
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 357-374 (2022)

DOI: 10.6688/JISE.202203_38(2).0005

357

Evaluating the Influence on Fault Localization Caused by

Test Suite Reduction in Continuous Integration Process*

JUTARPORN INTASARA AND CHU-TI LIN+

Department of Computer Science and Information Engineering

National Chiayi University

Chiayi, 600 Taiwan

E-mail: {s1040464; chutilin+}@mail.ncyu.edu.tw

Test suite reduction (TSR) is a frequently adopted approach to improve the efficiency

of regression testing while spectrum-based fault localization (SBFL) is a famous approach

to shorten the tedious debugging process. Both approaches can be incorporated into the

continuous integration (CI) environment. A configuration for a CI is relevant to the settings

of three TSR factors (namely the coverage granularity level, the metric to evaluate test

cases, and the TSR strategy) and the selection of SBFL technique. Since different TSR

techniques will produce different test logs and test logs are the inputs to SBFL techniques,

the selections of TSR and SBFL techniques both impact the effectiveness of fault locali-

zation (FL). Thus, it is important for software developers to choose a suitable TSR tech-

nique and determine which SBFL technique will assort well with it. This paper also aims

to investigate how each of the aforementioned parameters in a CI configuration affects FL

effectiveness. Our experiment results indicate that applying TSR may be harmful to FL

effectiveness and the Jaccard SBFL technique is the most effective to locate faults no mat-

ter which of the TSR techniques (including using the original test suite directly) is adopted

to run regression testing. Additionally, the experimental results also indicate that it is better

to perform TSR based on branch coverage information if TSR must be included in the CI.

In comparison with coverage granularity level, the other two TSR factors do not cause

statistically significant impact on FL effectiveness. Our findings should be useful for soft-

ware developers to configure their CI.

Keywords: software testing, debugging, continuous integration, test suite reduction, fault

localization

1. INTRODUCTION

In software development process, developers may frequently modify the source code

in order to upgrade the system or fix bugs. The modified software needs to be validated

before being released to ensure that it still works properly [1, 2], which is called regression

testing. Regression testing may execute all test cases that have been run for the previous

version together with new test cases that are designed for validating the new/modified

functionalities in the current version [3], i.e., retest-all. This means that the size of test suite

may increase as software under test (SUT) evolves. Yet, it is sometimes unsuitable to run

all test cases because time and cost are generally limited in practice.

In the literature, test suite reduction (TSR) (e.g., [4-7]) is a frequently adopted ap-

proach to decrease the cost of regression testing. More specifically, TSR techniques aim

Received November 7, 2020; revised December 9, 2020; accepted December 30, 2020.

Communicated by Nai-Wei Lin.
+ Corresponding author.
* This work was supported by Ministry of Science and Technology Taiwan, under Grants MOST 108-2628-E-

415-001-MY2 and the preliminary version of this work has been presented in the 11th International Conference

on Advances in Databases, Knowledge, and Data Applications, Athens, Greece, May 2019.

JUTARPORN INTASARA AND CHU-TI LIN

358

to reduce the size of test suite by removing the redundant test cases; on the other hand,

software debugging [8, 9] is an important activity in software development and mainte-

nance. This activity attempts to pinpoint the locations of faults, namely fault localization

(FL), and then design and implement the fixes. Software developers usually remove faults

manually [10], thus resulting in a time-consuming, tedious, and expensive debugging pro-

cess. An automated debugging approach can address this problem and make software more

reliable and maintainable [11]. According to the classification described in [12], the exist-

ing FL techniques can be classified into eight categories. Spectrum-based fault localization

(SBFL) achieves significant result with low overheads in comparison to the other types of

approaches [13]. Thus, we focus our study on SBFL in this paper.

Build

Fault
Localization

CI Server Regression

Testing

Team member 1 Team member 2

Pull the

Source Code

Performing
TSR

Notify Test Results and Debugging Guideline

Team member 3

Version

Control

Server

Submit Code
Fig. 1. The CI process enhanced by including TSR and FL techniques.

Continuous integration (CI) [14, 15] is a software development strategy in which soft-

ware developers frequently and regularly integrate the new or modified code to the repos-

itory of source code. When a part of the program is changed/added and submitted to the

repository, the modifications should be tested in order to ensure that they will not result in

unexpected side effects. CI may become more desirable if TSR techniques and FL tech-

niques are included. For example, before regression testing, software developers can use a

TSR technique to choose test cases so as to render the regression testing more cost-effec-

tive. After testing, software developers can apply a SBFL technique to accelerate the fault

removal. That is, after developers submit the modified modules to codebase, TSR tech-

niques can be used together with SBFL techniques to decrease the time taken for testing

and debugging. Fig. 1 shows an example of the enhanced CI process. Yet, different TSR

techniques produce different test logs (e.g., revealed faults and code coverage). Further-

more, since the test logs are the inputs to SBFL techniques, the locations of faults that are

identified by SBFL techniques based on different test logs will be significantly diverse.

Thus, the selection of TSR technique has observable consequences on the effectiveness of

regression testing, and further has observable consequences on the FL effectiveness. In the

literature, some studies (e.g., [8, 9, 16]) aim to propose TSR techniques so as to produce a

subset of test cases that can achieve better FL effectiveness than the original test suite

(OTS).

Actually, the FL effectiveness is relevant to the adopted test suite and the source code

of the SUT. Since there exist a lot of TSR and SBFL techniques in the literature, it is

EVALUATING HOW TSR INFLUENCES SBFL ON CI 359

difficult for software developers to choose a suitable TSR technique and determine which

SBFL technique will assort well with it. In our preliminary study [17], we have described

this tough problem and this study aims to tackle it. In Section 2, we will discuss 3 TSR

factors that may affect FL effectiveness and then define the CI configuration in our work.

In addition to the created test suites, this study will cover OTS, 36 TSR techniques, and 4

SBFL techniques, resulting in (1+36)4=148 CI configurations. We will empirically eval-

uate the FL effectiveness achieved by them.

The remainder of this paper is organized as follows. Section 2 will give the necessi-

ties for developing our empirical study (i.e., the fundamentals of TSR and SBFL). Section

3 will outline our research questions, describe the criterion used to evaluate FL effective-

ness in our study, and the experimental setup. Section 4 will answer the research questions

by reporting and discussing the experimental results and highlight our findings. Section 5

will discuss the related work. Finally, Section 6 will show the concluding remarks.

2. BACKGROUND

2.1 TSR Techniques

TSR [18, 19] aims to produce a subset of the OTS, called the representative set (RS),

by repeatedly removing the redundant test cases according to specific rules until all test

requirements are satisfied. Thus, the TSR problem can be defined as follows:

Given:  An original test suite OTS = {t1, t2, t3, ..., tm}, where ti (i = 1 to m) represents the

ith test case in the test suite.
 A set of test requirements REQ = {r1, r2, r3, ..., rn}, where rj (j = 1 to n) represents

the jth test requirement.
 A binary relation COV = {(t, r) | t  OTS, r  REQ, and the test case t can satisfy

the test requirement r}.
Objective: Find a representative set RS, which is a subset of OTS, in which the test cases

can satisfy all test requirements satisfied by OTS.

The coverage granularity level, the metric to evaluate test cases (hereafter called reduction

metric for simplicity) and the TSR strategy are the important factors to design a TSR tech-

nique. That is, a TSR technique is defined as a combination of a TSR strategy, a reduction

metric, and a coverage granularity level. Section 2.1.1 will review the coverage granularity,

while Sections 2.1.2 and 2.1.3 will review the reduction metrics and several well-known

TSR strategies, respectively.

2.1.1 Review of code coverage granularity

In the literature, many studies (e.g., [20-23]) regard the test requirement as a code

entity (e.g., a code statement, a branch, or a function). “Satisfying test requirements” indi-

cates the program path covers a set of code entities when running test cases. For example,

if the coverage granularity level adopted by software developers to perform TSR is state-

ment, the test cases in the RS should cover all code statements that are covered by those in

JUTARPORN INTASARA AND CHU-TI LIN

360

the OTS. Because performing TSR at different coverage granularities will produce differ-

ent RS and then impact the consequent SBFL, we also consider coverage granularity as an

important factor for TSR.

2.1.2 Review of reduction metrics

In [20], Lin et al. adopted 4 reduction metrics, namely Coverage, Ratio, Irreplacea-

bility, and EIrreplaceability, to evaluate the importance of test cases during TSR from dif-

ferent standpoints. The descriptions of these 4 metrics are given as follows.

Coverage: This metric indicates the number of test requirements (e.g., code statements,

branches, or functions in the SUT) that are covered by test cases and it can be considered

a criterion to assess the completion of a test [24]. Many code-based TSR techniques (e.g.,

[21, 23, 25]) adopt this metric (hereafter called Cov) to evaluate test cases.

Ratio: Lin et al. [20] indicated that there may be significant difference in execution time

among test cases. Thus, minimizing the size of test suite may not minimize the time taken

to run test cases. Ma et al. [26] and Smith and Kapfhammer [27] also suggested that, in

addition to the code coverage achieved by test cases, the cost of running test cases should

be considered for TSR. Thus, the studies in [26, 27] evaluate test cases according to a cost-

aware metric, called Ratio hereafter in this paper.

Irreplaceability: If a test requirement that is satisfied by the test case t can also be satisfied

by many of the other test cases, the probability of that test requirement being still covered

by the other test cases should be high even though t is not included in the RS. In other

words, the test cases that satisfy such test requirements can be regarded as replaceable. In

contrast, the irreplaceability of a test case is high if it is not easy to find the other test cases

to replace it in order to satisfy a specific set of test requirements. Based on the concept of

irreplaceability and the cost of running each individual test case, Lin et al. [20] proposed

a cost-aware metric called Irreplaceability (hereafter called Irre for simplicity) to evaluate

test cases’ contribution on increasing code coverage.

EIrreplaceability: Since the essential test case should be included in the RS as early as

possible to avoid choosing redundant test cases, Lin et al. [20] also considered the essen-

tials strategy and posited that the irreplaceability of essential test cases should be given the

highest priority. They further proposed an enhancement of Irre, called EIrreplaceability

(hereafter called EIrre for simplicity).

2.1.3 Review of TSR strategies

In the literature, a lot of TSR strategies have been proposed. In order to avoid blurring

the scope of this work, this review is focused on the 3 well-known TSR strategies that will

be empirically compared in our study.

Additional Greedy: The Additional Greedy algorithm [28], hereafter called AG, takes

into account the number of test requirements that are satisfied by each test case during the

EVALUATING HOW TSR INFLUENCES SBFL ON CI 361

reduction process. Yet, AG only considers the test requirements that are not yet satisfied

by the test cases in the RS when computing the coverage achieved by test cases. In other

words, AG will repeatedly choose the test case that can satisfy the most unsatisfied test

requirements until all test requirements are satisfied.

GRE: Chen and Lau [29] proposed a heuristic, called GRE, based on 3 strategies including:

(1) the essentials strategy: first select the test cases that satisfy test requirements that cannot

be satisfied by the others; (2) the 1-to-1 redundancy strategy: remove the test case if all

requirements satisfied by it can also be satisfied by another in the RS; and (3) the Greedy

strategy: perform the AG algorithm. Some essential test cases may appear after applying

the 1-to-1 strategy, and vice versa. Thus, the essentials and the 1-to-1 redundancy strategies

are complementary to each other and should be alternately applied. The AG algorithm will

be applied if both of the other two strategies cannot be applied.

HGS: This strategy is called HGS [30] due to the abbreviations of the authors’ last names,

Harrold, Gupta, and Soffa. Let Sj (for j = 1, 2, 3, …, n) represent the subsets of the OTS,

with each subset Sj including all unselected test cases in the OTS that can satisfy the jth

test requirement. This strategy will start from the subset Sj with the smallest cardinality,

select the test cases in Sj that belongs to the most subsets of the same cardinality, mark all

test requirements that are satisfied by the selected test case, and remove that test case from

all subsets. If a tie occurs during selecting test cases in Sj, it will recursively consider the

number of unsatisfied test requirements that are satisfied by the candidates and choose the

test case that can satisfy the most unsatisfied test requirements. The HGS will focus on the

subset Sj with the smallest cardinality and iteratively repeat the aforementioned steps until

all test requirements have been satisfied.

2.2 SBFL Techniques

Performing SBFL [9, 12] techniques is one of frequently used approaches to identify

the locations of the bugs. These techniques use the test logs (including the program execu-

tion/code coverage information and the result of test cases) to calculate the probability of

each code statement being faulty, called the suspiciousness, and then produce a ranking

list of all code statements according to their suspiciousness in descending order. Many

SBFL techniques (e.g., Tarantula [31], Ochiai [32], Jaccard [32], and SBI [33]) have re-

ceived considerable attention and were frequently used to be the baseline techniques for

comparing with the new ones [34, 35]. The remaining of this section is dedicated to the

review of these 4 SBFL techniques which are adopted in our empirical study.

Tarantula: Jones et al. [31] proposed the technique, called Tarantula, to pinpoint the

faulty statements. The main idea underlying this technique is that the statement has a high

probability to be faulty if it is executed by most of the failed test cases in the test suite.

Additionally, the statements that are covered by more test cases will be assigned higher

confidence values. If a tie occurs when ranking the statements based on their suspicious-

ness, their confidence values will be further evaluated. The statement in the tie will be

examined first if it has the highest confidence value. Moreover, if the statements in the tie

also have the same confidence value, these statements will then be given the same ranking

according to Renieris and Reiss’s approach [36].

JUTARPORN INTASARA AND CHU-TI LIN

362

Ochiai: Ochiai [37] proposed a metric to computing genetic similarity in molecular biol-

ogy (e.g., [38, 39]). Abreu et al. [32] and Naish et al. [40] adopted a variant of Ochiai’s

metric to calculate the suspiciousness of code statements and then sorted the statements by

the similar manner that is described for Tarantula.

Jaccard: Abreu et al. [32] also used the Jaccard similarity coefficient which was proposed

by Baudrey et al. [41] to compute the statements’ suspiciousness when performing SBFL.

Similar to Tarantula, this technique also considers confidence values if ties occur.

SBI: The Statistical Bug Isolation (SBI) was originally proposed by Liblit et al. [33] for

computing the predicates’ suspiciousness. Yu et al. [10] adopted it to compute the state-

ments’ suspiciousness in order to facilitate the comparison with the other SBFL techniques.

3. EXPERIMENTAL SETUP

This section will show and explain our research questions, the metric for evaluating

FL effectiveness, and the statistical tests, respectively. Additionally, this section will also

design the experiment in order to answer these research questions.

3.1 Research Questions

We will carry out the experiment to answer the following research questions:

RQ1: If adopting the reduced test suite instead of the original test suite, is the FL effective-

ness still preserved?

RQ2: Does each factor of the CI configurations affect FL effectiveness?

In order to answer this research question, we will analyze the influence on FL effec-

tiveness caused by adjusting each of the 4 factors in the CI configuration. Thus, RQ2 will

be further divided into RQs2.1 through 2.4.

RQ2.1: Does the selection of coverage granularity level affect FL effectiveness?

RQ2.2: Does the selection of the reduction metric affect FL effectiveness?

RQ2.3: Does the selection of TSR strategy affect FL effectiveness?

RQ2.4: Does the selection of SBFL technique affect FL effectiveness?

RQ3: What is the most recommended CI configuration for optimizing FL effectiveness?

3.2 Evaluation Criterion and Statistical Tests

In our experiment, we performed TSR and SBFL based on a lot of different configu-

rations. We adopted the criterion, EXAM score [11, 34, 35], to evaluate the FL effective-

ness achieved by each of these configurations. The EXAM score represents the percentage

of statements in a program that have to be examined until the first faulty statement is lo-

cated. In the literature, it has been commonly used to evaluate FL effectiveness. The lower

EXAM score is, the more effective FL is.
To confirm the comparisons on the FL effectiveness, we adopted the Kruskal-Wallis

test, the Mann-Whitney U test, and the Vargha and Delaney test for reporting the statistical

tests. We used these non-parametric tests because the assumption of one-way ANOVA is

EVALUATING HOW TSR INFLUENCES SBFL ON CI 363

not met in our study, i.e., the EXAM scores are not normally distributed [42] and the null

hypothesis is that the EXAM scores from two groups share the same distribution. First, the

Kruskal-Wallis test was performed to assess whether there exists significant difference

among all groups. If the significant difference is observed (i.e., the p-value < 0.05), we

further performed the two statistical tests (i.e., the Mann-Whitney U test and the Vargha

and Delaney test) for pairwise comparisons. If the p-value of the Mann-Whitney U test is

less than 0.05, it indicates that the values in two groups are significantly different. The

Vargha and Delaney test is used to calculate the effect size A12 between the values of two

groups X and Y. The value of A12 ranges from 0 to 1. A12  0.50 means that X has higher

chances to obtain a higher EXAM score than Y and vice versa. A12 = 0.50 means that two

groups are equivalent in terms of EXAM score. Additionally, if the value of A12 is close to

0.50, it indicates that the difference in EXAM score between the two groups is small. Var-

gha and Delaney [43] suggested that A12 > 0.64 (or < 0.36) is indicative of “medium” effect

size while A12 > 0.71 (or < 0.29) can be indicative of a promising “large” effect size.

3.3 Descriptions of Subject Programs

Our experiment uses 9 subject programs which were written in C language, namely

the 7 programs in the Siemens suite (including print_tokens, print_tokens2, replace, sched-

ule, schedule2, tcas, and tot_info), flex, and gzip. These subject programs together with

the test pools are available at the Software-artifact Infrastructure Repository (SIR) [44] and

are the benchmarks frequently used in prior studies (e.g., [11, 16, 31, 34]). Some faulty

versions were excluded in order to facilitate our experiment. For example, for some ver-

sions, no faults are revealed by all test cases, or the faults are located in the header files.

We used this criterion to exclude those faulty versions in order to make our experimental

results comparable to prior studies. In addition, we conducted the experiment based on flex

and gzip’s single-fault versions (i.e., separately seeding each of the faults in each version).

We totally adopted 226 faulty versions attached to these subjects and the details are de-

scribed in Table 1.

Table 1. Description of the subject programs.

Subject Program #Faulty Versions #Used Faulty Versions LOC1 Size of Test Pool2

print_tokens 7 3 564 4130

print_tokens2 10 8 512 4115

replace 32 24 563 5542

schedule 9 4 412 2650

schedule2 10 4 307 2710

tcas 41 37 173 1608

tot_info 23 18 406 1052

flex (v1-v5) 82 48 12421-14244 525

gzip (v1,v2,v4,&v5) 49 16 6576-7996 214
1 It indicates the number of code statements in the subject program.
2 It indicates the number of test cases in the test pool.

3.4 Experiment Steps

In our experiment, we created 1,000 different OTS for each faulty version, obtained

an RS by performing TSR on each OTS, used both of the OTS and the RS to run regression

JUTARPORN INTASARA AND CHU-TI LIN

364

testing, and then performed SBFL based on the test results. The framework of our experi-

ment is depicted in Fig. 2. In order to avoid too lengthy descriptions, the 4 reduction met-

rics (namely Cov, Ratio, Irre, and EIrre) will be denoted by C, R, I, and E while the 3

coverage granularity levels (i.e., branch, function, and statement) will be denoted by B, F,

and S, respectively. Thus the CI configurations that are compared in our study and the way

to produce them are shown in Fig. 2. For example, HGS-I-F represents the TSR technique

that adopts the HGS algorithm to reduce test suites according to the metric Irre to evaluate

test cases’ importance based on function coverage. It is noted that OTS will also be re-

garded as a TSR technique that removes no test cases from the test suites. Similarly, the

SBFL techniques (i.e., Jaccard, Ochiai, and Tarantula) will also be denoted by J, O, and T,

respectively, and keep the abbreviation SBI in this figure. Additionally, HGS-I-F-J repre-

sents the CI configuration that adopts the TSR technique HGS-I-F and then locates faults

using Jaccard while OTS-T represents the one that excludes TSR from the CI and then

locates faults using Tarantula. The detailed steps of our experiment are given below.

Faulty versions

Test pool

Coverage

information

Tarantula (T)

Jaccard (J) Ochiai (O)

SBI(SBI)

SBFL Techniques

Step1:

OTS Generation

Step2:

Performing TSR

Step3:

Run regression testing

Step4:

Performing SBFL

OTS RS Test log
EXAM score

TSR

strategies

GRE

HGS

AG

Coverage

granularity

levels

function (F)

statement (S)

branch (B)

TSR

metrics

Ratio (R)

Irre (I)

Cov (C)

EIrre (E)

Factors for TSR

HGS-E-S

HGS-C-B

:

GRE-E-S

GRE-C-B

:

AG-E-S

AG-C-B

:

TSR Techniques

36

Combine

Fig. 2. The framework of our experiment.

Step 1: Create an OTS for each faulty version by randomly picking v test cases from the

test pool, where 1 ≤ v ≤ LOC  0.5 for the Siemens suite and 1 ≤ v ≤ LOC  0.01 for

flex and gzip. We adopted different ways to generate this random integer due to

the variety of the subjects’ scales. If the created OTS does not satisfy all test re-

quirements, a new test case is randomly chosen to determine if it can cover at least

one of the unsatisfied test requirements. If yes, this test case will be included in

the OTS; otherwise, it will not be included in the OTS. This operation will be

repeated until all test requirements are satisfied. Additionally, if the created OTS

does not contain any failed test cases, we will generate a random integer vf, where

1 ≤ vf ≤ Nf and Nf represents the total number of failed test cases in the test pool,

further randomly choose vf failed test cases from the test pool, and include them

in the OTS.

EVALUATING HOW TSR INFLUENCES SBFL ON CI 365

Step 2: Perform each of the 36 TSR techniques (i.e., the combinations of 3 coverage gran-

ularities, 4 reduction metrics, and 3 TSR strategies) on OTS and obtain the RS.

Step 3: Run test cases in each OTS/RS and obtain the test logs.

Step 4: Perform each of the 4 SBFL techniques based on test logs, compute the suspicious-

ness, suggest the ranking list of statements, and compute the EXAM score.

Step 5: Repeat Steps 1-4 1,000 times to ensure the experiment’s diversity and generality.

Overall, for each faulty version in our experiment, we created 1,000 OTS, 1,000×3×

4×3=36,000 RS, and 1,000×(3×4×3+1)×4=148,000 EXAM scores (including the SBFL re-

sult based on OTS). Because 226 faulty versions are attached to the 9 subject programs,

we totally created 226×1,000=226,000 OTS, 226×1,000×3×4×3=8,136,000 RS, and 226×

1,000×(3×4×3+1)×4=33,448,000 EXAM scores. Thus, the experiment results shown in

Section 4 are reported based on these 33,448,000 EXAM scores.

4. EXPERIMENTAL RESULTS

Sections 4.1 through 4.3 will reply to RQs 1 through 3, respectively, while Section

4.4 will summarize our findings from the experiment. Finally, Section 4.5 will discuss the

threats to internal and external validity for our experiment.

4.1 Answer to RQ1: If adopting the reduced test suite instead of the original test suite,

is the FL effectiveness still preserved?

Table 2 summarizes the statistics for each TSR technique in terms of EXAM score.

Please notice that the mean and median values were computed across the EXAM scores

produced by 4 SBFL techniques. According to this table, the p-value of the Kruskall-Wallis

test shown in the rightmost column indicates that the null hypothesis is rejected (i.e., p-

value < 0.05). Thus, we further performed the statistical tests for pairwise comparison and

showed the results in Table 3. Because there are 37(37−1)/2=666 pairs for comparison in

our study and showing all of them will take a lot of space, this table only includes OTS that

achieves the best FL effectiveness, the two TSR techniques that achieve the second and

third best (i.e., AG-I-B and AG-I-S), and the two TSR techniques that achieve the worst

result (i.e., GRE-E-F and GRE-C-F). As seen from this table, OTS significantly outper-

forms the others since the effect size A12 and the p-value in each cell of the 2nd row are

less than 0.50 and 0.05, respectively, thus indicating that locating faults based on RS will

lead to significantly worse effectiveness in comparison with that based on OTS. Even

though there is a significant difference in EXAM score between OTS and AG-I-B, A12 for

this pair is close to 0.50, which is indicative of “small” effect size. Yet, the values of A12

for the pair of OTS and GRE-E-F and the pair of OTS and GRE-C-F are 0.10, thus indicat-

ing a promising “large” effect size. This phenomenon is consistent with our finding from

Table 2 (i.e., the EXAM score of AG-I-B is close to that of OTS and is clearly better than

those of GRE-E-F and GRE-C-F). As such, reducing test suites based on a suitable TSR

technique is important for efficient debugging.

In general, TSR is not recommended in order to maximize FL effectiveness unless

software developers carefully analyze the influence caused by different coverage granu-

JUTARPORN INTASARA AND CHU-TI LIN

366

larity levels, reduction metrics, and TSR strategies and then determine the most suitable

technique. This finding motives us to further investigate the next research question.

4.2 Answer to RQ2: Does each factor of the CI configurations affect FL effectiveness?

Since RQ2 aims to study the influence on FL effectiveness caused by each of the 4

factors in a CI configuration (i.e., the 3 TSR factors and the selection of SBFL technique),

we will reply the result for each of factors in Sections 4.2.1 through 4.2.4, respectively.

Table 2. The statistics in terms of EXAM score for OTS and 36 TSR techniques.

Statistics

EXAM score (%)

p-value3

TSR Techniques

OTS

Algo1

&

Gra2

Metric

AG Algo

&

 Gra

Metric

GRE Algo

&

 Gra

Metric

HGS

B F S B F S B F S

Mean 13.16

C 19.01 38.47 23.44 C 18.95 40.65 23.52 C 18.59 39.09 23.15

0.00

R 18.11 39.18 22.33 R 18.74 40.12 23.00 R 18.13 38.24 22.25

I 13.71 35.93 16.14 I 18.54 39.40 22.88 I 18.34 39.04 22.92

E 18.67 39.45 22.84 E 18.88 40.31 23.11 E 18.13 38.24 22.25

Median 6.37

C 15.98 39.84 21.73 C 15.85 40.27 22.19 C 15.09 40.18 21.77

R 15.31 38.70 20.91 R 15.61 40.27 21.49 R 14.66 39.35 20.87

I 8.99 34.81 12.21 I 15.13 40.24 21.35 I 14.88 40.16 21.26

E 15.78 39.27 21.71 E 15.87 40.28 21.68 E 14.66 39.35 20.87
1 It means the TSR algorithm. 2 It means the coverage granularity level. 3 It indicates the statistical result of the Kruskal-Wallis test.

Table 3. The pairwise comparisons for RQ1.
Pairwise TSR techniques AG-I-B AG-I-S GRE-E-F GRE-C-F

OTS 0.46/0.00 0.37/0.00 0.10/0.00 0.10/0.00

AG-I-B − 0.40/0.00 0.11/0.00 0.10/0.00

AG-I-S − − 0.13/0.00 0.13/0.00

GRE-E-F − − − 0.48/0.00
* Each cell contains x/y, where x and y are A12 and p-value for pairwise comparison, respectively.

4.2.1 Answer to RQ2.1: Does the selection of coverage granularity level affect FL ef-

fectiveness?

The statistics in terms of EXAM score for different coverage granularity levels are

shown in Table 4. Let us consider the TSR based on branch coverage information as an

illustrative example. If we use branch coverage information together with 1 out of 3 TSR

strategies and 1 out of 4 reduction metrics to perform TSR, there will be totally 3×4×1=12

TSR techniques. We adopted each of 12 TSR techniques to reduce the 226×1,000 OTS,

performed each of 4 SBFL techniques on the RS, and then obtained 226×1,000×3×4×1×4

EXAM scores. Finally, we took the average across the 226×1,000×3×4×1×4 EXAM scores.

Because the p-value of the Kruskal-Wallis test is 0.00, we further performed the sta-

tistical tests for pairwise comparison. According to the p-values for all pairs, the difference

between any two of the three coverage granularity levels is statistically significant. Fur-

thermore, only the A12 values of the two pairs including function coverage level are less

EVALUATING HOW TSR INFLUENCES SBFL ON CI 367

Table 4. The statistics in EXAM score (%) and the pairwise comparisons for RQ 2.1.

Coverage granularity level Mean Median p-value1 Pairwise coverage granularity levels A12 p-value2

branch 18.15 15.12

0.00

branch vs statement 0.38 0.00

function 39.01 40.00 branch vs function 0.16 0.00

statement 22.32 20.84 statement vs function 0.21 0.00
1It indicates the statistical result of the Kruskal-Wallis test. 2It indicates the statistical result of the Mann-Whitney U test.

than 0.29, which is indicative of a “large” effect size. That is, performing TSR based on

branch coverage information can achieve significantly but not considerably better FL ef-

fectiveness than that based on statement coverage information. Yet, the results show that

the FL effectiveness achieved by performing TSR based on function coverage information

is significantly and considerably worse than those based on the others.

According to the aforementioned descriptions, performing TSR based on branch cov-

erage information should be a desirable choice for maximizing FL effectiveness. We also

posit that the selection of coverage granularity level may lead to considerable impact on

FL effectiveness.

4.2.2 Answer to RQ2.2: Does the selection of the reduction metric affect FL effective-

ness?

To facilitate the explanation, let us consider the EXAM score achieved by the reduc-

tion metric Cov as an illustrative example. We utilized Cov together with 1 out of 3 TSR

strategies and 1 out of 3 coverage granularity levels to reduce test suites, thus resulting in

3×1×3=9 different TSR techniques. We reduced the 226×1,000 OTS by means of each of

9 TSR techniques, adopted each of the 4 SBFL techniques to locate faults based on each

of the 226×1,000×3×1×3 RS, and then obtained the 226×1,000×3×1×3×4 EXAM scores.

Finally, we took the average across the 226×1,000×3×1×3×4 EXAM scores. The statistics

in terms of EXAM score for different reduction metrics are shown in Table 5.

Table 5. The statistics in EXAM score (%) and the pairwise comparisons for RQ2.2.

Reduction metric Mean Median p-value1 Pairwise reduction metrics A12 p-value2

Cov 27.21 25.01

0.00

Irre vs Cov 0.46 0.00

Ratio 26.68 24.36 Irre vs Ratio 0.47 0.00

Irre 25.21 22.78 Irre vs EIrre 0.46 0.00

EIrre 26.88 24.56 Ratio vs Cov 0.49 0.00

 Ratio vs EIrre 0.50 0.00

EIrre vs Cov 0.49 0.00
1It indicates the statistical result of the Kruskal-Wallis test. 2It indicates the statistical result of the Mann-Whitney U test.

According to Table 5, we found that there exists the difference among these 4 reduc-

tion metrics because the p-value of the Kruskal-Wallis test is less than 0.05. The results of

the statistical tests for pairwise comparison further indicate that the FL effectiveness

caused by Irre is significantly better than that of the others; on the other hand, Cov works

significantly worse than any of the other reduction metrics (i.e., A12<0.50 and p-value=0.00

for the corresponding pairs). It is also noted that A12 between Irre and Cov is close to 0.50,

thus indicating a “small” effect size. That is, the difference in FL effectiveness between

the best and the worst reduction metrics is not considerable.

JUTARPORN INTASARA AND CHU-TI LIN

368

Therefore, it is better to adopt Irre as the reduction metric during TSR in order to

maximize FL effectiveness. Yet, our experiment also indicate that reduction metric may

not be a key factor to affect FL effectiveness.

4.2.3 Answer to RQ2.3: Does the selection of TSR strategy affect FL effectiveness?

Table 6 gives the statistics in terms of EXAM score for adopting different TSR strat-

egies. For each EXAM score in this table, we adopted 1×4×3=12 TSR techniques (i.e., a

single TSR strategy together with 1 out of 4 reduction metrics and 1 out of 3 coverage

granularity levels) to reduce the 226×1,000 OTS. We further performed each of 4 SBFL

techniques based on each of the 226×1,000×1×4×3 RS, calculated the EXAM score for

each RS, and took the average across these 226×1,000×1×4×3×4 EXAM scores.

As seen from Table 6, the p-value of Kruskal-Wallis test indicates that there is a sig-

nificant difference in EXAM score among these 3 TSR strategies. Thus, we performed the

statistical tests for pairwise comparison. As is clear from the last two columns, AG works

significantly better than GRE and HGS because both of the A12 values and the p-values for

these two pairs are less than the thresholds, while HGS performs significantly better than

GRE. Therefore, our experiment shows that AG significantly outperforms the others from

the standpoint of FL effectiveness. It is noted that all three A12 values are close to 0.50.

Therefore, the AG algorithm is recommended to perform TSR for retaining FL effec-

tiveness. Yet, similar to the selection of reduction metric, the selection of TSR strategy

may not be the most important factor to affect FL effectiveness.

Table 6. The statistics in EXAM score (%) and the pairwise comparisons for RQ2.3.

TSR strategy Mean Median p-value1 Pairwise TSR strategies A12 p-value2

AG 25.61 23.51

0.00

AG vs HGS 0.48 0.00

GRE 27.34 24.75 AG vs GRE 0.47 0.00

HGS 26.53 23.93 HGS vs GRE 0.48 0.00
1It indicates the statistical result of the Kruskal-Wallis test. 2It indicates the statistical result of the Mann-Whitney U test.

4.2.4 Answer to RQ2.4: Does the selection of SBFL technique affect FL effectiveness?

Similar to the replies of RQs 2.1 through 2.3, we performed each of 4 SBFL tech-

niques on 226×1,000 OTS and 226×1,000×3×4×3 RS, respectively, obtained the (226×

1,000)+(226×1,000×3×4×3) EXAM scores, and then took the average across these EXAM

scores. Table 7 exhibits the statistics in terms of EXAM score for different SBFL tech-

niques. Because the p-value of Kruskal-Wallis test is 0.00, we performed the statistical

tests for pairwise comparison. The p-values of the Mann-Whitney U test show that Jaccard

performs the best and Tarantula the worst. Additionally, the values of A12 for all 6 pairs

are far from 0.50, thus indicating that the difference between any two of these techniques

is almost considerable. As such, in comparison to the other 3 SBFL techniques, Jaccard is

recommended for including in the CI.

4.3 Answer to RQ3: What is the most recommended CI configuration for optimizing

FL effectiveness?

In our study, the number of all CI configurations combining the 37 TSR techniques

(including OTS) and 4 SBFL techniques is 37×4=148 and showing all of them will take a

EVALUATING HOW TSR INFLUENCES SBFL ON CI 369

Table 7. The statistics in EXAM score (%) and the pairwise comparisons for RQ 2.4.
SBFL technique Mean Median p-value1 Pairwise SBFL techniques A12 p-value2

Jaccard 26.01 22.54

0.00

Jaccard vs Ochiai 0.29 0.00

Ochiai 30.95 27.37 Jaccard vs SBI 0.22 0.00

SBI 36.22 32.51 Jaccard vs Tarantula 0.19 0.00

Tarantula 41.38 37.55 Ochiai vs SBI 0.28 0.00

Ochiai vs Tarantula 0.22 0.00

SBI vs Tarantula 0.28 0.00
1It indicates the statistical result of the Kruskal-Wallis test. 2It indicates the statistical result of the Mann-Whitney U test.

Table 8. The statistics in EXAM score (%) and the pairwise comparisons for RQ3.

Configuration Mean Median p-value1 Configuration pair A12 p-value2

OTS-J 13.04 6.39

0.00

OTS-J vs AG-I-B-J 0.27 0.00

AG-I-B-J 13.59 8.92 OTS-J vs AG-I-S-J 0.01 0.00

AG-I-S-J 16.01 12.16 AG-I-B-J vs AG-I-S-J 0.04 0.00
1It indicates the statistical result of the Kruskal-Wallis test. 2It indicates the statistical result of the Mann-Whitney U test.

lot of space. Thus, Table 8 only includes the best 3 CI configurations in terms of EXAM

score and shows their statistics. As seen from this table, the difference in EXAM score

among these 3 configurations is statistically significant (the Kruskal-Wallis test’s p-value

< 0.05). Hence, the statistical tests for pairwise comparison were further performed. The

A12 values and the p-values for all 3 pairs indicate that the differences between any two of

the best 3 CI configurations are not only statistically significantly different but also con-

siderable. Thus, we suggest OTS-J in order to maximize the FL effectiveness in a CI. In

addition, this finding can be justified by the findings from RQ1 and RQ2.4 (i.e. the OTS

and Jaccard are recommend for TSR and SBFL, respectively, to optimize the FL effective-

ness in a CI).

4.4 Summary of the Experiment Results

We summarized our findings from the experimental results as follows: (1) The FL

effectiveness achieved by the OTS is significantly better than that achieved by the RS that

is produced by any of the 36 TSR techniques; (2) If software developers decide to adopt

TSR in the CI, our experiment results suggest reducing test suites using AG-I-B. Yet, please

notice that although the FL effectiveness of AG-I-B is close to that of OTS, their difference

is statistically significant; (3) The selection of coverage granularity level may lead to more

considerable impact on FL effectiveness than the other two TSR factors; (4) The SBFL

technique, Jaccard, is recommended to locate faults in terms of EXAM score; (5) Finally,

we evaluated the 148 configurations and found that the CI configuration OTS-J works sig-

nificantly better than the others from the standpoint of FL effectiveness.

On the whole, the replies to RQs 2.1 through 2.3 confirm our finding in the reply to

RQ1. More specifically, RQs 2.1 through 2.3 recommend the branch coverage information,

the Irre metric, and the AG algorithm while RQ1 suggests that AG-I-B achieves the best

SBFL effectiveness among all TSR techniques except for OTS.

4.5 Threats to Validity

Threats to internal validity: The implementation of TSR and SBFL techniques is our

primary threat to internal validity. To mitigate this threat, we manually inspected our im-

JUTARPORN INTASARA AND CHU-TI LIN

370

plementation with small examples to check whether the results from both are consistent.

Additionally, the selection of the criterion used to evaluate FL effectiveness (i.e., the

EXAM score) is another threat to internal validity. The EXAM score is a criterion that was

frequently adopted to evaluate FL effectiveness. We adopted this criterion in order to make

our experiment results to be comparable to prior work.

Threats to external validity: In this experiment, we utilized the 9 subjects (i.e., the 7 pro-

grams in the Siemens suite, flex, and gzip) because they were commonly used in the rele-

vant studies. Moreover, our experiment only focuses on single-fault versions. Hence, we

cannot confirm that our findings will generally hold for the other subjects or subjects with

multiple faults.

5. RELATED STUDIES

In the literature, Jiang et al. [15] discussed how the FL is impacted by different factors

in test case prioritization (TCP) (i.e., the strategy, the coverage granularity, and the time

cost) during a CI process. Their empirical results found that the strategy and time cost of

TCP techniques are key factors which influence FL effectiveness. They also found that,

when sufficiently failed test cases are considered, FL effectiveness can be effective. Alt-

hough Jiang et al.’s work is relevant to our study, their work focuses on the relationship

between “TCP” and “FL”. Yet, instead of “TCP”, ours focuses on the relationship between

“TSR” and “FL”. Additionally, our work found that coverage granularity level for TSR

has more significant impact on FL effectiveness than the other factors whereas Jiang et

al.’s work claimed that coverage granularity level for TCP should not be the main factor.

To the best of our knowledge, few studies in the literature comprehensively discussed

the relationship between “TSR” and “FL”. Although Yu et al. [10] studied the impact of

TSR on SBFL, the TSR strategy considered in their study only includes the Greedy algo-

rithm. Additionally, Yu et al. focused their work on proposing a new TSR metric, called

vector-based, to produce an RS that can lead to better FL effectiveness. Their results rec-

ommended that performing Greedy based on statement coverage information is appropri-

ate if software developers’ main concern is the testing cost. On the other hand, the state-

ment-based metric should be replaced by vector-based information if their main consider-

ation is FL effectiveness. Yet, Yu et al.’s study should not be sufficiently to help software

developers understand whether reducing test suites using the other algorithms (e.g., GRE

and HGS) at the different coverage granularity levels (i.e., branch and function) will impact

the FL effectiveness. Additionally, because their work only evaluated the importance of

test cases according the code coverage, we still cannot understand the impact caused by

adopting another way to evaluate test cases during TSR.

The aforementioned differences confirm that our work is worthwhile to carry out even

if the prior studies already have some findings. Thus, the focused studies of our paper and

Jiang et al.’s and Yu et al.’s work are different and may be complementary of each other.

6. CONCLUSIONS

TSR and FL are two approaches to improve a CI process. Yet, there exist several fac-

tors to control TSR and FL, thus complicating the configuration of a CI. This paper aims

EVALUATING HOW TSR INFLUENCES SBFL ON CI 371

to discuss the impact on FL effectiveness caused by the 4 factors for CI configurations

(including the 3 TSR factors and the selection of SBFL technique). Our empirical results

indicate that performing regression testing based on the OTS is more recommendable than

the RS from the standpoint of optimizing FL effectiveness. If TSR will still be included in

the CI, the selection of coverage granularity level, especially branch coverage information,

leads to more impact on FL effectiveness than the other two TSR factors. Additionally, our

experiment also confirms that the selection of SBFL technique is important for maximizing

FL effectiveness. More specifically, among the 4 SBFL techniques under study, Jaccard is

the most recommendable. Overall, if software developers’ main consideration is increasing

the FL effectiveness, we suggest using the OTS to perform regression testing and adopting

the Jaccard to pinpoint the location of revealed faults.

This paper aims to develop a guidance for software developers to design a CI envi-

ronment where TSR and SBFL are considered. To the best of our knowledge, this is the

first work to carry out such an interesting and important task. In future work, we plan to

cover more TSR and FL techniques and perform additional experiments on more large-

scale real programs with multiple faults. For example, this paper only focuses our experi-

ment on SBFL. It may be worthwhile to understand the effect of applying the other types

of FL techniques (e.g., slice-based, machine learning-based, data mining-based, model-

based [12]) in a CI. We also plan to investigate whether our findings hold for the subjects

of different scales. Additionally, we plan to conduct the experiments on the multiple-fault

programs. These manners will decrease the threats to validity that are described in Section

4.5 and make our experiment approach to reality. On the whole, the combination of this

paper’s suggestion and the achievements completed during future work may provide a

more valuable and complete guidance for software developers to design their CI.

REFERENCES

1. H. K. N. Leung and L. White, “Insights into regression testing,” in Proceedings of In-

ternational Conference on Software Maintenance, 1989, pp. 60-69.

2. J. M. Kim and A. Porter, “A history-based test prioritization technique for regression

testing in resource constrained environments,” in Proceedings of the 24th Interna-

tional Conference on Software Engineering, 2002, pp. 119-129.

3. M. Pezzè and M. Young, Software Testing and Analysis: Process, Principles, and

Techniques, John Wiley & Sons, NY, 2008.

4. G. Rothermel, M. J. Harrold, J. Von Ronne, and C. Hong, “Empirical studies of test‐

suite reduction,” Software Testing, Verification and Reliability, Vol. 12, 2002, pp.

219-249.

5. S. Parsa and A. Khalilian, “A bi-objective model inspired greedy algorithm for test

suite minimization,” in Proceedings of International Conference on Future Genera-

tion Information Technology, 2009, pp. 208-215.

6. S. Tallam and N. Gupta, “A concept analysis inspired greedy algorithm for test suite

minimization,” in Proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop on

Program Analysis for Software Tools and Engineering, 2005, pp. 35-42.

7. D. Jeffrey and N. Gupta, “Improving fault detection capability by selectively retaining

test cases during test suite reduction,” IEEE Transactions on Software Engineering,

JUTARPORN INTASARA AND CHU-TI LIN

372

Vol. 33, 2007, pp. 108-123.

8. D. Gong, T. Wang, X. Su, and P. Ma, “A test-suite reduction approach to improving

fault-localization effectiveness,” Computer Languages, Systems & Structures, Vol. 39,

2013, pp. 95-108.

9. W. Fu, H. Yu, G. Fan, X. Ji, and X. Pei, “A test suite reduction approach to improving

the effectiveness of fault localization,” in Proceedings of International Conference on

Software Analysis, Testing and Evolution, 2017, pp. 10-19.

10. Y. Yu, J. Jones, and M. J. Harrold, “An empirical study of the effects of test-suite

reduction on fault localization,” in Proceedings of the 30th International Conference

on Software Engineering, 2008, pp. 201-210.

11. W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The DStar method for effective software

fault localization,” IEEE Transactions on Reliability, Vol. 63, 2013, pp. 290-308.

12. W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on software fault

localization,” IEEE Transactions on Software Engineering, Vol. 42, 2016, pp. 707-

740.

13. H. A. de Souza, M. L. Chaim, and F. Kon, “Spectrum-based software fault localization:

A survey of techniques, advances, and challenges,” arXiv Preprint, 2016, arXiv:1607.

04347v2.

14. P. M. Duvall, S. Matyas, and A. Glover, Continuous Integration: Improving Software

Quality and Reducing Risk, Pearson Education, NY, 2007.

15. B. Jiang, Z. Zhang, W. K. Chan, T. H. Tse, and T. Y. Chen, “How well does test case

prioritization integrate with statistical fault localization?” Information and Software

Technology, Vol. 54, 2012, pp. 739-758.

16. K. C. Wang, T. T. Wang, and X. H. Su, “Test case selection using multi-criteria opti-

mization for effective fault localization,” Computing, Vol. 100, 2018, pp. 787-808.

17. J. Intasara, C. T. Lin, and A. Srisawat, “Evaluating the influence on the effectiveness

of software fault localization caused by the regression test suite reduction techniques

in continuous integration process,” in Proceedings of the 11th International Confer-

ence on Advances in Databases, Knowledge, and Data Applications, 2019.

18. S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization:

a survey,” Software Testing, Verification and Reliability, Vol. 22, 2012, pp. 67-120.

19. A. Shi, T. Yung, A. Gyori, and D. Marinov, “Comparing and combining test-suite

reduction and regression test selection,” in Proceedings of the 10th Joint Meeting on

Foundations of Software Engineering, 2015, pp. 237-247.

20. C. T. Lin, K. W. Tang, and G. M. Kapfhammer, “Test suite reduction methods that

decrease regression testing costs by identifying irreplaceable tests,” Information and

Software Technology, Vol. 56, 2014, pp. 1322-1344.

21. L. Zhang, D. Marinov, and L. Zhang, “An empirical study of junit test-suite reduction,”

in Proceedings of the 22nd International Symposium on Software Reliability Engi-

neering, 2011, pp. 170-179.

22. D. Jeffrey and N. Gupta, “Test suite reduction with selective redundancy,” in Proceed-

ings of the 21st International Conference on Software Maintenance, 2005, pp. 549-

558.

23. J. W. Lin and C. Y. Huang, “Analysis of test suite reduction with enhanced tie-break-

ing techniques,” Information and Software Technology, Vol. 51, 2009, pp. 679-690.

24. P. C. Jorgensen, Software Testing: A Craftsman’s Approach, CRC Press, FL, 2007.

EVALUATING HOW TSR INFLUENCES SBFL ON CI 373

25. H. Zhong, L. Zhang, and H. Mei, “An experimental study of four typical test suite

reduction techniques,” Information and Software Technology, Vol. 50, 2008, pp. 534-

546.

26. X. Y. Ma, Z. F. He, B. K. Sheng, and C. Q. Ye, “A genetic algorithm for test-suite

reduction,” in Proceedings of IEEE International Conference on Systems, Man and

Cybernetics, 2005, Vol. 1, pp. 133-139.

27. A. M. Smith and G. M. Kapfhammer, “An empirical study of incorporating cost into

test suite reduction and prioritization,” in Proceedings of ACM Symposium on Applied

Computing, 2009, pp. 461-467.

28. C. T. Lin, K. W. Tang, J. S. Wang, and G. M. Kapfhammer, “Empirically evaluating

Greedy-based test suite reduction methods at different levels of test suite complexity,”

Science of Computer Programming, Vol. 150, 2017, pp. 1-25.

29. T. Y. Chen and M. F. Lau, “A new heuristic for test suite reduction,” Information and

Software Technology, Vol. 40, 1998, pp. 347-354.

30. M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for controlling the size of

a test suite,” ACM Transactions on Software Engineering and Methodology, Vol. 2,

1993, pp. 270-285.

31. J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula automatic fault-

localization technique,” in Proceedings of the 20th International Conference on Auto-

mated Software Engineering, 2005, pp. 273-282.

32. R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund, “A practical evaluation

of spectrum-based fault localization,” Journal of Systems and Software, Vol. 82, 2009,

pp. 1780-1792.

33. B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable statistical bug

isolation,” in Proceedings of ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2005, pp. 15-26.

34. W. E. Wong, V. Debroy, and B. Choi, “A family of code coverage-based heuristics

for effective fault localization,” Journal of Systems and Software, Vol. 83, 2010, pp.

188-208.

35. W. E. Wong, V. Debroy, and D. Xu, “Towards better fault localization: A crosstab-

based statistical approach,” IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), Vol. 42, 2011, pp. 378-396.

36. M. Renieres and S. P. Reiss, “Fault localization with nearest neighbor queries,” in

Proceedings of the 18th International Conference on Automated Software Engineer-

ing, 2003, pp. 30-39.

37. A. Ochiai, “Zoogeographic studies on the soleoid fishes found in Japan and its neigh-

bouring regions,” Bulletin of the Japanese Society of Scientific Fisheries, Vol. 22,

1957, pp. 526-530.

38. A. Meyer, A. Garcia, and A. Souza, “Comparison of similarity coefficients used for

cluster analysis with dominant markers in maize (Zea mays L),” Genetics and Molec-

ular Biology, Vol. 27, 2004, pp. 83-91.

39. K. Lage, N. T. Hansen, E. O. Karlberg, A. C. Eklund, F. S. Roque, P. K. Donahoe, Z.

Szallasi, T. S. Jensen, and S. Brunak, “A large-scale analysis of tissue-specific pathol-

ogy and gene expression of human disease genes and complexes,” in Proceedings of

the National Academy of Sciences, Vol. 105, 2008, pp. 20870-20875.

40. L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based software

JUTARPORN INTASARA AND CHU-TI LIN

374

diagnosis,” ACM Transactions on Software Engineering Methodology, Vol. 20, 2011,

pp. 1-32.

41. B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites for efficient fault lo-

calization,” in Proceedings of the 28th International Conference on Software Engi-

neering, 2006, pp. 82-91.

42. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Exper-

imentation in Software Engineering, Springer Science & Business Media, Berlin, 2012.

43. A. Vargha and H. D. Delaney, “A critique and improvement of the CL common lan-

guage effect size statistics of McGraw and Wong,” Educational and Behavioral Sta-

tistics, Vol. 25, 2000, pp.101-132.

44. H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experimentation with

testing techniques: An infrastructure and its potential impact,” Empirical Software En-

gineering, Vol. 10, 2005, pp. 405-435.

Jutarporn Intasara (龐之茵) received the B.S. and M.S. de-

grees in Computer Science from Prince of Songkla University, Song-

khla, Thailand, in 2008 and 2011, respectively. She is currently pur-

suing the Ph.D. degree in the Computer Science and Information

Engineering, National Chiayi University. Her current research inter-

ests include software testing and debugging.

Chu-Ti Lin (林楚迪) received the B.S. and Ph.D. degrees in

Computer Science from the National Tsing Hua University, Hsinchu,

Taiwan, in 2003 and 2009, respectively. He is currently an Associate

Professor in the Department of Computer Science and Information

Engineering at National Chiayi University, Chiayi, Taiwan. He has

authored or coauthored research results in venues such as IEEE

Transactions on Software Engineering, IEEE Transactions on Com-

puters, IEEE Transactions on Reliability, Information and Software

Technology, Journal of Systems and Software, Science of Computer

Programming. His research interests include software engineering, software reliability en-

gineering, software testing, software debugging, and software testability.

