from both are consistent. 

Additionally, the selection of the criterion used to evaluate FL effectiveness (i.e., the 

EXAM score) is another threat to internal validity. The EXAM score is a criterion that was 

frequently adopted to evaluate FL effectiveness. We adopted this criterion in order to make 

our experiment results to be comparable to prior work. 

 

Threats to external validity: In this experiment, we utilized the 9 subjects (i.e., the 7 pro-

grams in the Siemens suite, flex, and gzip) because they were commonly used in the rele-

vant studies. Moreover, our experiment only focuses on single-fault versions. Hence, we 

cannot confirm that our findings will generally hold for the other subjects or subjects with 

multiple faults. 

5. RELATED STUDIES 

In the literature, Jiang et al. [15] discussed how the FL is impacted by different factors 

in test case prioritization (TCP) (i.e., the strategy, the coverage granularity, and the time 

cost) during a CI process. Their empirical results found that the strategy and time cost of 

TCP techniques are key factors which influence FL effectiveness. They also found that, 

when sufficiently failed test cases are considered, FL effectiveness can be effective. Alt-

hough Jiang et al.’s work is relevant to our study, their work focuses on the relationship 

between “TCP” and “FL”. Yet, instead of “TCP”, ours focuses on the relationship between 

“TSR” and “FL”. Additionally, our work found that coverage granularity level for TSR 

has more significant impact on FL effectiveness than the other factors whereas Jiang et 

al.’s work claimed that coverage granularity level for TCP should not be the main factor.  

To the best of our knowledge, few studies in the literature comprehensively discussed 

the relationship between “TSR” and “FL”. Although Yu et al. [10] studied the impact of 

TSR on SBFL, the TSR strategy considered in their study only includes the Greedy algo-

rithm. Additionally, Yu et al. focused their work on proposing a new TSR metric, called 

vector-based, to produce an RS that can lead to better FL effectiveness. Their results rec-

ommended that performing Greedy based on statement coverage information is appropri-

ate if software developers’ main concern is the testing cost. On the other hand, the state-

ment-based metric should be replaced by vector-based information if their main consider-

ation is FL effectiveness. Yet, Yu et al.’s study should not be sufficiently to help software 

developers understand whether reducing test suites using the other algorithms (e.g., GRE 

and HGS) at the different coverage granularity levels (i.e., branch and function) will impact 

the FL effectiveness. Additionally, because their work only evaluated the importance of 

test cases according the code coverage, we still cannot understand the impact caused by 

adopting another way to evaluate test cases during TSR. 

The aforementioned differences confirm that our work is worthwhile to carry out even 

if the prior studies already have some findings. Thus, the focused studies of our paper and 

Jiang et al.’s and Yu et al.’s work are different and may be complementary of each other. 

6. CONCLUSIONS 

TSR and FL are two approaches to improve a CI process. Yet, there exist several fac-

tors to control TSR and FL, thus complicating the configuration of a CI. This paper aims  
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to discuss the impact on FL effectiveness caused by the 4 factors for CI configurations 

(including the 3 TSR factors and the selection of SBFL technique). Our empirical results 

indicate that performing regression testing based on the OTS is more recommendable than 

the RS from the standpoint of optimizing FL effectiveness. If TSR will still be included in 

the CI, the selection of coverage granularity level, especially branch coverage information, 

leads to more impact on FL effectiveness than the other two TSR factors. Additionally, our 

experiment also confirms that the selection of SBFL technique is important for maximizing 

FL effectiveness. More specifically, among the 4 SBFL techniques under study, Jaccard is 

the most recommendable. Overall, if software developers’ main consideration is increasing 

the FL effectiveness, we suggest using the OTS to perform regression testing and adopting 

the Jaccard to pinpoint the location of revealed faults. 

This paper aims to develop a guidance for software developers to design a CI envi-

ronment where TSR and SBFL are considered. To the best of our knowledge, this is the 

first work to carry out such an interesting and important task. In future work, we plan to 

cover more TSR and FL techniques and perform additional experiments on more large-

scale real programs with multiple faults. For example, this paper only focuses our experi-

ment on SBFL. It may be worthwhile to understand the effect of applying the other types 

of FL techniques (e.g., slice-based, machine learning-based, data mining-based, model-

based [12]) in a CI. We also plan to investigate whether our findings hold for the subjects 

of different scales. Additionally, we plan to conduct the experiments on the multiple-fault 

programs. These manners will decrease the threats to validity that are described in Section 

4.5 and make our experiment approach to reality. On the whole, the combination of this 

paper’s suggestion and the achievements completed during future work may provide a 

more valuable and complete guidance for software developers to design their CI. 
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