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Making decisions based on a good representation of the environment is advantageous
in deep reinforcement learning (DRL). In this work, we propose a new network structure
for DRL, Deep Residual Attention Reinforcement Learning (DRARL), by incorporating an
attention-based structure into the network structure of Importance Weighted Actor-Learner
Architecture (IMPALA). DRARL helps the model learn a better representation by helping
the model focus on the crucial features. The effectiveness of DRARL was empirically eval-
uated in a subset of Atari games, with popular RL algorithms, IMPALA, PPO, and A2C.
The experiments show that DRARL works robustly with the three algorithms and improves
sample efficiency in seven out of ten games. Furthermore, the visualization of important fea-
tures empirically shows that the DRARL helps the model concentrate on the crucial features
and therefore improves the performance and sample efficiency.

Keywords: deep reinforcement learning, representation learning, attention mechanism, At-
ari games, visualization of reinforcement learning

1. INTRODUCTION

Reinforcement learning (RL) algorithms have recently been firmly established as
feasible approaches in several complex tasks such as Go and Atari games. Deep rein-
forcement learning (DRL), which combines RL with deep neural networks, sheds light on
the viability of training directly from image input which is a popular data source in real-
world tasks such as autonomous driving [1,2]. This combination increases the successful
applications of RL techniques but also brings challenges. As the number of dimensions
in the input increases (e.g., by using larger image size), the agent usually needs more
experiences and the learning becomes more difficult. To remedy the problem, we need to
improve sample efficiency, by obtaining such a good representation of an input that can
identify important features in the input.

Visual attention mechanisms inspired by human perception have recently achieved
great success in caption generation [3], image classification [4], and machine transla-
tion [5] by focusing on a subset of the input or computing the relevance between differ-
ent parts of inputs. In image classification tasks, visual attention mechanisms compute
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weights of pixel features and help the model distinguish between the important features
and the irrelevant features when dealing with high-dimensional images which induced
us to investigate the possible benefits from combining attention mechanisms with DRL
algorithms.

In this work, we extend our preliminary research [6] and propose a general network
structure for DRL called Deep Residual Attention Reinforcement Learning (DRARL)
which can be easily applied to multiple state-of-art DRL algorithms. Our contributions
can be summarized as follows:

1. We incorporate the residual attention mechanism [4] into the network structure of
a famous deep reinforcement learning model called IMPALA [2]. Unlike other
existing models that apply attention mechanisms to computationally expensive re-
current networks, our model computes weights on input features in the single feed-
forward process and is constructed by stacking multiple modules. DRARL shows
10.53% mean and 6.35% median improvements in the performance and demon-
strates higher sample efficiency compared to the original IMPALA in seven of ten
Atari games with the cost of a 4% increase in parameters.

2. In order to evaluate the general ability of DRARL, we apply it to the other two
famous DRL algorithms, Advantage Actor-critic (A2C) and Proximal Policy Opti-
mization (PPO) [7]. The results show that PPO and A2C enjoy the advantages of
the additional attention mechanism. (7.91% mean improvements in PPO and slight
mean improvements in A2C)

3. Interpretability is important for making reliable AI agents in general. To grasp the
change inside the neural networks, we visualized how our attention structure works
by visualizing the attention of the trained agents, which specifically, highlighting
the important regions where the agents base its decision on the game screen. The
results of visualization demonstrate that our network structure helps the model fo-
cus on the crucial area, which explains the improvement in the final performance
and sample efficiency to some extent.

2. RELATED WORK

When playing games, human players tend to pay more attention to the crucial objects
in the game screen such as the ball in a catching game or the treasure chest in a dungeon
game as they are closely connected to the goals of the game. Under the guidance of
inherent attention, we make decisions based more on these crucial parts than other parts
such as background which are less relevant to the goals, and consequently get a higher
score. Y. C. Leong et al. [8] conducted experiments on this utilization of the attention and
showed that the attention biases both value computation during choice and value update
during human learning which are also important in reinforcement learning algorithms.

Attention mechanisms have been incorporated into the reinforcement learning al-
gorithms to select relevant information for each agent in a multi-agent environment [9],
to reason about the relations between entities in a scene [10] and to reduce the com-
putational operations by focusing on relatively small informative regions of the input
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image [11, 12]. L. Yuezhang et al. [13] combined the optical flow-based attention mech-
anism with Advantage Actor-Critic (A2C) but no significant improvement was observed
in their experiments. Deep Attention Recurrent Q-Network (DARQN) [12] is an exten-
sion of Deep Q-Network [1] by adding soft and hard attention mechanisms. Study [14]
presents a soft attention model to force the model to focus on crucial information. The
purpose of these two works is similar to ours and all of them employ soft attention mech-
anisms but the structures of attention mechanisms are totally different. In DARQN, the
attention mechanisms work sequentially after the convolutional neural networks (CNNs)
and in research [14], the architecture of the model has been totally replaced with the
multi-head attention structure, a famous attention mechanism introduced in [5]. How-
ever, in our attention mechanism, both paths of CNNs and attention run in parallel, which
is easy to implement. Furthermore, both of two previous works depend on recurrent neu-
ral networks, on the contrary, we construct our model with feedforward networks, and
consequently make the learning in a much simpler way.

3. METHOD

3.1 Deep Residual Attention Reinforcement Learning

We incorporate the residual attention mechanism to help our model find the crucial
features among the state input. The proposed model is constructed by stacking multiple
attention modules and each module has two branches: the mask branch and the trunk
branch, following study [4]. An attention module is illustrated in Fig. 1. As shown in
Fig. 1, the trunk branch T (x) processes input features with a base network structure while
the mask branch M(x) adds soft weights on input features with a bottom-up top-down
structure which mimics both the bottom-up fast feedforward process and the top-down
attention feedback. The output of attention module is computed by:

Hi,c(x) = (1+Mi,c(x))∗Ti,c(x), (1)

where i ranges over all input features and c is the index of the channel in CNNs. If
the mask branch M(x) yields all zeros, the output H(x) become T (x), the output of the
base network. Similar to the ideas in residual learning [15], this equation ensures that
the performance will be no worse than the model without attention. The mask branch
not only works as a feature selector in forward process, but also produces gradient filter
during back propagation which makes model robust to the noise.

In this work, we use residual network [15] as a basic unit in both mask and trunk
branch. A residual block consists of two convolution layers and each of them is followed
by a ReLU unit. The trunk branch has two residual blocks while the mask branch only
has one. The network structure of the mask branch used in our model follows the design
in study [4] and is simplified as unlike the large size of images processed in image clas-
sification tasks, the scale of features processed in current reinforcement learning tasks is
relatively small. In the mask branch, a max-pooling is performed firstly to increase the
receptive field. After reaching a suitable resolution, a residual block takes the responsi-
bility of computing soft weights. Then, a bilinear interpolation is conducted to keep the
output size the same to the input features. After two consecutive 1×1 convolution layers,
a sigmoid layer finally normalizes the output range to [0,1].
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Fig. 1. The structure of the attention module.

3.2 Deep Reinforcement Learning

Among a family of state-of-the-art reinforcement learning algorithms, we chose
three algorithms, IMPALA, A2C and PPO and apply our new network structure to them.

3.2.1 IMPALA

IMPALA is a state-of-the-art method, while it is sometimes referred to as the rel-
atively large network structure among DRL algorithms. Instead of communicating the
gradients of parameters between workers and a central parameter server, the actors in
IMPALA communicate trajectories which consist of states, actions and rewards with a
centralized learner. With these trajectories, the learner is able to access the information
necessary for the training and therefore the parameter updating and the trajectory gener-
ation can be conducted in parallel. For the purpose of reducing the harmful discrepancy
between the latest policy updated by the learner and the out-of-date policy used in trajec-
tory generation, IMPALA uses a V -trace off-policy actor-critic algorithm.

The goal of IMPALA is to learn a policy π and a value function V π . As the learning
is off-policy, the algorithm needs to learn the V π of policy π which is usually called target
policy by using trajectories generated by a differnent policy µ called behaviour policy.
When given a trajectory (si,ai,ri)

i=t+n
i=t which consists of sequences of state s, the reward

r and the action a selected by policy π starting from time t to time t + n, the n-steps
V -trace target for V (st) at state st is defined as:

vt =V (st)+δtV + γct(vt+1−V (st+1)), (2)

where δtV = ρt(rt + γV (st+1)−V (st)) represents temporal difference for V and and γ

is the discount factor. Truncated importance sampling weights ρt = min(ρ,
π(at |st)

µ(at |st)
),
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ct = min(c,
π(at |st)

µ(at |st)
) . ρt defines the fixed point of the update and ρ directly influences

the value function the algorithm converges to. In details, the algorithm will converge to
the value function of the target policy if ρ is infinite while close to the value function of
the behavior policy when ρ is close to zero. ct works as a trace cutting and measures how
much a temporal difference at time t +1 will influence the update at a previous time t and
c influences the speed of convergence.

At training time t, the parameters of value function θ are updated by gradient descent
in the direction of

(vt −Vθ (st))∇θVθ (st), (3)

which adjusts the parameters θ to reduce the difference between the output Vθ (st) and the
V -trace target vt . The policy parameters ω are updated by policy gradient in the direction
of

ρt∇ω logπω(at |st)(rt + γvt+1−Vθ (ss)), (4)

which adjusts the parameters ω to increase the log-probability of chosen action which
lead to a higher state-action value and decrease the action which have a lower state-action
value. Vθ (ss) is used as a baseline to reduce the variance of the policy gradient estimate.
Furthermore, an additional entropy bonus is added to prevent premature convergence:

−∇ω ∑
a

πω(a|st) logπω(a|st). (5)

The overall update is conducted by summing these three gradient with appropriate coeffi-
cients.

3.2.2 A2C

A2C is the synchronous implementation of Asynchronous advantage actor-critic
(A3C) [16]. Instead of asynchronous updating, A2C performs updates after each actor
finishes its segment of experience. Same to the A3C, A2C updates the parameters with
the gradient given by:

∇θ ′ logπ(at|st;θ
′)A(st,at;θv)+β∇θ ′H(π(st;θ

′)), (6)

where θ ′ represents parameters updated to learn the target policy while θv is the param-
eters of value function for generating trajectories information used for learning. H is an
additional entropy regularization term to ensure sufficient exploration and β is the hy-
perparameter controlling the strength of the entropy regularization. A(st ,at ;θ ,θv) is an
advantage estimation defined as :

A(st ,at ;θv) = rt + γV (st+1;θv)−V (st ;θv). (7)

3.2.3 PPO

PPO attains the data efficiency and reliable performance of trust region policy op-
timization (TRPO) [17] with a simpler implementation by maximizing a novel objective
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function. TRPO maximizes an objective function defined as:

maximize
θ

Êt [
πθ (at | st)

πθold(at | st)
Ât ] (8)

subject to Êt[KL[πθold(· | st),πθ (· | st)]] ≤ δ , (9)

where θ and θodd are the policy parameters to be updated and before the update. Êt
represents the empirical average over a finite batch of samples and δ is the parameter
represents the bond on KL divergence. Ât is a truncated version of generalized advantage
estimation at time step t computed with the length-T trajectory. Ât is defined as:

Ât = δt +(γλ )δt+1 + · · ·+(γλ )T−t+1
δT−1, (10)

where δt = rt + γV (st+1)−V (st) and λ is the discount factor.
In order to simplify the optimization process and avoid the excessively large policy

update in the maximization of Eq. (8), PPO uses following clipped objective function to
penalize changes to the policy:

LCLIP(θ) = Êt [min(rt(θ)Ât,clip(rt(θ),1− ε,1+ ε)Ât)], (11)

where rt(θ) =
πθ (at | st )

πθold
(at | st )

, and ε is a hyperparameter controlling the clip operation.

Considering that parameters will be shared between the policy and value func-
tion if a neural network structure is used, combining policy objective function with a
value function error term which is defined as LV F

t = (Vθ (st)−V targ
t )2 where V targ

t =
Ât +Vθold (st) [18] is necessary. Similar to the A2C, an entropy bonus S[πθ ](st) is also
added to the objective function to ensure exploration. The final objective function is de-
fined as:

LCLIP+V F+S(θ) = Êt [LCLIP
t (θ)− c1LV F

t (θ)+ c2S[πθ ](st)], (12)

where c1,c2 are coefficients.

3.3 Visualization of Attention

In order to explain how the attention mechanism influences the decision, we imply
Gradient-weighted Class Activation Mapping (Grad-CAM) [19] which is widely used to
produce visual explanations for the decisions made by CNN-based models. As the fully-
connected layers lose the spatial information, Grad-CAM uses the gradient information
from the last convolutional layer to compute the importance of each neuron for a deci-
sion. Weitkamp et al. [20] adapted this method to reinforcement learning models. Let
ya be the value of selected action a before the softmax layer and the kth feature map of
convolutional layer A as Ak. The neuron importance weight αa

k is defined as:

α
a
k =

1
Z ∑

i
∑

j

∂ya

∂Ak
i j
, (13)

where i and j are the coordinates of feature maps,
1
Z

∑i ∑ j is a global average pooling
operation, and αa

k represents a partial linearization of the network downstream from A



DEEP REINFORCEMENT LEARNING WITH ATTENTION MECHANISM 523

which computes the importance weights of each neuron of feature map k for a selected
action a.

Then a weighted combination of forward activation maps is performed and for filter-
ing the features that have a negative influence on the action of interest, a ReLU is applied
to the linear combination of maps. The final localization map La

Grad-CAM is defined as:

La
Grad-CAM = ReLU(∑

k
α

a
k Ak). (14)

We finally extrapolate the heat-map to the size of input state by conducting a bilinear in-
terpolation because La

Grad−CAM is a coarse heat-map of the same size as the convolutional
feature map which is smaller than the input.

4. EXPERIMENTS

To evaluate the effectiveness of DRARL, we conducted the following experiments:

1. The experiments in one of the most well-used benchmarks for DRL, Atari game.
We extended the experiments of IMPALA from a base set of five Atari games con-
ducted in our preliminary work [6] to an extended set of 10 Atari games. In order
to evaluate the general ability of DRARL, we also conducted experiments with two
famous DRL algorithms, A2C and PPO. Because of the limitation of computational
resources, we only had time to obtain results of the base set of Atari games in the
experiments of A2C and PPO. But we think these five games could produce con-
vincing evidence to prove the general ability of DRARL.

2. Ablation study on different baseline network structures. To identify whether per-
formance increases are introduced by the attention mechanisms or by the increase
in the number of learnable parameters, we designed two naive network structures as
new baseline and conducted experiments in an Atari game where DRARL showed
great improvements.

3. Visual Explanation. We analyzed the influence of the attention mechanism on the
learned parameters by visualizing the important regions in the game screen with
Grad-CAM and counting the number of parameters in different gradient intervals.
Statistical analysis and visualization results show that DRARL helps models focus
on the important features and thus learn a better representation.

4.1 Details of Training

For all the experiments, we evaluated models trained with two network structures:
our DRARL and the original network structure of IMPALA in the Atari environment
produced by OpenAI Gym [21]. The two network structures are shown in the Fig. 2. The
original network structure of IMPALA has 1,089,232+257×action numbers parameters
while DRARL has 1,135,632+257×action numbers parameters which is only 4% more
than the IMPALA’s.

For data processing and hyperparameters, we followed the study [2] where all the
image data in the training was converted from RGB color space to Gray color space
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Fig. 2. Model architecture; (Left) IMPALA, which is same to the network structure proposed in
study [2]; (Right) DRARL, using one attention block (explained in Section 3.1) instead of two
residual blocks.

and resized into 84× 84 at first. Then the last four frames (after frame skipping) were
stacked together as the observation of current state. For models trained by IMPALA, the
hyperparameters used in the training were totally the same as the setting in research [2].
We trained our models in the architecture of 32 workers and 1 centralized learner. For
experiments of A2C and PPO, we used the implementation of A2C and PPO2 in OpenAI
baselines [18] and followed the setting of initial parameters. All the experiments were
conducted on a single machine with two NVIDIA 1080Ti GPUs and one 16-core 32-
threads AMD CPU.

The results shown in this paper were the average test scores of three agents each
of which is trained independently with same algorithm and network structure with 200
million environment steps. Results shown as percentages are computed with scores nor-
malized by baseline’s (IMPALA, A2C, and PPO) scores, which demonstrate the differ-
ence between our proposed one and the baseline more directly than human-normalized
scores. Agents only had a single life during training while games over when agents lost
the standard number of lives in the test environment. Each score listed in the Tables and
Figures is the average score over 200 plays in the test environment. For convenience, we
abbreviate the models trained with the baseline IMPALA’s network structure as IMPALA
in the Tables and Figures.

4.2 Performance in Atari Games

4.2.1 IMPALA

Table 1 summarizes the results of 10 Atari games, five of which were shown in our
preliminary work [6]. The fourth column of the table shows the rate of increase of the
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Table 1. The final scores of DRARL and original IMPALA in 10 Atari games.
DRARL shows 10.53% mean and 6.35% median higher performance over IMPALA
(based on IMPALA-normalized results).

Game IMPALA (std) DRARL (std) Rate of increase IMPALA paper
Alien 1442.83 (218.77) 1570.05 (182.47) 8.82% 15962.1
Amidar 757.45 (56.17) 749.50 (119.77) −1.05% 1554.79
BeamRider 7645.31 (127.84) 7001.07 (64.89) −8.43% 29608.05
Berzerk 650.58 (4.28) 659.98 (26.74) 1.44% 1852.70
Breakout 473.00 (13.88) 497.29 (18.80) 5.14% 787.34
Centipede 6716.95 (1097.22) 6899.73 (763.32) 2.72% 11049.75
Krull 5966.99 (171.38) 8053.78 (250.01) 34.97% 8147.70
KungFuMaster 25232.50 (1712.01) 27141.00 (1549.76) 7.56% 43375.50
RoadRunner 48939.33 (4560.99) 55960.83 (2151.47) 14.35% 57121.00
Seaquest 1631.57 (243.86) 2280.00 (237.82) 39.74% 1753.20

Table 2. The final scores of A2C with IMPALA network structure and DRARL in
5 Atari games. A2C+DRARL shows 0.45% mean and 2.55% median higher perfor-
mance over A2C (based on A2C-normalized results).

Game A2C (std) A2C+DRARL (std) Rate of increase
Amidar 988.99 (269.63) 1014.23 (136.04) 2.55%
Breakout 677.77 (17.13) 685.49 (8.44) 1.14%
Centipede 6034.03 (265.04) 6564.29 (192.46) 8.79%
Krull 8772.12 (1720.52) 9621.70 (554.61) 9.68%
Seaquest 2198.60 (431.93) 1760.77 (3.94) −19.91%

performance of proposed DRARL compared to baseline IMPALA. The fifth column of
the table shows the results published in study [2]. The results of our IMPALA shown
in the second column are different from those in the study [2]. We investigate that the
differences are introduced by some parameters such as the number of workers that are
not written in the paper [2]. From Table I, we can find that DRARL outperforms the
original IMPALA in eight of ten games. There is only one game BeamRider where the
performance of proposed DRARL is worse (−8.43%) than IMPALA. We find that in
BeamRider, the enemies move randomly, which means the next state is stochastic given
only 4 past observed frames. In this stochastic environment, focusing on the current fea-
tures may have negative influence on the planning of the future which is more important
to get a higher score.

4.2.2 A2C

As shown in the Table 2, DRARL performs better than the network structure of IM-
PALA in 4 of 5 games when trained with A2C. However, the additional attention mech-
anism has a negative effect (−19.91%) on the performance of A2C in Seaquest where
models benefit a lot (+39.74%) from attention when trained with IMPALA. We also find
that the results of A2C+DRARL in Seaquest have an unusually low standard deviation
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Fig. 3. Results of Sequest where both DRARL and IMPARA network structure are trained with
A2C. Training index 1, 2, 3 are the results used to compute the mean value in Table 2 (marked as
base in the figure) while 4, 5, 6 are the results from extended experiments in Seaquest(marked as
extended in the figure). The mean scores of the six results are 2131.12 (IMPALA) and 1899.12
(DRARL). DRARL has a 10.89% decline compared to the IMPALA.

compared to the other results of Seaquest. We investigate the reason and plot the learning
curves in Fig 4, from where we can find that there seems to be a key point causing reward
jumps in Seaquest and when the models catch the point, they can converge to a higher
score (about 2200), otherwise they will stay the same without any further improvement
until the end (about 1700).

To investigate if DRARL really can not catch the key point during the training by
A2C in Seaquest, we increased the number of training times from 3 to 6 and plot the
results in Fig. 3. Fig. 3 shows that DRARL did catch the key point but in relatively small
percentages (2 of 6 training) compared to the models trained with network structure of
IMPALA (4 of 6 training). We also find that the rate of increase increases from −19.91%
to −10.89% and the mean improvement increases from 0.45% to 2.26%, which could be
further improved with more number of training times.

4.2.3 PPO

Similar to the results of A2C, DRARL outperforms the network structure of IM-
PALA in the first four games but has a 11.52% decrease in Seaquest, as shown in Table 3.
We find that the key point in Sequest discussed above also exists during the training of
PPO in Seaquest and DRARL catches 1 of 3 training while models trained with the net-
work structure of IMPALA catches 3 of 3 training. We think that the the performance of
two network structures will become similar if we increase the number of training times.
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Table 3. The final scores of PPO with IMPALA network structure and DRARL in
5 Atari games. PPO+DRARL shows 7.91% mean and 8.43% median higher perfor-
mance over PPO (based on PPO-normalized results).

Game PPO (std) PPO+DRARL (std) Rate of increase PPO paper
Amidar 1933.69 (757.45) 2511.96 (710.03) 29.91% 674.6
Breakout 560.55 (92.61) 607.82 (38.80) 8.43% 274.8
Centipede 12074.21 (404.99) 13301.78 (1397.78) 10.17% 4386.4
Krull 9567.93 (248.94) 9811.74 (77.47) 2.55% 7942.3
Seaquest 2801.73 (20.21) 2479.03 (291.73) −11.52% 1204.5

4.2.4 Sample efficiency

We plot learning curves of models trained by IMPALA with DRARL and original
network structure in 10 Atari games in Fig. 4. We find that the DRARL contributes to a
higher sample efficiency represented by reaching a higher performance in an earlier stage
of training in Seaquest, Krull, RoadRunner, and KungFuMaster, which are the games
enjoy the benefits from new network structures most. If we analyze the three curves from
each network structure together, we can find the mean of three curves of DRARL is above
the IMPALA’s in Alien and Centipede. Even for the Amidar, where DRARL does not
works well, one of three training curves is above all of the three curves of IMPALA. These
results give us evidence that DRARL sometimes leads to a higher sampling efficiency in
Alien, Centipede, and Amidar. Possibly because of the stochasticity in BeamRider, the
additional attention mechanism slows down the training and results in a lower sample
efficiency. For the remaining games, Berzerk and Breakout, DRARL shows almost the
same sample efficiency as the IMPALA.

4.3 Ablation Study on Network Structure

In order to figure out which part of DRARL most contributed to the improvement
in performance, we created two simplified network structures, Simple DRARL and Large
IMPALA, for comparison. As shown in the Fig. 5, Simple DRARL has the same number
of parameters with proposed DRARL while the number of Large IMPALA’s parameters is
a little bit smaller than DRARL (the difference comes from two 1×1 convolutional layers
in mask branch, which is small enough to be ignored compared to the number of total
parameters). Simple DRARL is designed to investigate the performance of the bottom-up
top-down structure and Large IMPALA is set to demonstrate the effect of the increment in
the number of parameters. We choose PPO as training algorithms and Amidar where our
DRARL shows great improvement (+29.91%) with PPO as the experiment environment
to evaluate the proposed method and baselines.

As shown in Table 4, although the Large IMPALA outperforms the IMPALA which
demonstrates the increment in the number of parameters has a positive effect on perfor-
mance, higher scores of Simple DRARL and DRARL shows that more improvement is
brought by the additional attention mechanism. The higher score of DRARL compared
to Simple DRARL also reveals the effectiveness of the bottom-up top-down structure in
the mask branch.
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(a) Alien (b) Amidar

(c) BeamRider (d) Berzerk

(e) Breakout (f) Centipede

(g) Krull (h) KungFuMaster

(i) RoadRunner (j) Seaquest

Fig. 4. Learning curves of models trained by IMPALA with or without DRARL in Atari games.
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Fig. 5. The structure of a single network module (instead of each attention module in Fig 1) of
DRARL, IMPALA and two new alternatives.

Table 4. The final scores of PPO with new baselines in Amidar.
Game IMPALA(std) Large IMPALA Simple DRARL DRARL(std)
Amidar 1933.69 (757.45) 2100.71 (398.44) 2314.52 (108.71) 2511.96 (710.03)

4.4 Visual Explanation

4.4.1 Visualization by Grad-CAM

To explain the reason why the additional residual attention mechanism influences the
training in a positive way, we visualized the important regions where the models base their
decision on the game screen by Grad-CAM. The important regions can be considered
as the attention of the models thus the regions should cover the crucial features if the
trained models are able to focus on the crucial features. The important regions of the
stacked four frames (former three frames are shown as afterimage) among the observation
are shown in Fig. 6. As shown in Fig. 6, the important regions for the models trained
by IMPALA are distributed in a wide range including irrelevant area while the models
trained by DRARL relatively focus on the crucial features (the enemy and player in Alien,
RoadRunner and Seaquest, the player in Krull). These results give empirical evidences
that the residual attention mechanism helps IMPALA concentrate on the features which
are closely connected to the reward and learn a better representation of the environment.

We also visualized the important regions for different training stages of IMPALA
with DRARL to demonstrate the trend of focused features during trining. We visualized
four stages, 0%(after initialization), 36% (after 72 million training steps), 72% (after 144
million training steps), and 100% (after 200 million training steps). From Fig. 7 we can
find that after a short-term study, the model trained with DRARL is able to recognize
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(a) Alien (b) Krull (c) RoadRunner (d) Seaquest

Fig. 6. The important regions in four Atari games trained by IMPALA with two DRARL and ori-
ginal network structure. Top: IMPALA Bottom: DRARL.

(a) DRARL-0% (b) DRARL-36% (c) DRARL-72% (d) DRARL

Fig. 7. The important regions for different training stages of IMPALA with DRARL in Seaquest.

the crucial features which are shown as the important region cover the enemies. With
training steps increase, the region becomes smaller and moves slightly from the former
location. The results of visualization correspond the learning curve in Fig 4 where a great
improvement is demonstrated at the early stage of training while the curve tends to be flat
after 144 million training steps.

It should be noted that the attention visualized by Grad-CAM sometimes deviates
from the expected location and not always interpretable. We observed some dependency
on games, where Grad-CAM works in (a) Alian and (b) Krull, sometimes failed in (d)
Sequest shown in the bottom right region, and more frequently in (c) RoadRunner shown
in the top yellow background, which is attribute to the limitation of adjusting the visual-
ization method developed for computer vision to RL. The obscure attention pictures are
mainly caused by the bilinear interpolation operation which is needed to resize the heat
map to match the original game size.
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Fig. 8. Frequency of the absolute value of gradients on each input pixels with respect to the selected
action. Gradients are accumulated for each interval among 100 state-action pairs in Seaquest.

4.4.2 Visualization of gradients

In order to see how agents focus on important area in the input, we made additional
analysis statistically, while we already understood typical cases by Grad-CAM in the pre-
vious experiment. We collected gradient data of models trained by IMPALA with original
IMPALA networks and DRARL on consecutive states in a trajectory. We recorded the ab-
solute value of the gradients for each pixel with respect to the policy output for the selected
action, and counted their occurrence for each interval. The results are the sum of num-
bers on 100 images input and shown as the percentage of total in Fig. 8. We can find the
number in the middle gradient interval decrease (27.5% decrease to 23.3% in 0.001-0.01)
and the the number in the larger values interval increase (7.7% increase to 11.3% in >
0.02) compared to the baseline IMPALA. From the results of different training stages of
IMPALA with DRARL, we can also find that with training steps increase, the number in
the larger values interval (> 0.02) increase while the number in the lower values interval
(< 0.001) decrease. These results show agents focus more on a subset of features along
with training by DRARL, and indicate the attention mechanism helps trained agents focus
on the important features.

5. DISCUSSION

In this work, we have investigated the effectiveness of combining attention mecha-
nisms with DRL algorithms and propose DRARL which incorporates the residual atten-
tion mechanism into the network structure of IMPALA. With the attention mechanism,
DRARL shows 10.53% mean and 6.35% median improvements in the performance and
demonstrates higher sample efficiency compared to the original IMPALA in seven of ten
Atari games. The experiments of A2C and PPO demonstrate that our network structure
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is also effective (7.91% mean improvements in PPO and slight mean improvements in
A2C) when trained with other DRL algorithms. We also produce explanations about the
improvement by visualizing the important features and the results show that the residual
attention mechanism helps model concentrate on the features which are closely connected
to the reward and learn a better representation of the environment, which produces an ex-
planation of improvements in the final performance and sampling efficiency.
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