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A stacked recurrent neural network (sRNN) with gated recurrent units (GRUs) and 

jointly optimized soft time-frequency mask was proposed for extracting target musical in-

strument sounds from a mixture of instrumental sound. The sRNN model stacks and links 

multiple simple recurrent neural networks (RNNs), which makes sRNN an excellent model 

with temporal dynamic behavior and real deepness. The GRU improves the gate founda-

tions of long short-term memory and reduces the operating time. Experiments were con-

ducted to test the proposed method. A musical dataset collected from real instrumental 

music was used for training and testing; electric guitar and drum sounds were the target 

sounds. Objective and subjective assessment scores obtained for the proposed method were 

compared with those obtained for two models, namely Wave-U-Net and SH-4stack, and a 

conventional RNN model. The results indicated that electric guitar and drum sounds can 

be successfully extracted through the proposed method. 

 

Keywords: electric guitar, drums, sound separation, stacked recurrent neural network, gat-

ed recurrent unit, time-frequency mask 

1. INTRODUCTION 

Musical instruments are indispensable elements in music. Although many audio 

source separation methods have been developed, they mainly extract vocal tracks, making 

singing separation the mainstream method. Fewer studies have analyzed the separation of 

musical instruments. Extracting specific musical instruments from a mixture signal can be 

achieved through different audio source separation methods. 

A typical audio source separation system can be split into supervised and unsuper-

vised learning. Supervised learning uses machine training to label and find common traits 

in data groups and learns them to generate a model as the basis for separating input data. 

Examples of supervised learning include deep neural network (DNN) [1], deep recurrent 

neural network (DRNN) [2-5], supervised non-negative matrix factorization (NMF) [6-8], 

classification and regression tree (CART) [9], and computational auditory scene analysis 

(CASA) [10, 11], etc.. Supervised learning systems can reinforce models by training large 

volumes of data and increase training times to improve the generated results. 

Unsupervised learning involves providing input data to the machine and mining in-

ternal structures and types in the data by using appropriate data processing as well as logic 

or algorithms without machine learning. The mined data can immediately be sorted and 

segmented based on information in the data. Examples of unsupervised learning include k-
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means clusters, Gaussian mixed models (GMM) [12-14], robust principal component anal- 

ysis (RPCA) [15-17], and repeating pattern extraction techniques (REPET) [18, 19], etc. 

The advantage of unsupervised learning is that it does not require to do the time-consuming 

data labeling and training. However, the separation result cannot be improved by increas-

ing the amount of training data, either. 

Several instrument sound separation techniques are available and can be divided into 

four categories; CASA-based, decomposition-based, model-based, and neural network-

based techniques. Most such techniques are also applied in singing voice separation. One 

example of a CASA-based system is that proposed in [20], which uses pitch-based CASA 

and a time-frequency masking method. In addition, NMF [21-26] is one of the most widely 

used decomposition-based methods for separation. However, these methods commonly 

encounter difficulties at the clustering step and are best suited to percussive instruments 

[27]. Instead of spectral decomposition, researchers in [28] studied time-domain decom-

position. 

Model-based methods such as the sinusoidal [29], average harmonic structure [27, 30, 

31], and harmonic and inharmonic models [32, 33] usually entail the establishment of gen-

erative models of music signals to facilitate separation. Neural networks [34] constitute 

another favored method for musical instrument sound separation; examples of such net-

works include multilayer perceptron [35] and fuzzy neural networks [36]. Using a DNN is 

the current state-of-the-art method [37-39]. 

 

 
Fig. 1. Musical instrument sound separation framework. 

 

In this research, we employed a supervised learning system that executes basic musi-

cal instrument separation through a stacked recurrent neural network (sRNN) [40] to ex-

tract the primary extraction target, namely electric guitar and drum sounds, from among 

multiple instrumental sounds. 

As depicted in Fig. 1, the first step involves converting the musical signal into a mag-

nitude spectrogram through short-time Fourier transform (STFT). Subsequently, the sRNN 
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is used to train and generate the musical instrument sound separation model. The fore-

ground magnitude spectrogram successfully extracted from the musical signal is converted 

into a separate waveform through inverse STFT (ISTFT). Finally, this waveform is com-

pared with the original target sound to perform an objective and subjective performance 

evaluation. 

2. PROPOSED METHOD 

Because of its temporal dynamic behavior, a recurrent neural network (RNN) is often 

employed in audio signal processing. However, an RNN cannot be considered a deep learn-

ing model because with a simple RNN, hierarchizing the input of the current time step is 

difficult. An sRNN is a method of stacking and linking multiple simple RNNs; thus, an 

sRNN exhibits depth. Therefore, we proposed a system entailing the use of an sRNN to 

extract the primary target, electric guitar or drum sound, from among multiple instrumental 

sounds. Gated recurrent units (GRUs), which improve the gate foundations of long short-

term memory (LSTM) and simplify LSTM parameters to reduce operating time, are used 

as the cells of the recurrent hidden layer in the sRNN architecture. A soft time-frequency 

mask is jointly optimized and generated to separate the mixture. The sRNN, GRU, and soft 

time-frequency mask are described in the following sections.  

2.1 Stacked Recurrent Neural Network 

Neural networks simulate the working principle of nerve cells in the brain to make 

node-to-node connections and use parameter vectors as the weighted value for controlling 

these connections, achieving machine self-learning. A simple RNN use paths that form 

loops for data with time sequences to infinitely cycle through closed circulations and sim-

ultaneously remember and update to generate the newest analysis results. The schematic 

of the simple RNN and the expanded network structure are presented in Fig. 2. 

 

 
Fig. 2. The simple RNN operation structure. 

 

According to Fig. 2, assuming that a model is built using a sequence with a length of 

T, after it is expanded, the model can become a T-time-stage neural network. In the network, 

the hidden state is the neural network memory where the result of the previous step is 

stored. 

As presented in Eq. (1), the hidden state in time stage t, ht, is derived from input xt 

and ht-1. Wx is the weight matrix from the input state to the hidden state, and Wh is the 



WEN-HSING LAI AND SIOU-LIN WANG 

 

502 

 

weight matrix of the hidden state of time t − 1. In addition, f is typically the tanh function 

or improves in performance by using rectified linear units. 

ht = f(Wxxt + Whht-1) (1) 

Finally, the predicted output yt is calculated, where the weight matrix is U. The cal-

culations are presented in Eq. (2). 

yt = softmax(Uht) (2) 

Typically, to minimize the error between the trained output and the real answer, ac-

curate results can be obtained through the simple RNN training; however, the simple RNN 

has two weaknesses. First, because of the over simplistic structure of the simple RNN, the 

hierarchical processing of the input cannot be conducted in the current time step. The sim-

ple RNN structure can be expanded, such as the sRNN [41] approach used in this research, 

which stacks multiple recurrent hidden layers to provide multilevel information through 

multiple time scales. 

ht
l
 = fh(ht

l-1
, h

l
t-1) 

= l(Ulh
l
t-1 + Wlht

l-1
) (3) 

As presented in Eq. (3), ht
l
 is the hidden state of the lth layer in time stage t and is 

obtained by calculating state transition function fh of ht
l-1

 and h
l
t-1. In the equation, l() is 

an element-wise nonlinear function, Wl is the weight matrix in the lth hidden layer, and Ul 

is the weight matrix of the recurrent connection in the lth hidden layer. 

Another weakness is encountering gradient exploding or gradient vanishing during 

training. This results in the simple RNN being unable to normally process large amounts 

of data and difficulties in capturing and learning long-term dependence between time series 

data. But if LSTM or GRU models are used in the hidden state, gradient exploding or 

gradient vanishing can be drastically prevented through their gating mechanisms. 

2.2 Gated Recurrent Unit 

This research used gated recurrent unit (GRU) as the cells of the recurrent hidden 

layer for the sRNN architecture. GRU improve the gate foundations of LSTM and simplify 

the LSTM parameters to reduce operation time. 

 

 
Fig. 3. The GRU operation structure. 
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Fig. 3 presents how the GRU operation structure can be presented as Eqs. (4)-(7): 

vt = (Wv  [ht-1, xt]), (4) 

rt = (Wr  [ht-1, xt]), (5) 

h ̃t = tanh(W  [rt  ht-1, xt]), (6) 

ht = (1 − vt) ⊙ ht-1 + vt ⊙ h ̃t. (7) 

In the Fig. 3, GRU structure, × is pointwise multiplication, and + is pointwise addition. 

The two nodes  and tanh have specific weights, and mapping conversion is performed 

inside these nodes. The mapping conversion results are presented through the “1−” node. 

GRU use two gates: reset gate rt and the gate of the update hidden state vt. The goal 

of rt is to “ignore” the status of past hidden states − for instance, when r = 0, as presented 

in Eq. (6), the h̃t of the candidate hidden layer is directly determined by input x, thereby 

“ignoring” past hidden states. 

vt is the aggregate of the forget gate and input gate in LSTM. In Eq. (7), (1 − vt)⊙ht-1 

is the data in past hidden states that must be forgotten and deleted by the forget gate. vt ⊙ 

h ̃t is equivalent to the input gate and adds weight vt to h ̃t, where the new data is located, to 

generate the newest hidden state ht. 

Furthermore, the rectified linear unit is added in the output state for activation. This 

can again prevent the gradient from worsening during gradient descent to normally process 

large amounts of data and can add multi-level networks to increase the precision of training 

outcomes. 

2.3 Time-Frequency Mask 

In prevalent audio source separation methods, the weight distribution of each segment 

within the mixture signal in the foreground and background is calculated. The generated 

matrix is the time-frequency mask, which can be divided into two types: spectrograms in 

which the foreground and background of each segment of data that can be explicitly rep-

resented by 0 or 1 are binary hard masks, and spectrograms in which the foreground and 

background of each segment of information that are matched to weight values between 0 

and 1 are soft masks. The soft mask formula is presented in Eq. (8). 

| ( , )|

| ( , )| | ( , )|
( , )mask

F m n

F m n gain B m n
S m n

+ 
=  (8) 

F is the foreground matrix, which is the spectrogram of the electric guitar/drums 

sound. B is the background matrix or the spectrogram of the other musical instruments. 

Within m = 1, …, n1 and n = 1, …, n2, n1 and n2 represent frequency and time in the spec-

trogram, respectively, and the gain value is correlated with the signal-to-noise ratio (SNR) 

of musical signals. Because the musical signals used in this research were all mixed with 

SNR 0dB, the gain value used was 1.0. 

3. EXPERIMENTS 

To characterize musical signals, the waveform of the musical signals is first converted 
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into a spectrogram through STFT. The waveform output is then converted using ISTFT 

from the estimated magnitude spectrogram generated by the trained model. In this research, 

input waveforms were processed using 1024-point STFT with 50% overlap. 

3.1 Datasets 

In this research, the MedleyDB [42] dataset was used to perform the separation ex-

periment. MedleyDB was distributed by Bittner et al. in 2014 and includes 122 multi-tracks 

in total, of which 105 are full length tracks, that are approximately 3-5 minutes long. The 

dataset also includes 17 excerpt recording songs that are 1 min or shorter. 

The genre of the tracks in the dataset include rock, pop, classical music, jazz, fusion, 

world music, musical theater, and singer-songwriter songs that involve the drum set, elec-

tric bass, piano, electric guitar, acoustic guitar, auxiliary percussion, double bass, violin, 

cello, flute, and mandolin. In addition, some tracks have male or female vocals, and some 

tracks were generated using a synthesizer. 

Each multi-track in the dataset contained individual tracks for vocals and different 

instruments, with the entire dataset composed of 49 songs with electric guitar and drum 

tracks. Songs were split into 20-s clips. From the 49 songs, 80 clips of 8 songs (26 min and 

31 s in total) were selected for training. Thirty clips of four other songs (9 min and 49 s in 

total) were selected for testing. All eight training songs and four testing songs contained 

electric guitar and drum tracks as well as different instruments such as the bass, piano, 

violin, cello, and trombone. 

In our experiment, we simulated the separation of electric guitar and drum sounds 

from their monaural mixture. Hence, monaural remixes of the real song tracks with both 

electric guitars and drums were used. Musical mixture signals comprised electric guitar 

and drums as the main sounds and other instruments (not including vocals) as the accom-

panying sounds; they were all mixed with an SNR of 0 dB. Table 1 details the experimental 

parameters. 

Table 1. The experimental parameters. 
Name Value 

Sampling rate 44100 Hz 

bits/sample 16 bits 

Window size 1024 

Hop size 512 

 

3.2 Objective Performance Evaluation 

 

In this research, the Blind Source Separation Evaluation (BSS_EVAL) toolbox [43] 

developed by C. Févotte was used to perform objective performance evaluation for the 

experiment results. The BSS_EVAL toolbox is a performance evaluation toolbox that was 

developed to evaluate blind source separation algorithms. It can calculate the distance be-

tween the estimated results and the target audio. The BSS_EVAL toolbox was used in this 

research to generate the signal-to-distortion ratio (SDR), signals-to-artifact ratio (SAR) 

and signal-to-interference ratio (SIR) of the experiment results and to calculate the nor-

malized SDR (NSDR), global SDR (GSDR), global SAR (GSAR), global SIR (GSIR), and 

global NSDR (GNSDR). The formula is as follows: 
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ŝ(t) = starget(t) + einterf(t) + eartif(t).  (9) 

As presented in Eq. (9), ŝ(t) and starget(t) represent the estimated and ideal target signal. 

In addition, einterf(t) represents background tracks that remain in the foreground that were 

erroneously determined as the foreground, and eartif(t) represents the foreground that re-

mains in the background that was erroneously determined as the background. Therefore, 

ŝ(t) can be broken into starget(t), einterf(t), and eartif(t).  
The signals SDR, SAR, and SIR can be calculated using Eqs. (10)-(12):  

2
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e
= .   (12) 

In these equations, v̂ represents the estimated electric guitar/drums sound, with v rep-

resenting the ideal clean electric guitar/drums sound. The |||| in Eqs. (10)-(12) are the Eu-

clidean norm. 

NSDR(v̂, v, x) = SDR(v̂, v) − SDR(x, v)   (13) 

The NSDR is the result of normalizing the SDR. Calculating the NSDR score can 

determine whether the SDR of the estimated musical signal improves against the SDR of 

the ideal musical signal. The calculation is presented in Eq. (13), with x representing the 

mixed musical signal, which is used primarily to evaluation differences in the SDR be-

tween the musical signal and separated foreground. 

However, the means of the SDR, SIR, SAR, and NSDR do not take the test clip length 

into consideration. To be fair, the weighted means of the SDR, SIR, SAR, and NSDR of 

all test clips weighted by their length are used as the overall performance measure. Global 

SDR (GSDR), Global SIR (GSIR), Global SAR (GSAR), and Global NSDR (GNSDR), 

were accordingly obtained: 
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As shown in Eqs. (14)-(17), ω is the number of seconds in the musical signal. The 

global average value was obtained by multiplying the obtained SDR, SIR, SAR, and NSDR 

scores with the number of seconds in the musical signal before adding the results together 
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to obtain the average.  

According to Eqs. (10)-(17), higher SDR, SAR, SIR, NSDR, GSDR, GSIR, GSAR, 

and GNSDR values indicate more effective separation performance. Research on the exact 

correlation of these measures with subjective ratings or on what value constitutes success-

ful separation is still lacking. Different datasets or experimental setups can also influence 

the results, including the use of natural or generated recordings, the number of sources, the 

presence or absence of additional information, instantaneous or convolutive mixing, and 

instrument type. However, the objective value can be assessed using the results of the 2018 

community-based Signal Separation Evaluation Campaign (SiSEC 2018) [44]. When ad-

ditional data were used, the estimated median SDR, SIR, and SAR scores determined for 

the most effective separation method were as follows: 7, 16, and 7 dB for vocals, respec-

tively; 5, 10, and 7 dB for bass, respectively; and 5, 9, and 6 dB for other sound, respec-

tively. When additional data were not used, the estimated median SDR, SIR, and SAR 

scores were as follows: 6, 10, and 6 dB for vocals, respectively; 4, 9, and 6 dB for bass 

respectively; and 4, 6, and 5 dB for other sound, respectively. 

 

Table 2. The SDR, SAR, SIR and NSDR scores of the different hyper-parameter settings. 

Name SDR SIR SAR NSDR 

3 layers (500 cells) 4.57 9.26 7.15 4.65 

3 layers (1000 cells) 5.66 10.13 7.90 5.52 

4 layers (500 cells) 5.21 10.35 7.53 5.29 

 

Experiments were conducted to evaluate the separation performance of the proposed 

method. First, different hyperparameters were tested; Table 2 presents the SDR, SIR, SAR, 

and NSDR results obtained for 3 layers with 500 cells per layer, 3 layers with 1000 cells 

per layer, and 4 layers with 500 cells per layer. A soft mask was used for all tests. The best 

scores were obtained for the 3 layers with 1000 cells per layer (except for SIR score). 

Therefore, these layers were used in the subsequent experiments. 

 

 
(a) Electric guitar. 

Fig. 4 (a). Box plots of SDR, SIR, SAR, and NSDR scores for the musical signal clips in the test set. 
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(b) Drums. 

Fig. 4 (b). Box plots of SDR, SIR, SAR, and NSDR scores for the musical signal clips in the test set. 

 

To ensure a balanced comparison, we used the CNN-based method, SH-4stack [45] 

and Wave-U-Net [46] models, and simple RNN model on MedleyDB for simulation. In 

the Wave-U-Net model, the U-Net architecture is changed into a one-dimensional time-

domain system for end-to-end source separation. The SH-4stack model is based on a 

stacked hourglass network with multiple hourglass modules, with each module outputting 

a mask for each audio source. The masks are multiplied by the input spectrogram to gen-

erate the predicted spectrogram used for audio source separation. The simple RNN is struc-

tured using 1000 cells; unlike the proposed method, it does not use LSTM or GRU or 

possess a multilayer architecture. 

Fig. 4 presents box plots of the distribution and average values of the SDR, SIR, SAR, 

and NSDR scores for the musical signal clips in the test set; Fig. 4 (a) details the electric 

guitar separation results, and Fig. 4 (b) presents the drum sound separation results. The 

comparative results are listed in Table 3. Our method demonstrated superior separation 

scores in most tests, indicating that the sRNN can successfully extract electric guitar and 

drum signals from other musical signals. 

 

Table 3. Comparison with Wave-U-Net, SH-4stack, and Simple RNN on MedleyDB. The 

scores of (a) electric guitar for training; (b) electric guitar for testing; (c) drums for train-

ing; and (d) drums for testing. 

(a) 

Method SDR SIR SAR NSDR GSDR GSIR GSAR GNSDR 

Wave-U-Net 5.96 10.50 8.67 6.39 6.05 10.64 8.79 6.43 

SH-4stack 3.77 6.32 8.47 5.09 3.80 6.35 8.47 5.13 

Simple RNN 2.08 8.64 3.77 4.09 2.09 8.80 3.80 4.11 

Proposed 6.82 12.66 8.91 7.68 6.84 12.73 8.96 7.69 
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(b) 

Method SDR SIR SAR NSDR GSDR GSIR GSAR GNSDR 

Wave-U-Net 3.38 6.07 6.90 4.19 3.41 6.07 6.97 4.23 

SH-4stack 2.14 3.22 8.21 1.27 2.17 3.26 8.25 1.27 

Simple RNN 1.05 5.20 4.38 1.24 1.09 5.27 4.38 1.25 

Proposed 5.66 10.13 7.90 5.52 5.65 10.35 7.95 5.53 

(c) 

Method SDR SIR SAR NSDR GSDR GSIR GSAR GNSDR 

Wave-U-Net 5.51 14.26 8.42 6.82 5.53 14.27 8.43 6.84 

SH-4stack 2.43 7.47 4.79 5.69 2.44 7.47 4.80 5.71 

Simple RNN 2.58 7.13 5.27 4.06 2.64 7.13 5.37 4.08 

Proposed 5.99 11.29 9.75 6.92 6.01 11.3 9.77 6.94 

(d) 

Method SDR SIR SAR NSDR GSDR GSIR GSAR GNSDR 

Wave-U-Net 3.26 7.50 6.96 3.18 3.28 7.56 6.97 3.29 

SH-4stack 2.03 5.29 6.29 2.78 2.07 5.31 6.32 2.79 

Simple RNN 1.24 7.93 2.19 1.83 1.26 7.93 2.23 1.84 

Proposed 3.59 7.11 7.61 3.95 3.63 7.13 7.65 3.97 

 

A comparison with other methods is presented in Table 4. However, a direct compar-

ison of their results was difficult because of limitations imposed by diverse dataset they 

used and because of limitations caused by the other methods’ varying number of sources 

and different target and background musical instruments. Some of the methods require 

additional information such as musical scores. Accordingly, this study excluded methods 

involving sounds mixed from fewer musical instruments [21, 25, 37, 38], those involving 

synthetic or Musical Instrument Digital Interface (MIDI)-generated datasets [27, 29, 39], 

and those requiring additional information such as musical scores [28, 45, 47]; the remain-

ing methods were used for comparison. Accordingly, the comparison revealed that our 

method outperformed the other methods (Table 4). 

 

Table 4. The list of existing monaural instrument separation methods. 
  Target Background SIR SAR SDR 

multiple   

instruments/ 

real data/ 

score free 

Proposed guitar 
multiple 

instrument 
10.13 7.90 5.66 

[31] main instrument accompaniment 8.1 5.2 2.7 

2-3 

Instruments 

mixed 

[21] 
piano, clarinet, 

flute, trombone 

piano, clarinet, 

flute, trombone 

2.4–

23.5 

5.8–

12.7 

0.6–

12.3 

[25] 
trumpet, flute, 

piano 

guitar, flute, 

piano 
– – 

5.32–

7.92 

[37] violin horn, piano 15.6 6.75 6.11 

[38] piano guitar – – 
4.1–

5.0 

Synthetic 

or 

MIDI 

[27] organ piccolo 25.1 12.1 11.8 

[29] 
clarinet, flute, 

violin, trumpet 

clarinet, flute,  

violin, trumpet 
36.6 11.8 11.7 

[39] other vocal, drum, bass – – 
2.35–

2.58 
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Table 4. (Cont’d) The list of existing monaural instrument separation methods. 
  Target Background SIR SAR SDR 

Score 

informed 

[28] violin clarinet, saxo-

phone, bassoon 

11.92–

23.87 

5.88–

10.72 

5.41–

10.49 

[45] bass, drums, 

other, vocals 

bass, drums, 

other, vocals 
– – 

1.77–

5.16 

[47] drum 17 instruments 4.3–

10.7 

0.9–

11.5 

–0.8 

–5.5 

 

3.3 Subjective Performance Evaluation 

 

In this research, the SDR, SIR, SAR, NSDR, GSDR, GSIR, GSAR, and GNSDR mea-

sures were employed to objectively evaluate the quality of our proposed method. However, 

these objective measures only determine whether the extracted audio closely matches the 

original audio. Therefore, an additional subjective evaluation was performed. For this eval-

uation, 10 listeners were invited to participate in the experiment. The mean opinion score 

(MOS) and comparison mean opinion score (CMOS) were used as the subjective measures. 

The MOS and CMOS are both widely used in audio and video analysis; the listeners’ 

subjective perceptions as well as ratings and personal preferences are used for evaluation. 

The MOS ranges from 1 (“bad”) to 5 (“excellent”). The CMOS is based on Annex E of the 

International Telecommunication Union-T Recommendation P.800 [48], and its total value 

ranges from −3 (“much worse”) to +3 (“much better”). To reduce the rating difficulty for 

the listeners, the assessment levels were simplified into three categories in our experiment: 

“worse,” “equal,” and “better.” 

The MOS results are presented in Table 5, where Tables 5 (a) and (b) detail the results 

for electric guitar sound separation and drum sound separation, respectively. Each listener 

was assigned three electric guitar and three drum sounds for each method (a total of 12 

guitar and 12 drum sounds) for evaluation. As presented in Table 5 (a), the MOS for the 

simple RNN was between 2.27 and 3, with an average score of 2.64, indicating poor to fair 

ratings. The MOS for the SH-4stack model was between 2.6 and 3.13, with an average 

score of 2.92, indicating poor to fair ratings. The MOS for the Wave-U-Net model was 

between 2.93 and 3.8, with an average score of 3.35, indicating fair to good ratings (closer 

to fair). The MOS for our proposed method was between 3.73 and 4.13, with an average 

score of 3.96, indicating fair to good ratings (closer to good). 

As shown in Table 5 (b), the MOS for the simple RNN was between 2.33 and 2.87, 

with an average score of 2.58, indicating poor to fair ratings. The MOS for the SH-4stack 

model was between 2.73 and 3.13, with an average score of 2.95, indicating poor to fair 

ratings. The MOS for the Wave-U-Net model was between 2.93 and 3.27, with an average 

score of 3.11, indicating fair to good ratings (closer to fair). The MOS for our proposed 

method was between 3.47 and 4, with an average score of 3.78, indicating fair to good 

ratings (closer to good). 

In CMOS, the following six pair-sets of listening evaluations were performed: our 

proposed method was evaluated against the SH-4stack, Wave-U-Net, and Simple RNN 

models; Wave-U-Net was evaluated against SH-4stack and simple RNN models, and the 

SH-4stack model was evaluated against the simple RNN model. Each listener was assigned 

three pairs in each evaluation pair for the electric guitar and drum sounds separately. 
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Table 5. The MOS scores of (a) electric guitar and (b) drums for Wave-U-Net, SH-4stack, 

Simple RNN and the proposed method.  

(a) 
Listener Wave-U-Net SH-4stack Simple RNN Proposed 

Listener 1 3.47 2.93 2.53 3.73 

Listener 2 3.2 2.8 2.6 3.93 

Listener 3 3.27 2.6 2.6 3.93 

Listener 4 3 3.07 2.67 3.93 

Listener 5 3.67 2.73 2.53 3.87 

Listener 6 3.2 3.07 2.67 4.07 

Listener 7 3.73 3.13 2.27 4 

Listener 8 2.93 2.73 2.73 4.07 

Listener 9 3.8 3.13 2.8 4 

Listener 10 3.27 3 3 4.13 

Average Score 3.35 2.92 2.64 3.96 

(b) 
Listener Wave-U-Net SH-4stack Simple RNN Proposed 

Listener 1 3.2 2.87 2.6 3.93 

Listener 2 3.13 2.73 2.47 3.87 

Listener 3 3.07 2.93 2.4 3.47 

Listener 4 3 3.07 2.67 3.6 

Listener 5 3.27 2.73 2.53 3.53 

Listener 6 3.07 3.07 2.33 3.93 

Listener 7 3.27 3.13 2.53 4 

Listener 8 2.93 2.8 2.8 3.73 

Listener 9 2.93 3.13 2.87 3.87 

Listener 10 3.27 3.0 2.6 3.87 

Average Score 3.11 2.95 2.58 3.78 

 

The percentage distribution of CMOS is presented in Table 6, where Tables 6 (a) and 

(b) show the results obtained for electric guitar sound separation and drum sound separa-

tion, respectively. The percentage ratio in the table represents the percentage ratio of pref-

erence. For example, in Table 6 (a), when our proposed method was compared with the 

SH-4stack model, our method accounted for 46% of the preferences and SH-4stack for 

27%; the remaining 27% was considered as equal.  

In conclusion, the results in Tables 5 and 6 demonstrate that the proposed method is 

superior to Wave-U-Net, SH-4stack, and simple RNN models in terms of the MOS and 

CMOS.   

 
Table 6. The percentage distribution of CMOS of (a) electric guitar and (b) drums for SH-

4stack, Wave-U-NET, the simple RNN and the proposed method. 

(a) 

Testing Pair Wave-U-Net SH-4stack Simple RNN Proposed Equal 

Proposed: SH-4stack – 27% – 46% 27% 

Proposed: Wave-U-Net 27% – – 43% 30% 

Proposed: Simple RNN – – 4% 93% 3% 

Wave-U-Net: SH-4stack 40% 33% – – 27% 

Wave-U-Net : Simple RNN 87% – 6% – 7% 

SH-4stack : Simple RNN – 53% 37% – 10% 
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(b) 

Testing Pair Wave-U-Net SH-4stack Simple RNN Proposed Equal 

Proposed : SH-4stack – 20% – 73% 7% 

Proposed : Wave-U-Net 20% – – 60% 20% 

Proposed : Simple RNN – – 4% 93% 3% 

Wave-U-Net : SH-4stack 46% 17% – – 37% 

Wave-U-Net : Simple RNN 60% – 20% – 20% 

SH-4stack : Simple RNN – 50% 20% – 30% 

4. CONCLUSIONS 

In this study, we proposed an sRNN model using GRUs and jointly optimized soft 

mask for extracting musical instrument sounds from mixed signals derived from multiple 

musical instruments. The generated electric guitar and drum extraction were compared 

with the results from several existing methods. Although the results did not constitute per-

fect extractions, the objective and subjective performance evaluation scores demonstrate 

the feasibility of the proposed approach. If the neural network structure is reinforced and 

large amounts of data are added for training, additional types of musical instrument sounds 

can be extracted. The model can assist in musical instrument sound recognition and music 

information retrieval in the future. 
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