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Learning-to-rank plays a pivotal role in information retrieval. To emphasize the top 

training of the permutation and improve the accuracy of the ranking model, several cost- 
sensitive listwise ranking algorithms have been proposed by incorporating the cost-sen- 
sitive learning idea into the ranking model. However, these methods ignore the impact of 
the high-dimensional features of the sample on the complexity of model, which results in 
low computational efficiency of the model. In this article, we proposed a cost-sensitive 
ListMLE ranking algorithm based on sparse representation which takes into account both 
the accuracy and computational efficiency of the ranking model. For the sake of achiev-
ing sparsity, the 1 regularized sparse term is added to the existing cost-sensitive List-
MLE ranking model, and the global optimal parameters of the model are obtained by a 
simple yet efficient proximal gradient descent (PGD) learning method. Experiments per-
formed on several benchmark datasets demonstrate that the proposed algorithm can im-
prove empirical performance accuracy in building sparse model.   
 
Keywords: learning to rank, cost-sensitive, sparse representation, ListMLE, proximal gra- 
dient descent 
 
 

1. INTRODUCTION 
 

Learning-to-rank plays a pivotal role in document retrieval. Given document rele-
vance to a query, learning-to-rank can learn a ranking function automatically via ma-
chine learning techniques. Nowadays, the existing ranking approaches mainly fall into 
three categories: pointwise, pairwise and listwise. The pointwise and pairwise algorithms 
such as [1-4] formulate ranking problem into ordinal regression or classification problem. 
The listwise ranking algorithm such as AdaRank [5], ListNet [6], ListMLE [7], which 
directly modeling the ranking lists. For instance, ListMLE utilized the likelihood loss of 
the probability distribution based on Plackett-Luce model for optimization. Previous 
studies [6] show that the listwise approaches tend to perform better than the other two 
approaches on benchmark datasets. 

However, both theoretical results and experiments [8, 9] show that listwise ap-
proaches cannot well capture the importance information of position. In other words, 
listwise approaches treat all documents equally, however, making errors between higher 
ranks and lower ranks should be punished more than making errors among lower ranks 
[3]. Thus, some improved listwise methods has been proposed, for instance, Jun Xu et al. 
construct different losses for misclassification of instance pairs between different rank 
pairs, and proposed cost-sensitive SVM for Ranking which proves to outperform Rank-
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ing SVM in practice [10]. M. Lu et al. [11] put forward a cost-sensitive listwise frame-
work by imposing weights for different documents and give a detail theoretical analysis 
about it. L. Yan [12] proposed a position-aware listwise method by imposing weights for 
different positions in ranking lists. Despite the success of these methods in emphasizing 
the top training of the permutation and improving the accuracy of the ranking model, 
they all ignore the impact of the high-dimensional features of the sample on the com-
plexity of model. In real application, we face the situation that samples have high-di- 
mensional features, the algorithm mentioned above make it more time-consuming for 
feature computation. Studies show that the entire ranking performance is dominated by a 
few decisive features, which indicate that current listwise methods suffer from major 
limitations of redundant features, time-consuming and the lower ranking accuracy [13, 
14]. Therefore, it is desirable to incorporate sparse learning into cost-sensitive listwise 
model to improve computational efficiency. 

Recently, many machine learning applications have been successfully implemented 
using sparse learning, which also works well in learning-to-rank, especially for tacking 
with the high-dimensional datasets. In practice, dealing with high-dimensional datasets 
faces two major challenges. In the one hand, it is very time-consuming to compute large 
number of features, such as features in Yahoo! learning to rank challenge [15]. In the 
other hand, inevitably, some noise or redundant features exists in datasets, in which situ-
ation models with sparsity constraints are very applicable for processing the high dimen-
sional datasets. They hold several superiorities, such as high computational efficiency 
and strong generalization performance. However, only several algorithms have been 
proposed to tackle the issues of learning sparse models for ranking. Sun et al. put for-
ward a ranking algorithm which incorporates 1 regularization into importance weighted 
binary classification [16]. Lai et al. formulated the sparse ranking as a convex optimiza-
tion problem with the 1 regularization and proposed an efficient primal-dual framework 
based on Fenchel Duality theory [13]. Later, Lai et al. focus on efficient optimization 
approach of sparse learning to rank model and put forward a simple yet effective itera-
tive algorithm to solve the sparse learning to rank [17]. However, all of the sparse rank-
ing models mentioned above are based on pairwise ranking, no effort has been made to 
formulate sparse listwise ranking algorithms except the work [18], in which the authors 
proposed an expert listwise sparse learning to rank model through directly optimizing the 
loss function based on evaluation measure, and adopt a two-stage sparse learning in-
cluding setting feature threshold and adding 1 norm, which may cause the learned fea-
tures to be too sparse to produce a good performance. Besides, [18] has not provided a 
detail description about how to efficiently optimize the sparse model. 

In order to improve ranking accuracy and computational efficiency of the listwise 
ranking model, this paper seeks to incorporate sparsity into cost-sensitive listwise meth-
od. In one hand, we consider the cost-sensitive ListMLE to improve the top ranking ac-
curacy. In the other hand, to amend the impact of the high-dimensional features of the 
sample on the computational complexity of the model, we consider incorporating the 
sparsity into the cost-sensitive ListMLE model by adding a 1 regularization term. Our 
algorithm applies a simple yet efficient optimization strategy called proximal gradient 
descent (PGD) to get a global solution of the model. Moreover, we provide theoretical 
analysis and experiments of feature selection to justify that only a few strong features 
dominate the whole performance, which indicates the necessity of incorporating the 
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sparsity into cost-sensitive listMLE. 
Our contributions in this paper can be summarized in the following aspects: 

 
(1)  We propose a novel listwise ranking algorithm to incorporate sparsity into cost-sen- 

sitive listMLE ranking algorithm. 
(2)  We provide an efficient learning method for the proposed model, which is Proximal 

gradient descent (PGD) method with adaptive Lipschitz constant. 
(3)  We provide the feature selection algorithm designed for the proposed ranking model, 

and conduct experiments to explore the effects of sparse features on model. 
(4)  We conduct several comparison experiments to demonstrate that incorporating spar-

sity into cost-sensitive listwise algorithm will contribute to improving ranking accu-
racy and computational efficiency of the listwise ranking model. 
 
The paper is organized as follows. In section 2, we provide a conclusion about some 

state-of-the-art methods related to our work. In Section 3, firstly, we describe the original 
cost-sensitive listwise ranking model and a proximal Gradient Descent learning approach. 
Secondly, we introduce the proposed algorithm. Lastly, an efficient feature selection 
algorithm for ranking model is introduced. Section 4 presents the experiments and analy-
sis, including feature filtering process and comparison of different models. Section 5 
concludes the paper. 

2. RELATED WORK 

2.1 Learning to Rank 
 

Learning to rank is a new and popular topic in machine learning, which can be ap-
plied to wide fields including document retrieval [2], collaborate filtering [19], natural 
language processing [20] and so on. This paper focuses on the application of learning to 
rank for document retrieval. The methods of Learning-to-rank mainly fall into three cat-
egories: pointwise method, pairwise method and listwise method [1-3, 5, 6, 21]. Our pro- 
posed method belongs to the third category. 

The listwise method contains two main streams: (1) Training model through mini-
mizing the listwise loss function defined on the predicted list and the ground truth list. 
For example, ListNet [6] uses cross entropy loss as the surrogate loss to approximate the 
true loss. RankCosine [21] uses cosine loss to estimate the true loss. ListMLE [7] uses 
the negative logloss of a probability model to train model; (2) Directly optimize IR eval-
uation measures which amounts to minimizing different loss functions based on mea- 
sures, such as AdaRank [5] and SV Mmap [22] which aim to minimize upper bound of 
measure loss to obtain the optimal solution of the model. 
 
2.2 Cost-Sensitive Learning to Rank 
 

Though many learning to rank algorithms has been proposed, most of them ignore 
the importance of position that errors between higher ranks and lower ranks should be 
punished more than errors among lower ranks [3]. Few works are conducted on utilizing 
position information in ranking except [10-12]. For pairwise ranking, J. Xu et al. first 
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attempted to incorporate cost-sensitive learning into the Ranking SVM and proposed 
cost-sensitive Ranking SVM which retains different losses for different rank pairs by 
bringing into penalty weights into rank pairs [10]. M. Lu et al. extend the cost-sensitive 
to listwise ranking [11], different from J. Xu [10], they modify the probability distribu-
tion by imposing different weights for documents. Y. Lan et al. proposed a position- 
aware ListMLE, which impose weights for different ranking position in loss function so 
that ListMLE can capture the position information [12].  

All these methods adopt the weighted approach to implement cost-sensitive. Despite 
the success of these cost-sensitive ranking methods, they all ignore the impact of the 
high-dimensional features of the sample on the complexity of model. In this paper, we 
bring in sparsity to further improve the cost-sensitive listwise ranking methods. 
 

2.3 Sparse Learning in Learning to Rank 
 

Sparse learning has been successfully applied to many areas for coping with high- 
dimensional features. However, only several algorithms have been proposed to tackle the 
issues of learning sparse models for ranking. Sun et al. put forward a ranking algorithm 
which incorporates 1 regularization into importance weighted binary classification [16]. 
Lai et al. formulated the sparse ranking as a convex optimization problem with the 1 
regularization and proposed an efficient primal-dual framework based on F. Duality the-
ory [13]. Later, Lai et al. focus on efficient optimization approach of sparse learning to 
rank model and put forward a simple yet effective iterative algorithm to solve the sparse 
learning to rank [17]. To formulate sparse listwise ranking algorithms for expert search, 
Wang et al. [18] proposed an expert listwise sparse learning to rank model through di-
rectly optimizing the loss function based on evaluation measure, and adopt a two-stage 
sparse learning including setting feature threshold and adding 1 norm. 

All of the sparse ranking algorithms mentioned above are based on that adding 1 
penalty term into the loss function, the main difference is the learning methods for opti-
mizing models. But Olga Krasotkina et al. point out that in certain cases, though adding 
1 lasso penalty indeed produce sparsity, but it may cause the inconsistency for variable 
selection and biased [23], so they put forward a Hierarchical Bayesian Model for Sparse 
Learning to Rank [24]. Specifically, they use a Bayesian approach to variable approach 
in learning-to-rank which gives the strong probabilistic statement of shrinkage criterion 
for predictor selection, the experiment results demonstrate the effectiveness of their pro-
posed method. Despite the success of these methods, it needs a further exploration to 
find more efficient sparse learning to rank methods. 

3. PROPOSED METHOD 

3.1 Cost-Sensitive ListMLE 
 

The listwise approach minimizes the loss function defined between the ranking lists 
and the ground truth lists. However, most listwise approaches ignore the position im-
portance that is documents with high levels ought to be ranked closer to the top position 
in permutation. If the document with high level is ranked close to bottom position, a 
bigger penalty should be imposed into the loss function. Besides, the ranking order on 
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the top of the permutation should be emphasized. In order to carry out the above idea, a 
natural way is to consider incorporating cost-sensitive idea into the listwise losses. Spe-
cifically, to set different weights for the documents, the loss function of the cost-sensi- 
tive ListMLE on a query is defined as (M. Lu et al. [11])  

,

1 1,ˆ ,
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In which the ranking function (score) is linear, i.e., f(x) is the inner product between 
x and w (model parameters), i.e.,  

f(x) = w, x = wTx. (2) 

j = (j,1, …, j,n) and its components are non-negative. j,i denotes the weight of 
document di corresponding to query qj, j is the weight brought into the cost-sensitive 
ListMLE. And 
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in which ĝ(j) denotes an approximation of the true position of the document di, and 

ĝ(j) = 1 + 
n

i=1I[yi > yj], (4) 

and yi denotes the true relevance label of the document di, I[x] is the indicate function, 
and when x is true, I[x] equals 1, otherwise 0. 

A critical issue arising here is to design a reasonable approach to compute the 
weights of documents, i.e., compute  and . Lu et al. deduced the weights of the docu-
ment pair in theory. They brought into two functions,  

a(i) = 2yi  1 (5) 

b(j) and it’s gradient are defined as 
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ˆ ˆ[ ( ) ( ( )) ( ) ( ( ))],
j i

j
y y

a i b g i a j b g j


     (7) 

,

,

ˆ( ) ( ( )) ( ) ( ( ))
       0

.

0                                                0

jj i
j

j j
j

a i b g i a j b g j  




    
 

 (8) 



DANQI DU, FENG ZHOU AND WEI XIONG 

 

6

 

3.2 An Efficient Proximal Gradient Descent (PGD) Method for Sparse Model 

3.2.1 Sparse learning-to-rank algorithm 

In the real application of learning to rank, the feature dimension of the sample tends 
to be too high to compute efficiently. Recently researchers have found that only a few 
strong features control the whole performance of the ranking model, thus they brought in 
the sparse learning to amend the problem [13, 16-18]. Sparse learning has been widely 
used in many machine learning areas, such as compressed sensing and computer vision, 
the core idea of it is to let most coefficients equal zero while ensuring that the model 
error continues to decline. Finally a model with only a few nonzero coefficients is by 
decomposing high-dimensional data linearly.  

At first, we give a description of the notations used in this article. Without loss of 
generality, we use lower case letters to denote scalars, and use bold letters to denote 
vectors. x, y represents the inner product between x and y. A norm of a vector w is de-
noted by ||w||. The 1 norm is defined as ||w||1 = ∑i|wi|. For any function L, let L(x) de-
note the gradient of L at x. We give a simple visit to the general sparse learning-to-rank 
problem. The training data is given by S := (xi, yi, qi), i = 1, …, n with xi = (xi

(1), xi
(2), …, 

xi
(n))Rd, yi denotes relevance label, and qi is a query. Given the training data, linear 

ranking model aims to find the coefficients vector wRd, so that given a new query, the 
model can predict where all the documents related to the query ought to be ranked. Let 
L(w) denotes the loss function, which represents the gap between the w, xi and label yi. 
Therefore, to improve the prediction accuracies of the model, it is natural to minimize the 
loss function L(w). 

To achieve sparsity, we incorporate 1 regularization into the ranking model and op-
timize the following problem 

1min ( ) min ( ) || ||Loss L  
w w

w w w . (9) 

Where  is the balance factor to trade off the training error and the model complexity. 
Here L() is a continuously differentiable convex function. 

Note that the weight coefficients w are sparse means that only the features corre-
sponding to the non-zero coefficients of w will affect the model performance. Thus, the 
result of solving the 1 norm regularization is that we obtain the model with few domi-
nant features of the original features; In other words, the learning method based on 1 
regularization is intrinsically an embedded feature selection method. The feature selec-
tion process is integrated with the learner training process, and two processes are com-
pleted simultaneously. 

3.2.2 An efficient Proximal Gradient Descent (PGD) method for 1 regularization 
learning 

Motivated by proximal forward-backward splitting method proposed in [25], in this 
paper, we describe an efficient and convergence-provable optimization algorithm to 
solve the problem in Eq. (9), called proximal gradient descent (PGD). Specifically, let  
denotes the differential operator, as to the optimization problem in Eq. (9), if L(w) is 
differentiable, and L() satisfies the L-Lipschitz condition, then there exists a constant L 
> 0 such that 
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In that way L(w) can be estimated by a second-order Taylor expansion to be 
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where const is a constant independent of w, and  ,  denotes inner product. Obviously, 
the minimum value of Eq. (10) is taken at wk+1 as follows 

1

1
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L   w w w  (12) 

So, if L(w) is minimized by the gradient descent method, each iteration of the gradient 
descent is actually equivalent to minimizing the quadratic function L̂(w). If we extend the 
idea to Eq. (9), then we can similarly obtain the update formula of each iteration as fol-
lows 

2
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Eq. (13) shows that when conducting each iteration of the gradient descent, the 1 norm 
is taken into consideration at the same time. 

As to Eq. (13), we can compute z = wk − 1
LL(wk) at first, then to solve 

2
1 2 1arg min || || || ||
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w

w w z w . (14) 

Let wi denotes the ith component of w, we expand the Eq. (14) and find that there 
exists no component like wi wj, which indicates that components of w are independent of 
each other. So Eq. (14) has a closed-form solution as follows 
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In which wi

k+1 and zi are the ith component of wk+1 and z, respectively. Thus the minimi-
zation problem with 1 regularization can be solved efficiently via PGD. Note that we did 
not specify how to choose the appropriate Lipschitz constant L what we will see in sec-
tion 3.3.2. 
 
3.3 Cost-Sensitive ListMLE Ranking Approach Based on Sparse Representation 
 

3.3.1 Solving the objective loss function 
 

In our work, we propose a novel ranking model called Sparse cost-sensitive List-
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MLE. We assume that a linear model f(x) = w, x, where wRd is a parameter vector of 
the model, x is the feature vector. Without regularization constraints, the result of w in 
the model parameter space tends to over fitting, so in this paper we introduce a sparse 
factor to solve. Since 0 norm is hard to compute and optimize, while the 1 norm is the 
optimal convex approximation of the R0 norm, thus we use the 1 norm as the regulariza-
tion parameter. Given training instances x1, x2, …, xn, considering the cost-sensitive List- 
MLE and combine the sparse learning theory, we define an objective loss function of 
Sparse cost-sensitive ListMLE ranking Approach as follows 

,
1

1 1,ˆ ,

1
( ) (1 exp( ( ) ( ))) || || .

@
j t

n n
j t

j t j
j t j y yg j j

Loss lb f x f x
DCG k


 

   

    w w  (16) 

In which the weights j and j,t/j,j can be computed based on Eqs. (7) and (8), which is 
the key factor to emphasis the top training of the ranking list.  is the balance factor to 
trade off the training error and the model complexity. We can see that loss function L(w) 
like Eq. (1) is continuously differentiable convex function without 1 regularization, it’s 
enough to use the gradient descent method to obtain the global optimal solution. 

However, when we add the 1 regularization to the target function like Eq. (16), 
gradient descent method is no longer valid since 1 is not differentiable everywhere, so 
we cannot apply the Newton descent algorithm used in cost-sensitive ListMLE to opti-
mize our Loss function. To optimize the convex but nondifferentiable loss function, a 
common pattern is to use subgradient descent learning algorithm. However, the conver-
gence rate of the subgradient descent method is as low as O(1/2), which is not the ex-
pected optimization precision, thus this paper applys the aforementioned PGD method to 
obtain the solution of the proposed model. 
 

3.3.2 Setting the Lipschitz constant L 
 

Before using the PGD method, it’s necessary to consider how to set the Lipschitz 
constant L. Some researchers have provided some strategies to estimate L [26, 27]. How- 
ever, given a function f(·), computing the large eigenvalue of the Hessian is costly. To 
overcome this weakness, we introduce an efficient method to find an upper bound of L, 
denoted by L0. The truth is, for any w and x  R

d, proving ||f(w)|| ≤ L is equivalent to 
proving (x f(w), x) ≤ L

d

i=1(xi)
2. According to that, we can determine the parameter L0. 

Theorem 1 is given to compute the parameters of the cost-sensitive ListMLE loss func-
tion. 
 
Theorem 1: The Lipschitz constant L of the cost-sensitive ListMLE loss function  

ˆ 1 1,

,

,

1
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ˆ 14 @ ,
T

g

n

jjDCG k 
R R in which R denotes the upper bound of the feature vector of the docu-  

ment. 
 

The detailed steps for parameters setting are given in Appendix A5, and the steps 
are also applicable to the calculation of other loss function. 

To further improve the Lipschitz constant L of Sparse cost-sensitive ListMLE, we 
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adopt the adaptive Lipschitz constant L proposed by Lai et al. [17]. In Algorithm 1, we 
give the pseudo-code for adaptively finding Lipschitz constant. 

 

Algorithm 1: Sparse cost-sensitive ListMLE algorithm with adaptive L 
Input:  is the decay speed of Lipschitz constant L in each iteration, p indicates that the 
algorithm performs p times at most. 
Output: the vector w of estimations parameters of the model. 
1: Calculate L0 according to Theorem 1. 
2: Initialize: w0 = 0 
3: Let L = L0/ p 
4: for k = 1 to p do 
5: Calculate the gradient of loss in the last iteration: grad = L(wk) 
6: while true do 
7: wk+1 = 

21
2 12arg min || ( ) || || ||L

k L grand   
w

w w w  
8: if L(wk+1) ≤ L(wk) + < grad, wk+1 – wk > + 2

L ||wk+1 – wk||
2 then 

9: break; 
10: end if 
11: L = L 
12: end while 
13: end for 
 

In our algorithm, we first calculate the Lipschitz constant L0 to be the upper bound 
of L given in Theorem 1. Then for obtaining adaptive Lipschitz constant L, we initialize 
L as L0/ p, in each iteration, we reduce L by multiplying . And p is the maximum num-
ber of iterations, in each iteration, for computational efficiency, we calculate the gradient 
of loss in the last iteration based on the loss and weight vector wk in in last iteration. 
Then by minimizing the loss function in Eq. (14), we obtain the weight vector wk+1 in 
this iteration, and update it until satisfying the condition of Eq. (10), this procedure 
would finally stops and performs p times at most. 

In the next section, we will give our analysis about the reason to set a smaller Lip-
schitz constant. According to that analysis, we know the number of iterations required to 
achieve -solution is 

* 2
0 22( || || ).LT O  w w  The larger L, the more the number of itera-

tions. Hence, in order to speed up the training of the proposed model, it’s necessary to 
find a smaller Lipschitz constant. 
 
3.4 Convergence Analysis 

 
In this section, we give a simple analysis about the convergence rate of Sparse cost- 

sensitive ListMLE. Let wt denotes the coefficient sequence obtained by our algorithm. 
We denote w as the optimal solution of Loss(w), that is 

* arg min ( ).Loss
w

w w  We also  

denote 

2
2 1 12max ( ), || || || || || || ,L

t t t t tA L         
w

w w w w w w w and define εt = L(wt) 
− L(w*) as errors between the optimal solution and the solution at iteration t. The algo-
rithm obtains an -accurate solution at iteration t when εt ≤ ε.  

Since L(w) and ||w||1 are all convex function with respect to w, so Loss(w) is also 
convex function. Because our algorithm satisfies the same condition as [17], thus we 
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obtain a similar Theorem 2. 
 
Theorem 2: 
(a) L(wt) − L(wt+1)  At  0. 
(b) If At = 0 then wt is an optimal model parameters vector of L(w). 
(c) wt  w*, shows that our sparse algorithm eventually converges to the optimum of L(w). 
(d) The sparse cost-sensitive ListMLE algorithm terminates after at most 

* 2
0 22 (|| || )LT  w w  

iterations, and at termination L(wT) − L(w*)  . 
 

The (a), (b) and (c) in Theorem 2 indicate that our loss function continues to decline, 
and eventually converges to an optimal value, and (d) gives the upper bound of required 
iterations to obtain -accurate solution. 
 

3.5 Feature Selection for Ranking Model 
 

Feature selection plays a pivotal role in ranking, it contributes to enhance accuracy 
and improve the efficiency of training [14], moreover, it is a powerful means to avoid 
over-fitting [28]. In order to explore whether sparse learning works, we give a simple 
example to describe it at first. Then we demonstrate a feature selection method for rank-
ing, which is intrinsically a greedy search algorithm. 
 

3.5.1 The effectiveness of features for sparse ranking model 
 

We make experiment on MQ2008 data set in Letor4.0 [29], which contains 46 fea-
tures. We take a feature of 46 features to train sparse cost-sensitive ListMLE each time, 
until all the 46 features are taken once, if we use NDCG@10 as evaluation metric, we 
will get 46 NDCG@10 values (showed in Fig. 1), and then we construct a random pre-
dictor which use all the features as follows: we randomly initialize a feature weight vec-
tor w(w = (w1, w2, ..., w46), i, wi ≥ 0, ∑4

i

6

=1
wi = 1), and we can predict the scores of all 

documents, and rank the documents in the decrease order, so we can compute NDCG 
@10. We repeated this procedure 10 times, then we get the average of the 10 NDCG@ 
10 values. The results are shown in Fig. 1. 
 

         
Fig. 1. NDCG@10 value. 
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According to the result of Fig. 1, only a few strong features (such as TFIDF, BM25, 
PageRank) have obviously higher NDCG@10 value than the average of ten random 
ranking values, while many poor features whose NDCG@10 value are much lower than 
the average value. The result indicates that only a few strong features are the key factors 
in controlling the overall performance. 
 
3.5.2 Greedily selecting features for ranking 
 

Algorithm 2: Greedy feature selection algorithm for Sparse Cost-Sensitive ListMLE 
Input: an expected feature dimension K, an error threshold ε, a selected feature set R, 
and the BaseRanker S. 
Output: The set of features be selected: R 
1: Calculate A by Pearson Correlation method. 
2: Initialize: w0 = 0, ε = 0.005, R = . 
3: for t = 1 to d do 
4: Select a feature i which is not in Rt-1. 
5: Use the feature set Rt-1∪i to train model (update w) 
6: if S(Rt-1∪{i}) − S(Rt-1) ≤ ε then 
7: Rt = Rt-1 
8: else 
9: Rt = Rt-1∪i 
10: end if 
11: while true do 
12: Choose a feature j from the selected features Rt 
13: Use the feature set Rt \ {j} to train model (update w) 
14: if S(Rt \ {j})  S(Rt)  ε then 
15: Rt = Rt \ {j} 
16: end if 
17: end while 
18: if NumberOf(Rt) ≥ K then 
19: return Rt; 
20: end if 
21: end for 
 

Due to the gap between classification and ranking, the feature filter approach for 
classification is not suitable for ranking, thus a few techniques for feature selection in 
ranking has been proposed, such as [14, 30, 31], all of which take account two principles 
of feature selection: maximized the importance of features and minimized similarity be-
tween features. In this paper, we adopt the FBPCRank algorithm [30] as the feature se-
lection method for its computational efficiency and good performance, different from it, 
we use our sparse cost-sensitive ranker as the BaseRanker, which is denoted by S to 
measure the loss produced by feature set F, S(F) = minCL(w) + 

1
2 wTAw, in which F is 

the set of all features, L(w) denotes the loss of Sparse Cost-Sensitive ListMLE, w is the 
weight vector of the model, A is the similarity matrix between features, C is the balance 
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factor between the two terms. The pseudo-code of greedy feature selection algorithm for 
Sparse Cost-Sensitive ListMLE is as Algorithm 2. 

The process of Algorithm 2 is as follows: (1) Before training model, calculate simi-
larity matrix A in order to avoid computing A each iteration and improve computational 
efficiency; (2) Initial several hyper-parameters such as the weight vector w, the threshold 
 of error, the selected feature set R; (3) Using Forward Propagation and Pearson Corre-
lation greedy algorithm to select a feature; (4) Using Backward Propagation and Pearson 
Correlation greedy algorithm to remove the current useless features; (5) Repeat the pro-
cess of (3) and (4) until the number of features achieves the expected K. 

4. EXPERIMENT AND ANALYSIS 

To evaluate the performance of our proposed method, we conduct three contrast ex- 
periments on several publicly available benchmark datasets: the proposed method com-
pare to some state-of-the-art dense model, compare to dense cost-sensitive dense model 
compare to learning-to-rank models. 

The results show that: (1) The proposed Sparse Position-Sensitive ListMLE ranking 
model, with the document weight and the sparse-inducing 1 constraint, significantly out- 
performs Cost-Sensitive ListMLE (CS_ListMLE) and Cost-Sensitive RankSVM (CS_ 
RankSVM) ranking on TD2003 and TD2004, while their performance is comparable on 
OHSUMED; (2) When compared with other sparse ranking algorithms, Sparse_CS_List- 
MLE can be sparser and achieve excellent performance on both accuracies and efficien-
cy; (3) Compared to other state-of-the-art algorithms for ranking, Sparse_CS_ListMLE 
also achieves competitive performance on ranking accuracies. 
 
4.1 Data Sets 
 

We make contrast experiments on the Letor 3.0 [32] and Letor 4.0 datasets [29], 
which are publicly available benchmarks for learning-to-rank. In our experiments, we 
evaluate the performances of ranking approaches on two small datasets, TD2004 and 
OHSUMED in Letor 3.0 and one large-scale dataset MQ2008 in Letor 4.0. In each da-
taset, many features are related to the query-document pairs, which are extracted from 
the documents and covers different levels such as TF, IDF (low level) and BM25 (high 
level). 

Each dataset we used in our experiment have already been separated into 5 folds. In 
each experiment, three folds were merged as training dataset, one fold was used as vali-
dation datasets, the left one was used as test datasets. For each experiment, we randomly 
combined the training set and the test set, and the final sorting performance was the av-
erage of 5 sub experimental performance tests. 
 
4.2 Evaluation Measures 
 

MAP [33] and NDCG@k(N@k) [34] are used as the evaluation measures to evalu-
ate the performance of ranking models. NDCG@k is used to evaluate performance of the 
top permutation in a sorted list. We set the truncation level k in NDCG@k as 1, 3, 5, 10. 
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4.3 Experiment Setting 

We set the parameters of Sparse position-sensitive ListMLE as follows, we fix  = 2, 
p = 8 in all our later experiments, but the balance factor  is chosen in the set 10-7, 10-6, …, 
10-2, 10-1 by 5-folds cross validation, and our algorithm stops until satisfying the condi-
tion of ||L(wt)|| ≤ 0.001  ||L(w0)|| or reaches the maximum iteration T = 1000. 

4.4 Feature Filtering Contrast Experiment Before Training Model 

We choose MQ2008 as the dataset and use 5-fold cross validation to determine C. 
According to Algorithm 2, we initialize several hyper-parameters such as w0 = 0, ε = 
0.005, R = , K = 15. Compute the similarity matrix A between features. The algorithm 
outputs a set R which is composed of dominated features and is shown in Table 1. 
 

Table 1. Features be chosen in MQ2008 (including 46 features). 
MQ2008 Features be chosen

Fold 1 23 19 29 18 
Fold 2 39 29 28 19 21 38 
Fold 3 29 26 39 19 12 32 
Fold 4 23 29 19 
Fold 5 36 25 42 18 

 

We make the union of the above 5-fold results, which shows that about 28% fea-
tures are selected. We conduct a contrast experiment to explore whether using the se-
lected sparse features to train model outperforms using all features, the result is as Fig. 2. 
According to the result, it is better to use all the features to train the model. We explain 
why this happened, on one hand, the datasets such as MQ2008 in Letor4.0 has been 
streamlined compared to the original dataset in practice, the feature dimension is not 
particularly large, so the advantage of sparse features is not obvious. On the other hand, 
the proposed sparse model with l1 regularization already has feature selection ability in 
some degree, so the selected features used for training the proposed sparse model is too 
sparse so that it is easy to cause the model to be overfitting, in this case, it is necessary to 
set an appropriate feature dimension, i.e., a suitable K. 

 

  
 
 

 

Fig. 2. Comparison of NDCG@n values using 
different feature sets. 

Fig. 3. The effect of different feature dimen-
sion on NDCG@10. K is the parameter 
of feature dimension. 
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To explore the effects of the feature sparse degree for ranking, the paper compare 
NDCG@10 values of Sparse Cost Sensitive ListMLE in different feature dimensions, the 
feature dimension K is set to be 10, 20, …, 40, 46, and we conduct Algorithm 2 to obtain 
the five selected feature sets, which then were put into model respectively, the NDCG@10 
are displayed in Fig. 3. 

In Fig. 3, the value of abscissa represents dimension of the selected features, and the 
value of ordinate represents the value of NDCG@10. If K is fixed on a certain value that 
means the selected features with K dimension are the most influential features in dataset, 
and the result in Fig. 3 indicates that when choosing 30 as the feature dimension on 
MQ2008 dataset, the NDCG@10 value is the maximum. So it’s desirable to apply sparse 
algorithm to select strong features to train model, but whose good performance is based 
on the condition that an approximate feature dimension is chosen. It also justify that the 
whole ranking performance is dominated by a few strong features. 

 
4.5 Comparing to Dense Cost-Sensitive Ranking Model 
 

We focus on exploring if our sparse model is superior than the dense model. We 
conduct two contrast experiments on between cost-sensitive ListMLE (CS_ListMLE) [11] 
and our proposed algorithm (Sparse_CS_ListMLE). One is concerned about the ranking 
accuracies, another is the training time. 
 

4.5.1 Ranking accuracy between CS_ListMLE and sparse_CS_ListMLE 
 

The performance of Sparse_CS_ListMLE, CS_ListMLE [11] and CS_RankSVM 
[10] on four datasets are shown in Tables 2 and 3. In order to validate the effectiveness 
of Sparse_CS_ListMLE in a more comprehensive way, we set different parameters dur-
ing the training process. CS_ListMLE@k indicates that cost-sensitive ListMLE concen-
trates on rank order of the top k documents in the ranked list. In other words, CS_List- 
MLE@k directly optimizes NDCG@k, and k takes 1, 3, 5, 8 and 10 in the experiment. 
The statistiCS_for sparse_CS_ListMLE and CS_RankSVM [10] are obtained in the same 
experimental environment.  

 
Table 2. Ranking accuracies on OSHUMED. 

Methods N@1 N@3 N@5 N@10 MAP 
CS_RankSVM 0.4486 0.3774 0.3638 0.3486 0.3534 

CS_ListMLE@1 0.4505 0.3825 0.3792 0.3765 0.3420 
CS_ListMLE@3 0.4493 0.3818 0.3785 0.3762 0.3422 
CS_ListMLE@5 0.4498 0.3822 0.3788 0.3764 0.3432 
CS_ListMLE@10 0.4502 0.3824 0.3790 0.3764 0.3434 

Sparse_CS_ListMLE@1 0.4505 0.3987 0.4022 0.3986 0.3576 
Sparse_CS_ListMLE@3 0.4496 0.4020 0.3935 0.3928 0.3553 
Sparse_CS_ListMLE@5 0.4493 0.3948 0.3930 0.3922 0.3547 
Sparse_CS_ListMLE@8 0.4502 0.3935 0.3928 0.3916 0.3545 

Sparse_CS_ListMLE@10 0.4498 0.3939 0.3931 0.3925 0.3558 

 
According to Tables 2 and 3, we can observe that Sparse_CS_ListMLE with sparse 

inducing 1 norm consistently outperforms CS_ListMLE and CS_RankSVM in terms of 
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NDCG at top 10. Compared to CS_RankSVM and CS_ListMLE, Sparse_CS_ListMLE 
outperforms CS_ListMLE at NDCG@10. We conduct t-test on the improvement of 
Sparse_CS_ListMLE over CS_ListMLE on the two datasets in terms of NDCG@3 to 
NDCG@10. For TD2004 dataset, the result shows that the improvement of Sparse_CS_ 
ListMLE over CS_ListMLE and CS_RankSVM with a p-value of less than 0.036, which 
demonstrates that the significant effectiveness of our ranking approach based on sparse 
learning. However, for OHSUMED dataset, Sparse_CS_ListMLE behaves somewhat 
differently, it is not statistically significant in terms of t-test (p-value > 0.05). The reason 
for these results is that Sparse_CS_ListMLE with sparsity constraints can automatically 
filter redundant features while reducing the impact of noise features on the ranking mod-
el, so Sparse_CS_ListMLE perform better than original CS_ListMLE. However, Sparse_ 
CS_ListMLE and CS_ListMLE concerned more on the relevant documents on the top of 
permutation, that is relevant documents have a greater impact on our algorithm than ir-
relevant documents, and as to OHSUMED, the relevant documents occupy a very small 
proportion for most queries, so sparsity cannot make a big difference in results. On the 
contrary, the relevant documents occupy a relatively large proportion on TD2004, there-
fore, the difference between Sparse_CS_ListMLE and CS_ListMLE is obvious.    

 
Table 3. Ranking accuracies on TD2004. 

Methods N@1 N@3 N@5 N@10 MAP 

CS_RankSVM 0.4573 0.4036 0.3918 0.4436 0.3631 
CS_ListMLE@1 0.4678 0.4273 0.4224 0.4445 0.3649 
CS_ListMLE@3 0.4672 0.4292 0.4196 0.4497 0.3663 
CS_ListMLE@5 0.4673 0.4207 0.4074 0.4449 0.3667 
CS_ListMLE@10 0.4663 0.4091 0.4067 0.4451 0.3645 
Sparse_CS_ListMLE@1 0.4838 0.4450 0.4324 0.4676 0.3844 
Sparse_CS_ListMLE@3 0.4956 0.4507 0.4304 0.4652 0.3814 
Sparse_CS_ListMLE@5 0.4834 0.4486 0.4320 0.4580 0.3775 
Sparse_CS_ListMLE@8 0.4884 0.4489 0.4323 0.4585 0.3793 
Sparse_CS_ListMLE@10 0.4889 0.4482 0.4295 0.4580 0.3756 

 

4.5.2 Training time between CS_ListMLE and Sparse_CS_ListMLE 
 

To validate the computational efficiency of the sparse cost-sensitive model, we make 
a comparison about training time between CS_ListMLE [11] and Sparse_CS_ListMLE 
on MQ2008 (including 5 folds). The main difference between is that the latter is a sparse 
model with a 1 regularization term. Since the regularization parameter  controls the 
effect of the sparse term on the loss function, so  is the main factor that makes the dif-
ference of training time, and we choose the best . We take the early stopping strategy 
and set a loss threshold error = 0.05 for two models, when the loss has been less than 
error for 10 times, the algorithm stop immediately and record the training time. The re-
sults are shown in Table 4. 

The larger the regularization parameter , the sparser the model is. From Table 4, 
we can observe that: (1) a larger  corresponding to a shorter training time, which indi-
cates that a sparser model has less computational cost; (2) In 5 folds experiment, the 
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training times of Sparse_CS_ListMLE are less than CS_ListMLE, meanwhile, the 
NDCG@10 values of the former are larger than the latter. The main reason is that sparse 
model with 1 regularization term can filter the redundancy features and simply the mod-
el, training time is relatively reduced. 
 

Table 4. Training time on MQ2008. 

Method 
CS_ListMLE Sparse_CS_ListMLE

Time(s) NDCG@10  Time(s) NDCG@10
Fold1 29.63 0.4417 0.01 20.86 0.4673 
Fold2 24.16 0.4451 0.1 18.92 0.4782 
Fold3 25.73 0.4263 0.1 19.34 0.4528 
Fold4 31.62 0.4396 0.01 20.45 0.4635 
Fold5 30.32 0.4122 0.01 21.63 0.4512 

 

4.6 Comparing to Sparse Ranking Model 
 
In this section, we are concerned about whether Sparse_CS_ListMLE overperforms 

other sparse ranking models or not, here we still utilize the Spars_CS_ListMLE@1 to 
represent Spars_CS_ListMLE to measure the performance. We designed experiments 
from two aspects; (1) Comparing the ranking accuracies of all sparse ranking models; (2) 
Comparing the degree of sparsity of all sparse ranking models under current performance. 
The experiment results indicate that compared to other sparse ranking models, our algo-
rithm can obtain a sparser model while achieving a competitive performance. 
 
4.6.1 Performance comparison experiment of sparse models 
 

We take Sparse_CS_ListMLE@1 as an example to compare the performance with 
the other sparse ranking algorithms, including FenchelRank [13], SparseRank [17] and 
RSRank [16]. Experimental results are presented Fig. 4. 

The greater the value of NDCG, the more accurate the ranking is. From Fig. 4, it 
can be observed that Sparse_CS_ListMLE have the best ranking effect on four datasets. 
For example, according to Fig. 4 (a), on OHSUMED dataset, the value of NDCG@10 of 
Sparse_CS_ListMLE has increased 3.4% compared with SparseRank who has the sec-
ond best performance. And similarly, on TD2003 dataset, NDCG@10 value of Sparse_ 
CS_ListMLE is 0.4019, a 2.8% percent increase compared with RSRank. According to 
Fig. 4 (b), Sparse_CS_ListMLE performs 0.8520 at NDCG@10, a 1.3% increase than 
the second, however, on MQ2008, all the sparse models performs little differently. 

We provide an explanation about Fig. 4. The reason why Sparse_CS_ListMLE per-
forms better than others lies in two aspects: (1) Sparse_CS_ListMLE belongs to list-wise 
ranking algorithm, while others optimize the pair-wise loss function, practice shows that 
list-wise ranking is generally better than pair-wise ranking [6, 7]; (2) By imposing 
weights for the document, Sparse_CS_ListMLE emphasize the position importance of 
top k ranking list, which is a key factor for ranking, so our algorithm is superior to the 
others. Besides, SparseRank and FenchelRank have little difference since their main dif-
ference is the optimization method. RSRank formulates ranking as importance weighted 
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pairwise classification, it behaves better than SparseRank and FenchelRank on TD2003, 
however it performs relatively poor than others on OHSUMED, for that the weights of 
the documents does not affect much in RSRank. 

 

 

  
(a) NDCG at top 10 on OHSUMED and TD2003 

dataset. 
(b) NDCG at top 10 on HP2004 and MQ2008 

dataset. 
Fig. 4. NDCG at top 10 on four datasets. 

 

4.6.2 Comparison of sparse degree of sparse models 
 
In Sparse_CS_ListMLE, based on the best performance of cross validation on TD- 

2003, we fixed the regularization parameter  as 10-2 to control the weight of 1 norm. 
The formula of sparse degree is degree = 

0|| || ,d

w
 where d is the dimensionality of the do- 

cument feature vector. The smaller the degree, the sparser the model is. In section 4.6.1, 
we have compared the performance of Sparse Cost_Sensitive with several other state-of- 
the-art sparse models, such as FenchelRank [13], SparseRank [17] and RSRank [16]. In 
this section, we also compare the sparsity of them. The results are given in Table 5, 
where we can see that the sparse degree of our sparse method is 1.6% smaller than 
SparseRank on OHSUMED and 0.9% on TD2003. So Sparse_CS_ListMLE is sparser 
than other sparse models. 
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Table 5. Sparse degree on two datasets. 
 OHSUMED TD2003 
Sparse_CS_ListMLE 0.23296 0.53697
FenchelRank 0.24290 0.54582 
SparseRank 0.23682 0.54204 
RSRank 0.34483 0.58898 

 

4.7 Comparing to Other State-of-the-Art Model 
 

In this section, we make a comparison between Sparse_CS_ListMLE and other state- 
of-the-art algorithms. LambdaMart [35], ListNet [6], AdaRank [5], and RankBoost [4] 
are chosen as baselines in these experiments. LambdaMart, ListNet, AdaRank attempt to 
optimize listwise loss functions, while RankBoost belongs to pairwise approach. 

 

 
Fig. 5. NDCG at top 10 on OHSUMED.        Fig. 6. NDCG at top 10 on MQ2008. 
 

Table 6. MAP on the two datasets from the LETOR. 
 Sparse_CS_ListMLE AdaRank LambdaMart ListNet RankBoost 

OHSUMED 0.3514 0.3459 0.3139 0.3192 0.3395 
MQ2008 0.4885 0.4571 0.4668 0.4356 0.4674 

 

The results on two datasets with respect to NDCG and MAP are shown in Figs. 5-6 
and Table 6. From Table 6, we can observe that Sparse_CS_ListMLE performs the best 
in two datasets among other state-of-the-art algorithms. For OHSUMED dataset, the 
improvement of RSRank over the second best model AdaRank is also statistically sig-
niflcant for NDCG@1 with a p-value of less than 0.05 in t-test, which indicates that the 
effectiveness of Sparse_CS_ListMLE in emphasizing the top permutation of the ranked 
list. 

5. CONCLUSIONS 

In this paper, to address the problem of cost-sensitive ListMLE that long-time train- 
ing and feature redundancy, we introduced a Sparse cost-sensitive ListMLE which takes 
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into account both the accuracy and computational efficiency. At first, we described the 
original cost-sensitive ListMLE, and then for the sake of achieving sparsity, we intro-
duced an efficient proximal gradient descent (PGD) learning method via incorporating 
the 1 regularized sparse term into the model. We then constructed the object function 
composed of cost-sensitive ListMLE and 1 norm, then we theoretically give the initial 
values of the Lipschitz constant L and adopt the adaptive L method in the trial. Last we 
give a convergence analysis of the proposed model. Experiments performed on several 
benchmark datasets demonstrate the effectiveness of the proposed algorithm in con-
structing sparser model while improving the empirical performance accuracy. In future 
work, we will focus on more efficient optimization method to solve the sparse model 
with 1 regularization and try incorporating the cost-sensitive into other sparse models. 

APPENDIX A: PROOF OF THEOREM 1 

Proof: Since the Lipschitz constant L of the proposed model is the upper bound of sec-
ond derivative of the loss function, now we want to prove 
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