
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 159-182 (2017)
DOI: 10.6688/JISE.2017.33.1.10

159

An Efficient Index and Data Distribution Scheme
for XML Data Broadcast in Mobile Wireless Networks

MOHAMMAD JAVANI1 AND MEGHDAD MIRABI2,*

1Department of Computer Engineering
University of Kashan, Kashan, Iran

2Department of Computer Engineering
Islamic Azad University, South Tehran Branch, Tehran, Iran

E-mail: Javani125@yahoo.com; meghdad.mirabi@gmail.com

In mobile wireless networks, a scalable way to disseminate XML data among many

mobile clients is broadcasting of XML data. In these networks, a broadcast server dis-
seminates XML data through a broadcast channel and mobile clients access the XML
stream using energy-restricted portable devices. The main problem of XML data broad-
cast is that XML data can be accessed sequentially, and mobile clients have to wait for
their desired data until they appear over the broadcast channel. By indexing the XML
stream, mobile clients can efficiently decide when and where their desired data are
available over the broadcast channel. The main question in indexing an XML stream is
that how to mix the index with the XML data in such a way that mobile clients consume
minimum time and energy during the process of XML queries. In this paper, we propose
a new distribution scheme to place both the index information and XML data over a
wireless broadcast channel by optimally partitioning the partial and relevant parts of both
the indexes and XML data and then distributing them over a broadcast channel. Although
the proposed distribution scheme increases the size of XML stream but the experimental
results show that it does not degrade the performance of XML query processing of mo-
bile clients.

Keywords: data distribution, mobile wireless networks, wireless broadcast channel, XML
query processing, XML stream

1. INTRODUCTION

Typically, there are two types of entities in mobile wireless broadcast networks:
mobile clients and broadcast server. In these networks, a broadcast server periodically
disseminates data through a wireless broadcast channel and mobile clients independently
tune in to the channel through mobile devices and process their queries by scanning the
broadcast stream [1-4].

Generally, data broadcast allows mobile clients retrieve their desired data over a
broadcast channel with minimum energy consumption since a large number of mobile
clients can be served simultaneously with no additional energy consumption for sending
requests to the broadcast server [5-8]. However, the main problem of data broadcast in
mobile wireless networks is that data can be accessed sequentially, and mobile clients
have to wait for their desired data until they appear over the broadcast channel [9, 10].

Building an index for broadcast data helps mobile clients in deciding when and
where their desired data will be available over the broadcast channel [1-4]. By exploiting
the index information, mobile clients can switch to the power saving mode (i.e. the doze

Received August 26, 2015; revised February 23, 2016; accepted July 4, 2016.
Communicated by Hee Kap Ahn.
* Corresponding author.

MOHAMMAD JAVANI AND MEGHDAD MIRABI

160

mode) until their desired data are arrived over the channel. One crucial aspect of index-
ing the broadcast data is that how to mix the index with the data over the broadcast
channel in such a way that mobile clients consume minimum time and energy to retrieve
their desired data.

A common metric to estimate the cost of data access over a wireless broadcast
channel is access time [1-4]. It is the interval between the times that a mobile client sub-
mits its query on the air to the time that the mobile client receives the query results from
the broadcast channel. Also, a common metric to estimate the total amount of energy
consumption of a mobile client to access the desired data over a broadcast channel is
tuning time [1-4]. It is the total time that a mobile client remains in the active mode to get
the desired data over the broadcast channel. As much as a mobile client remains in the
active mode to get the desired data, it consumes more amounts of energy.

With the growing popularity of XML [11] as a standard for data dissemination over
the Internet, the use of XML for data broadcasting over wireless broadcast channels has
obtained a lot of attentions [12-22]. In recent years, several XML indexing methods have
been proposed to selectively access XML data over an XML stream in a broadcast chan-
nel such as the indexing method proposed by [23-25]. These indexing methods are based
on the structural information between XML nodes which is placed in the wireless XML
stream and XML query processing at a mobile client is performed by exploiting the
structural information in the index to reach the desired data. In these indexing methods,
if a mobile client tunes in to the broadcast channel in the middle of a broadcast cycle, it
should wait until the next broadcast cycle begins and this waiting time results in a long
access time. We refer to this as the Delayed Query Processing Problem [13]. We de-
scribe this problem for the indexing method proposed by [25] in the following example.

Fig. 1. General structure of the XML stream over the broadcast channel.

Example 1: Fig. 1 shows the general structure of an XML stream in a wireless broadcast
channel. As shown in Fig. 1, the XML stream is divided into two segments: Index Seg-
ment and Data Segment. The index segment contains the structural information of XML
nodes in the XML document (i.e. a set of root-to-node paths) which takes the role of
index, whereas the data segment contains the contents of XML nodes in the XML docu-
ment. Now, assume that the mobile client c1 tunes in to the broadcast channel before the
first index is broadcasted, while the mobile clients c2 tunes in to the broadcast channel
after the last index has been passed over. The mobile client c1 can start XML query pro-

AN EFFICIENT INDEX AND DATA DISTRIBUTION SCHEME FOR XML 161

cessing within the current broadcast cycle but the mobile client c2 have to wait until the
next broadcast cycle begins since the index information is disseminated over the broad-
cast channel before the mobile client c2 tunes in to the channel. This waiting time will
increase access time.

To solve this problem, the partial and relevant parts of the index segment (i.e. the
relevant paths) and the data segment (i.e. the relevant XML nodes) must be distributed in
the current broadcast cycle in such a way that mobile clients can process XML queries
without exploring the XML stream at the beginning of the next broadcast cycle. By ex-
ploiting this fact, we propose a new index and data distribution scheme for the XML
indexing method proposed in [25] by dividing each broadcast cycle to a set of quantums.
Each quantum contains a set of paths and XML nodes. Hence, the main contributions of
this paper are summarized as follows:

 We propose a new distribution scheme for the proposed XML indexing method in [25]

by distributing the partial and relevant parts of both the indexes and the XML data in-
to suitable positions over the broadcast channel.

 We provide algorithms for generating a wireless XML stream and processing different
types of XML queries over the broadcast channel based on our proposed distribution
scheme.

 We evaluate the performance of our proposed distribution scheme in processing dif-
ferent types of XML queries by performing several experiments using different XML
data sets.

The remainder of this paper is organized as follows: in Section 2, the background
related to this study is described. In Section 3, our proposed XML index and data distri-
bution scheme is presented. In Section 4, the process of XML querying at mobile clients
based on our proposed distribution scheme is explained. In Section 5, the experimental
results in processing different types of XML queries based on our proposed distribution
scheme are presented. Finally, in Section 6, the paper is concluded with a conclusion and
discussion of future works.

2. XML DATA MODEL AND XML QUERIES

Generally, an XML document can be modeled by a tree structure. In this tree struc-
ture, elements are represented by nodes and Parent-Child (P-C) relationships between the
elements are represented by edges. Fig. 3 shows the XML tree corresponding to the ML
document of Fig. 2.

Fig. 2. An example of XML document.

<SigmodRecord>
 <issue>

 <volume>11</volume>
 <number>1</number>
 <articles>
 <article>
 <title>Architecture of Future Data Base Systems</title>
 <authors>

 <author position="00">Lawrence A. Rowe</author>

MOHAMMAD JAVANI AND MEGHDAD MIRABI

162

 <author position="01">Michael Stonebraker</author>
 </authors>
 <initPage>30</initPage>
 <endPage>44</endPage>

 </article>
 <article>

 <title>Multisafe  A Data Security Architecture</title>
 <authors>
 <author position="00">Robert P. Trueblood</author>
 <author position="01">H. Rex Hartson</author>
 </authors>
 <initPage>45</initPage>
 <endPage>63</endPage>
 </article>
 </articles>
</issue>

 <issue>
 <volume>12</volume>
 <number>2</number>
 <articles>
 <article>
 <title>Comparison and Mapping of the Relational and CO
DASYL Data Models</title>
 <authors>
 <author position="00">Gary H. Sockut</author>
 </authors>
 <initPage>55</initPage>
 <endPage>68</endPage>
 </article>
 </articles>

 </issue>
</SigmodRecord>

Fig. 2. (Cont’d) An example of XML document.

In this paper, we use XPath [26] as the query language. The results of an XPath
query are derived based on the location path. A location path consists of location path
steps. Processing the location path step will identify the set of XML nodes in the XML
tree which satisfies the axis, node sets, and predicates in the location path step.

Definition 1: Let “/” denotes a child axis, “//” denotes a descendant axis, and “*” de-
notes a wildcard in an XPath expression. Let XP[/,//,*] denotes a fragment of XPath corre-
sponding to XPath expressions that involve only “/”, “//”, and “*”. A simple path XML
query is a fragment of XP{/,//,*] that may involve child axis (“/”), descendant axis (“//”),
and wildcard (“*”).

For example, the simple path XML query Q = “/SigmodRecord//authors/author”

finds authors for all of the articles published by the Sigmod Record journal.

Definition 2: Let “/” denotes a child axis, “//” denotes a descendant axis, “*” denotes a
wildcard, and “[]” denotes a branching predicate in an XPath expression. Let XP{/,//,*,[]}
denotes a fragment of XPath corresponding to XPath expressions that involve only “/”,
“//”, “*”, and “[]”. A twig pattern XML query is a fragment of XP{/,//,*,[]} that involves
child axis (“/”), descendant axis (“//”), wildcard (“*”), and branching predicate (“[]”).

AN EFFICIENT INDEX AND DATA DISTRIBUTION SCHEME FOR XML 163

Fig. 5. General structure of the Quantumj in a broadcast cycle.

For example, the twig pattern XML query Q = “/SigmodRecord/issue[volume/text()
= “11”]//title” finds titles for all of the articles published in the volume 11 of the Sigmord
Record journal.

3. OUR PROPOSED DISTRIBUTION SCHEME

In our proposed distribution scheme, a broadcast cycle is divided into N parts called
Quantum. Fig. 4 shows a broadcast cycle with four quantums (i.e. N = 4). Fig. 5 shows
the general structure of the jth quantum in a broadcast cycle in our proposed distribution
scheme. As shown in Fig. 5, a quantum is divided into three segments: Metadata Seg-
ment, Index Segment, and Data Segment. In the following, we explain the structures of
these three segments in each quantum.

Fig. 3. An example of XML tree.

Fig. 4. General structure of a broadcast cycle.

MOHAMMAD JAVANI AND MEGHDAD MIRABI

164

Definition 3: The root-to-node path of a node e in an XML tree T is a sequence of node
names (or tag names) from the root node r to the node e which are separated by “/”.

For example, the root-to-node path of the node “article” with the preorder 24 in the
XML tree illustrated in Fig. 3 is the path “/SigmodRecord/issue/articles/article”.

By grouping the set of XML nodes having the same root-to-node path, a set of
unique root-to-node paths called path summary (PS) can be constructed.

Definition 4: The path summary of an XML tree (PST) is an ordered set of unique root-
to-node paths in the XML tree T where the paths are ordered based on the breadth first
traverse of the XML tree T.

For example, the path summary of the XML tree illustrated in Fig. 3 is shown in

Table 1.

Table 1. An example of path summary.
Ordered ID Path Name Root-to-Node Path

1 Path1 /SigmodRecord
2 Path2 /SigmodRecord/issue
3 Path3 /SigmodRecord/issue/volume
4 Path4 /SigmodRecord/issue/number
5 Path5 /SigmodRecord/issue/articles
6 Path6 /SigmodRecord/issue/articles/article
7 Path7 /SigmodRecord/issue/articles/article/title
8 Path8 /SigmodRecord/issue/articles/article/authors
9 Path9 /SigmodRecord/issue/articles/article/initPage
10 Path10 /SigmodRecord/issue/articles/article/endPage
11 Path11 /SigmodRecord/issue/articles/article/authors/author

As shown in Fig. 5, the metadata segment of a quantum contains a table quantum.
The general structure of the table quantum in the metadata segment of the jth quantum of
a broadcast cycle is illustrated in Fig. 6 (a).

Definition 5: Assume that PSj = {Path1, Path2, …, Pathm} be the subset of the root-to-
node paths in the path summary of the XML tree T which is placed in the jth quantum.
The general structure of the Table Quantum in the metadata segment of the jth quantum
contains the following fields:

 Length of Quantumj: This field indicates the length of the jth quantum (in bytes) in a

broadcast cycle except the length of the Table Quantum (i.e. the length of Index Seg-
ment + the length of Data Segment).

 Number of Paths: This field indicates the total number of the root-to-node paths in the
path summary of the XML tree T which are placed in the jth quantum (i.e. m).

 Node Information: It is used when the field Number of Paths is not equal to “0”. It
contains a set of pairs with the following two fields:
o Length of Last Node Name: 1  i  m, this field indicates the total length of the

last node name in the ith path.
o Last Node Name: 1  i  m, this field contains the last XML node name in the ith path.

AN EFFICIENT INDEX AND DATA DISTRIBUTION SCHEME FOR XML 165

It should be noted that two fields Length of Last Node Name and Last Node Name are
repeated for each path placed in the jth quantum.

For example, Fig. 6 (b) shows the structure of the table quantum in the metadata
segment of the first quantum in the case that there is four quantums in a broadcast cycle.

It should be mentioned that the field Number of Paths can be equal to “0” in the ta-
ble quantum of the metadata segment of the jth quantum. It means that the jth quantum
has only XML data. The general structure of the jth quantum in a broadcast cycle in this
case is illustrated in Fig. 7.

(a) General structure of the table quantum in the metadata segment of the jth quantum.

(b) Structure of the table quantum in the metadata segment of the 1st Quantum.

Fig. 6. Structure of the table quantum in the metadata segment.

Fig. 7. General structure of the Quantumj in a broadcast cycle.

As shown in Fig. 5, the index segment of a quantum is a sequence of ordered uni-
que root-to-node paths. The general structure of the ith root to-node path (Path1) in the
index segment of the jth quantum is illustrated in Fig. 8 (a).

Definition 6: Assume that PSj = {Path1, Path2, …, Pathm} be the subset of the root-to-
node paths in the path summary of the XML tree T which is placed in the jth quantum.
The general structure of the Pathi, 1  i  m, in the index segment of the jth quantum
contains the following fields:

 BREAK FLAG: This field indicates whether the data segment related to this index
segment is broken or not. The default value of this flag is “0” which means the data
segment is not broken.

MOHAMMAD JAVANI AND MEGHDAD MIRABI

166

 Length of Pathi: This field indicates the total length of the ith root-to-node path in the PSj.
 Pathi: This field contains the ith root-to-node path in the PSj.
 First Child Address: This field contains the distance between the Pathi and the Pathk in

the index segment of the jth quantum where the Pathk is the first child path of the Pathi.
 First Node Address: This field contains the address (i.e. arrival time) of the first XML

node having the root-to-node path Pathi in the data segment related to this index segment.
 Last Node Address: This field contains the address (i.e. arrival time) of the last XML

node having the root-to-node path Pathi in the data segment related to this index segment.

For example, Fig. 8 (b) shows the structure of the path with the ordered ID 8 in the

path summary shown in Table 1. The First Child Address of the path with the ordered ID
8 in the path summary is the path with the ordered ID 11 and therefore, the distance be-
tween these two paths is 3. The two fields First Node Address and Last Node Address
are filled based on the order of the XML nodes in the XML stream.

(a) General Structure of the Pathi in the Index Segment of the jth Quantum.

(b) Structure of the 8th Path in the Path Summary.

Fig. 8. Structure of the Pathi in the index segment.

As shown in Fig. 5, the data segment of a quantum is a sequence of XML nodes.
The general structure of the ith node (Nodei) in the data segment of the jth quantum is
illustrated in Fig. 9 (a).

Definition 7: Assume that Nodesj = {Node1, Node2, …, Noden} be the subset of XML
nodes in the XML tree T which is placed in the jth quantum. The general structure of the
Nodei, 1  i  n, in the data segment of the jth quantum contains the following fields:

 FLAGS: This field contains three flags that are IS-BROKEN, HAS-TEXT and HAS-

ATTRIBUTES. The flag IS-BROKEN indicates whether this data segment is broken
or not. The default value of this flag is “0” which means the data segment is not broken.
Two flags HAS-TEXT and HAS-ATTRIBUTES indicate whether the ith XML node
(Nodei) contains text and/or attributes or not. The default value of these two flags is
“0” which means the ith XML node (Nodei) does not have text and attributes.

 Remaining Length of Quantum: A 16-bits value which indicates the remaining length
of the current quantum (i.e. the jth quantum).

 Preorder: This field contains the preorder of the ith XML node (Nodei) in the XML tree
T when the XML tree T is traversed in the preorder sequence.

 Postorder: This field contains the postorder of the ith XML node (Nodei) in the XML
tree T when the XML tree T is traversed in the postorder sequence.

AN EFFICIENT INDEX AND DATA DISTRIBUTION SCHEME FOR XML 167

 Depth: This field contains the depth of the ith XML node (Nodei) in the XML tree T.
 Text Information: This part is used when the ith XML node (Nodei) in the XML tree T

has text. In this case, the flag HAS-TEXT will be set to “1”. The Text Information
contains two fields:
o Length of Text: This field indicates the total length of the text content of the ith

XML node (Nodei) in the XML tree T.
o Text: This field contains the text content of the th XML node (Nodei) in the XML tree T.

 Attribute Information: This part is used when the ith XML node (Nodei) in the XML
tree T has at least one attribute. In this case, the flag HAS-ATTRIBUTE will be set to
“1”. The Attribute Information contains the following fields:
o Number of Attributes: This field indicates the total number of attributes of the ith

XML node (Nodei) in the XML tree T.
o Length of Attribute Name: This field indicates the total length of the attribute name.
o Attribute Name: This field contains the name of attribute.
o Length of Attribute Value: This field indicates the total length of the attribute value.
o Attribute Value: This field contains the value of attributes.

Note that the four fields Length of Attribute Name, Attribute Name, Length of Attribute
Value, and Attribute Value are repeated for each attribute of the ith XML node (Nodei)
in the XML tree T.

(a) General structure of the Nodei in the data segment of the jth quantum.

(b) Structure of node “author” with the Preorder “10”.

Fig. 9. Structure of the Nodei in the data segment.

For example, Fig. 9 (b) shows the structure of the node “author” with the preorder
10 in the XML tree illustrated in Fig. 3. Note that the text information and attribute in-
formation of this node are represented in Fig. 2. In our proposed structure for the XML

MOHAMMAD JAVANI AND MEGHDAD MIRABI

168

stream, each XML node in the data segment of a quantum contains its preorder, postor-
der, and depth information. This information is used to process twig pattern XML que-
ries which will be explained in Section 4.

In order to process twig pattern XML queries, we need to determine the Parent-
Child (P-C) and Ancestor-Descendant (A-D) relationships between the XML nodes in
the XML tree. By labeling the XML nodes in the XML tree with the pre/post labeling
scheme [25, 27], the structural relationships between the XML nodes can be easily de-
termined. In this labeling scheme, each XML node is assigned with three values, preor-
der, postorder, and depth where preorder and postorder are the ordinal decimal numbers
of the XML nodes in the preorder and postorder traversal sequences, respectively and the
depth is the depth of the XML node in the XML tree. An XML tree labeled by the pre/
post labeling scheme is illustrated in Fig. 3.

Fig. 10 shows the order of information in the first quantum when the broadcast cy-
cle is divided into four quantums.

Fig. 10. Order of information in the first quantum.

As shown in Fig. 10, only five root-to-node paths (i.e. Path1, Path2, Path3, Path4
and Path5) are placed in the index segment of the first quantum. Therefore, the data seg-
ment of this quantum contains the information of XML nodes of these paths. As shown
in Fig. 3, the root-to-node path Path1 (i.e. “/SigmodRecord”) contains only one XML
node “SigmodRecord”, the root-to-node path Path2 (i.e. “/SigmodRecord/issue”) contains
two XML nodes “issue”, the root-to-node path Path3 (i.e. “/SigmodRecord/issue/volume”)
contains two XML nodes “volume”, the root-to-node path Path4 (i.e. “/SigmodRecord/
issue/number”) contains two XML nodes “number”, and the root-to-node path Path5 (i.e.
“/SigmodRecord/issue/articles”) contains two XML nodes “articles”. Therefore, the in-
formation of these nine XML nodes is placed in the data segment of the first quantum.

Definition 8: Assume that PST = {Path1, Path2, …, Pathp} be the set of root-to-node paths
in the path summary of the XML tree T and NodesT = {Node1, Node2, …, Nodeq} be the
set of XML nodes in the XML tree T. The initial size of a quantum (i.e. |InitialQuantum|)
is defined as follows:

1 1
| | | |

.
p q

i ii i
Path Node

InitialQuantum
N

 
 

  
  

  (1)

Where 1  i  p, |Pathi| is the size of root-to-node path Pathi, 1  i  q, |Nodei| is the
size of XML node Nodei, and N is the total number of quantums in a broadcast cycle.

It should be noted that the sizes of both the paths and the nodes are calculated based
on their structures which are defined in Definition 6 and Definition 7, respectively.

Example 2: Assume that 1  i  p and 1  j  q, p
i=1|Pathi| + q

j=1|Nodei| = 1170

Metadata Segment: 274 5 12 SigmodRecord 5 issue 6 volume 6 number 8 articles
Index Segment: Path1 Path2 Path3 Path4 Path5
Data Segment: SigmodRecord issue issue volume volume number number articles articles

AN EFFICIENT INDEX AND DATA DISTRIBUTION SCHEME FOR XML 169

bytes and N = 4. Therefore, |InitialQuantum| = 292.5 bytes based on the Eq. (1). In this
case, we assume that the initial size of all the quantums except the last quantum is equal
to 292 bytes and the initial size of the last quantum is equal to 294 bytes since the size of
a quantum cannot be a floating point value.

In our proposed distribution scheme, the initial sizes of all the quantums in a broad-
cast cycle are calculated based on the Eq. (1) but their actual sizes may be changed dur-
ing the process of generating the XML stream.

Fig. 11 shows the XMLStreamGeneration algorithm which is designed to generate an
XML stream from an XML tree based on our proposed distribution scheme. In the XML-
StreamGeneration algorithm, the input is an XML tree T and the output is a broadcast XML
stream XS. In the algorithm, the three variables currentPath, currentNode, currentQuantum
are used to store the current root-to-node path in the path summary of the XML tree T, the
current XML node with the minimum preorder having the root-to-node path currentPath,
and the current quantum in a broadcast cycle, respectively (Lines 1-3). At the beginning of
the algorithm, the XML stream XS is empty (Line 4). It should be noted that the XML-
StreamGeneration algorithm only generates the XML stream XS for a broadcast cycle since
the XML stream is the same in each broadcast cycle. In the XMLStreamGeneration algo-
rithm, two temporary lists Paths and Nodes are used to store the lists of root-to-node paths
and XML nodes, respectively. Before starting the process of generating the XML stream
for the quantum currentQuantum, these two lists are empty (Lines 7-8). In our proposed
distribution scheme, it is assumed that paths in the index segment of a quantum cannot to be
broken. However, in the case that the current quantum does not have enough space to store
all of the XML nodes of the root-to-node path currentPath, some XML nodes having the
root-to-node path currentPath will be distributed in the next quantum. Therefore, a boolean
variable named BreakPathFlag is used to demonstrate that whether there is an XML node
having the root-to-node path currentPath in the data segment of the next quantum or not.
The default value of this variable is false (Line 14). If the quantum currentQuantum has
enough space to place the root-to-node path currentPath (Line 15), the path currentPath is
added to the list Paths (Line 16).

XMLStreamGeneration Algorithm
Input: The path summary PS from the XML tree T, All of the XML nodes in the XML tree T
Output: A broadcast XML stream XS

1. currentPath ; //currentPath is a temporary data structure to store the current root-to-node path in the

path summary PS
2. currentNode ; //currentNode is a temporary data structure to store the current XML node with the

minimum preorder having the root-to-node path currentPath
3. currentQuantum ; //currentQuantum is a temporary data structure to store the information of the

current quantum in the current broadcast cycle
4. XS ;
5. while (there is a quantum in the broadcast cycle) {
6. currentQuantum  the next quantum in the broadcast cycle;
7. Paths ; //Paths is a temporary list to store a set of root-to-node paths
8. Nodes ; //Nodes is a temporary list to store a set of XML nodes
9. If (there are some XML nodes from the previous quantum) {
10. Nodes  the remaining XML nodes of the previous quantum;
11. }//end if

 while (there is still a root-to-node path in the path summary PS) {
 Fig. 11. XMLStreamGeneration algorithm.

MOHAMMAD JAVANI AND MEGHDAD MIRABI

170

12. currentPath  the current root-to-node path in the path summary PS;
13. BreakPathFlag  false;
14. if (the quantum currentQuantum has enough space to place the root-to-node path cur-

rentPath) {
15. Paths  Paths  {currentPath};
16. if (the quantum currentQuantum has enough space to place all of the XML nodes of

the root-to-node path currentPath) {
17. Nodes  All of the XML nodes of the root-to-node path currentPath;
18. } else {
19. BreakPathFlag  true;
20. while (there is still an XML node having the root-to-node path currentPath) {
21. currentNode  the current XML node having the root-to-node path cur-

rentPath;
22. BreakNodeFlag  false;
23. if (the quantum currentQuantum has enough space to place the XML

node currentNode) {
24. Nodes  Nodes  {currentNode};
25. } else {
26. BreakNodeFlag  true;
27. Break the XML node currentNode and store some parts of the XML

node currentNode in the Quantum currentQuantum and keep the re-
maining parts of the XML node currentNode to be stored in the next
quantum;

28. Break;
29. }//end if
30. }//end while
31. currentPath  the next root-to-node path in the path summary PS;
32. Break;
33. }//end if
34. } else {
35. If (the quantum currentQuantum has some unused spaces) {
36. Reduce the size of the quantum currentQuantum based on the unused spaces

and add the reduced size to the size of the next quantum;
37. }//end if
38. Braek;
39. }//end if
40. }//end while
41. Generate the table quantum currentTableQuantum for the quantum currentQuantum based on

the root-to-node paths in the list Paths and the XML nodes in the list Nodes;
42. Place the table quantum currentTableQunatum in the quantum currentQuantum;
43. Generate the index segment of the quantum currentQunatum based on the root-to-node paths of

the list Paths;
44. Place the index segment in the quantum currentQuantum;
45. Generate the data segment of the quantum currentQunatum based on the XML nodes of the list Nodes;
46. Place the data segment in the quantum currentQuantum;
47. XS  XS  {currentQunatum};
48. }//end while

Fig. 11. (Cont’d) XMLStreamGeneration algorithm.

However, if the quantum currentQuantum does not have enough space to place the
root-to-node path currentPath, the size of quantum currentQuantum is reduced and the
unused space of the quantum currentQuantum is added to the size of the next quantum in
the broadcast cycle (Lines 35-40). If the quantum currentQuantum has enough space to
place all the XML nodes of the root-to-node path currentPath (Line 17), all the XML nodes
of the root-to-node path currentPath are added to the list Nodes (Line 18). In the case that
the quantum currentQuantum does not have enough space to place all the XML nodes of

AN EFFICIENT INDEX AND DATA DISTRIBUTION SCHEME FOR XML 171

the root-to-node path currentPath (Lines 19-34), the XML node currentNode is added to
the list Nodes if the quantum currentQuantum has enough space to place the XML node
currentNode (Lines 24-25). In the case that the quantum currentQuantum does not have
enough space to place the XML node currentNode the XML node currentNode is broken
and some parts of the XML node currentNode will be stored in the next quantum (Lines
26-30). The boolean variable BreakNodeFlag is used to demonstrate that whether the
XML node currentNode is broken or not (Line 27). The XMLStreamGeneration algo-
rithm generates the table quantum currentTableQuantum based on the root-to-node paths
in the list Paths and the XML nodes in the list Nodes and then places it in the quantum
currentQuantum (Lines 42-43). It also generates the index segment for the quantum
currentQuantum based on the root-to-node paths in the list Paths and places it in the
quantum currentQuantum (Lines 44-45). Then, the XMLStreamGeneration algorithm
generates the data segment of the quantum currentQuantum based on the XML nodes in
the list Nodes and places it in the quantum currentQuantum (Lines 46-47). Finally the
quantum currentQuantum is added to the XML stream XS (Line 48). This process will be
repeated for each quantum in the broadcast cycle in order to generate the final XML
stream XS.

4. XML QUERY PROCESSING OVER A WIRELESS BROADCAST
CHANNEL

To process simple path XML queries based on our proposed distribution scheme,
the SimplePathXMLQueryProcessor algorithm is devised as shown in Fig. 12. Given a
simple path XML query Q, the mobile client c tunes in to the broadcast channel and
reads the current quantum (i.e. currentQuantum) from the current broadcast cycle (Line
3). Then, it obtains the information of the table quantum from the quantum cur-
rentQuantum (Line 4). In the case that the last node name in the simple path XML query
Q is equal to one of the node names in the table quantum tableQuantum (Line 5), there is
this probability that this quantum (i.e. currentQunatum) contains the result of the simple
path XML query Q. Therefore, the algorithm searches to find a path similar to the simple
path XML quary Q (Lines 5-14). When the path is found (Line 15), the mobile client c
checks the flag BREAK FLAG in the index segment of the quantum currentQuantum to
determine that whether the data segment related to this path is broken or not. In the case
that the value of the flag BREAK FLAG is false (Line 16), the mobile client c uses the
field First Node Address of the path currentPath to jump forward to the first XML node
satisfying the simple path XML query Q in the data segment of the quantum cur-
rentQunatum and download all the candidate XML nodes from the data segment of the
quantum currentQunatum (Lines 17-23). If the simple path XML query Q contains
predicate conditions at the text content and/or attribute vales, the algorithm checks the
text content and/or attribute values and adds the node currentNode into the XML query
results set R if the predicate conditions of the simple path XML query Q are satisfied
(Lines 20-22). If the value of the flag BREAK FLAG is true, the mobile client c has to
switch to doze mode until the XML node with the address First Node Address arrives on
the air (Line 25). In the case that the value of the flag IS-BROKEN is true (Line 28), the
mobile client c has to download the broken part of the node currentNode from the next
quantum (Line 29). After downloading the content of node currentNode, the algorithm

MOHAMMAD JAVANI AND MEGHDAD MIRABI

172

checks the text content and/or attribute values of the node currentNode and adds it into
the XML query results set R if the predicate conditions of the simple path XML query Q
are satisfied (Lines 31-33). In the case that the last node name in the simple path XML
query Q is not equal to the node names in the table quantum tableQuantum, the mobile
client c has to switch to doze mode until the next quantum arrives on the air (Lines
39-41).

Example 3: Assume that the XML document illustrated in Fig. 2 is streamed and dis-
seminated over a broadcast channel as shown in Fig. 13. Now, assume that the mobile
client c submits the simple path XML query Q = “/SigmodRecord/issue/articles/article/
title” on the air. The mobile client c first tunes in to the broadcast channel and downloads
the table quantum of the first quantum. It then searches to find the node name “title” in
the first table quantum since this node name is the last node name in the simple path
XML query Q. Since the node name “title” is not in the table quantum of the first quan-
tum, the mobile client c switches to doze mode until the second quantum appears on the
air. When the second quantum appears on the air, the mobile client c switches to active
mode and downloads the table quantum of the second quantum. It then searches to find
the node name “title” in the table quantum of the second quantum. The mobile client c
finds the node name “title” in this table quantum. Therefore, there is this probability that
the path similar to the simple path XML query Q is available in this quantum. Hence, the
mobile client c downloads the paths in the index segment one after another and finds the
path similar to the simple path XML query Q.

SimplePathXMLQueryProcessor Algorithm
Input: XML Stream XS, Simple Path XML Query Q
Output: XML Query Results Set R

1. R;
2. while (the XML Stream XS is not ended) {
3. currentQuantum  the next quantum in the current broadcast cycle;
4. tableQuantum  the table quantum of the quantum currentQuantum;
5. if (the last node name in the simple path XML query Q == one of the node names in the table

 quantum tableQuantum) {
6. currentPath;
7. pathIsFound  false;
8. while (the index segment of the quantum currentQuantum is not ended){
9. currentPath  the current path from the index segment of the quantum cur-

rentQuantum;
10. if (the path currentPath == the XML Query Q) {
11. pathIsFound  true;
12. break;
13. }//end if
14. }//end while
15. if (the flag pathIsFound == true) {
16. if (the flag BREAK FLAG in the path currentPath == false) {
17. Wait in doze mode until the XML node with the address First Node Ad-

dress arrives on the air;
18. while (there is a candidate XML node in the data segment of the quantum

currentQuantum) {
19. currentNode  the current node from the data segment of the

quantum currentQuantum;
20. if (the node currentNode satisfies the predicate condition in the

Fig. 12. SimplePathXMLQueryProcessor algorithm.

AN EFFICIENT INDEX AND DATA DISTRIBUTION SCHEME FOR XML 173

Fig. 13. An example of a broadcast cycle with four quantum.

XML query Q) {
21. R  R  {currentNode};
22. }//end if
23. }//end while
24. } else {
25. Wait in doze mode until the XML node with the address First Node Ad-

dress arrives on the air;
26. while (there is a candidate XML node in the data segment of the quantum

currentQuantum) {
27. currentNode  the current node from the data segment of the

quantum currentQuantum;
28. if (the flag IS-BROKEN in the node currentNode ==true) {

 currentNode currentNode  Retrieve the broken part of
 the node currentNode from the next quantum;
31. }//end if
32. if (the node currentNode satisfies the predicate condition in the

XML query Q) {
33. R  R {currentNode};
34. }//end if
35. }//end while
36. } //end if
37. } else {
38. Wait in doze mode until the next quantum arrives on the air;
39. } //end if
40. } else {
41. Wait in doze mode until the next quantum arrives on the air;
42. }//end if
43. }//end while

Fig. 12. (Cont’d) SimplePathXMLQueryProcessor algorithm.

The First Quantum in the Broadcast Cycle:

The Second Quantum in the Broadcast Cycle:

Assume that the last node in the second quantum (i.e. node “title”) is broken and some parts of this
node are placed in the third quantum.

The Third Quantum in the Broadcast Cycle:

Assume that the last node in the third quantum (i.e. node “endPage”) is broken and some parts of
this node are placed in the fourth quantum.

The Forth Quantum in the Broadcast Cycle:

Metadata Segment: 274 5 12 SigmodRecord 5 issue 6 volume 6 number 8 articles
Index Segment: Path1 Path2 Path3 Path4 Path5
Data Segment: SigmodRecord issue issue volume volume number number articles articles

Metadata Segment: 310 2 7 article 5 title
Index Segment: Path6 Path7
Data Segment: article article article title title title

Metadata Segment: 292 3 7 authors 8 initPage 7 endPage
Index Segment: Path8 Path9 Path10
Data Segment: title authors authors authors initPage initPage initPage endpage endpage endpage

Metadata Segment: 294 1 6 authors
Index Segment: Path11
Data Segment: endpage authors authors authors authors authors

MOHAMMAD JAVANI AND MEGHDAD MIRABI

174

By exploiting the field BREAK FLAG in the path which is similar to the simple
path XML query Q, the mobile client c finds out that the data segment related to this path
is broken. It also finds out the times that the candidate XML nodes are arrived on the air
by exploiting the two fields First Node Address and Last Node Address in the path. The
mobile client c switches to doze mode to conserve its battery power until the first candi-
date node at the time equals to the First Node Address appears on the air. When the first
candidate node is arrived, the mobile client c switches to active mode and downloads the
set of candidate XML nodes. When the content of the third candidate XML node is
downloaded from the broadcast channel, mobile client c finds out that this node is bro-
ken. Therefore, the mobile client continues to download the broken part of the third can-
didate XML node from the next quantum until all parts of the content of the third candi-
date node are retrieved.

In order to save the length of the paper, we omit to explain the process of XML
querying in other type of XML queries. Refer to the proposed XML indexing method in
[25] order to have more information.

5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed distribution scheme in
processing different types of XML queries by performing several experiments. All the
experiments were conducted on a system with the Interl(R) Core(TM) i7 Q720 @1.60
GHz processor and 3GB RAM running Windows 7 Ultimate where the server and client
modules were implemented in Java.

5.1 Experimental Setting

We logically modeled the wireless stream as a binary file, where the broadcast

server writes a byte stream on the file and the mobile clients read the file and process the
XML queries.

In our simulation model, we assumed that the broadcast bandwidth is fully utilized
for XML data broadcasting. To measure the access time and tuning time, we considered
only the activity of a mobile client since the activity of a mobile client does not affect the
XML query processing performance at the other mobile clients.

We assumed that the XML stream is broadcasted and accessed in units with a fixed
size (i.e. buckets) and thus we measured the access time and tuning time in processing
different types of XML queries by the number of buckets. A bucket is the smallest logi-
cal unit in a wireless broadcast channel. In the view of assumption that the network
speed is fixed, the number of buckets can be converted into time since the elapsed time
for reading a bucket is computed as the bucket size divided by the network speed [4]. To
measure the performance variation based on the number of buckets, we used three dif-
ferent bucket sizes, 64, 128, and 256 bytes in our experiments. However, we only present
the experimental results for the cases that the bucket size is set to 128 bytes since the
experimental results are not dependent on the bucket size.

To measure the performance variation based on the types of XML data sets, we
used two XML data sets. Table 2 shows the characteristics of the XML data sets used in

AN EFFICIENT INDEX AND DATA DISTRIBUTION SCHEME FOR XML 175

our experiments.
To measure the performance variation based on the types of XML queries, we used

different types of XPath queries. The list of XPath queries used in our experiments is
shown in Table 3.

Table 2. XML data sets.

Data Set Size (KB) Number of Ele-
ments

Max
Depth

Max Fan
Out

Shakespeare 1,061 25,339 7 162
Mondial 1,743 22,423 5 955

Table 3. XPath query sets of the different XML data sets.

XML Data Set
Query
Name

XPath Expression

Shakespeare

SH1 /PLAYS/PLAY/ACT
SH2 /PLAYS/PLAY/PERSONAE/PGROUP
SH3 /PLAYS/PLAY/ACT/EPILOGUE/SPEECH/SPEAKER
SH4 /PLAYS/PLAY/ACT/EPILOGUE/TITLE[text()="EPILOGUE"]
SH5 /PLAYS/PLAY/ACT/SCENE/SPEECH/STAGEDIR[@SPEAKER="BERTRAM"]
SH6 /PLAYS/*/ACT[SCENE/SPEECH/SPEAKER/text()="MARK ANTONY"]
SH7 /PLAYS/*/ACT[SCENE/SPEECH/SPEAKER/text()="MARK ANTONY"]/*/TITLE
SH8 /PLAYS/*/ACT[SCENE/SPEECH/SPEAKER/text()="MARK ANTONY"]/*//LINE

Mondial

MO1 /mondial/country/religions
MO2 /mondial/country/city/name
MO3 /mondial/country/province/city/population
MO4 /mondial/country/name[text()="France"]
MO5 /mondial/country/province/city[@country="f0_418"]
MO6 /mondial/country/*/city[population]
MO7 /mondial/country/*/city[population]/name
MO8 /mondial/country/*/city[population]//name

Table 4. Initial quantum sizes of the different XML data sets.
Data Set Initial Quantum Size

Shakespeare 196 388 31501
Mondial 492 966 28648

In our experiments, we only applied our proposed distribution scheme to the XML
indexing method proposed in [25] since our proposed distribution scheme is proposed
for this XML indexing method. We implemented our proposed distribution scheme by
dividing each broadcast cycle to a set of quantums. To measure the performance varia-
tion based on the size of quantums in a broadcast cycle, we used three different initial
quantum sizes for each XML data set. The list of initial quantum sizes for each XML
data set in our experiments is shown in Table 4.

We implemented six different indexing methods that are OSA, TSA, SPA, DIX, C-
DIX, and PS+Pre/Post. The OSA, TSA, and SPA methods are the wireless XML stream-
ing methods in the S-Node approach proposed by [23]. The DIX and C-DIX methods are
the distributed XML indexing methods proposed by [13]. The PS+Pre/Post method is the
XML indexing method proposed in [25]. It should be noted that the five indexing meth-
ods OSA, TSA, SPA, DIX, and C-DIX cannot process the twig pattern XML queries

MOHAMMAD JAVANI AND MEGHDAD MIRABI

176

having wildcards, descendant axes, and predicate conditions.
The performance metrics used in our experiments were the access time ratio and the

tuning time ratio. They are defined as follows:

Access Time Ratio = (Number of buckets to read in the XML stream from the
moment a query is submitted to the moment the query results are retrieved) / (Total
number of buckets in the XML stream)100. (2)

Tuning Time Ratio = (Number of buckets to read in the XML stream when the
mobile client is in the active mode) / (Total number of buckets in the XML
Stream)100. (3)

5.2 Experimental Results on Access Time

Figs. 14 and 15 show the ratio of access time in processing the different types of

XML queries on the different XML data sets. As shown in Figs. 14 (a) and 15 (a), the
ratio of access time in our proposed distribution scheme with the different initial quan-
tum sizes is less than the ratio of access time in the OSA, TSA, SPA, DIX, C-DIX in-
dexing methods for the XML queries with the query types 1, 2, 3, 4, and 5. It means that
the performance of XML querying in our proposed distribution scheme is better than the
performance of XML querying in the OSA, TSA, SPA, DIX, C-DIX indexing methods
in terms of access time.

Fig. 14. (a) Access time ratio on the Shakespeare data set for the XML queries with the query types 1-5.

Fig. 14. (b) Access time ratio on the Shakespeare data set for the XML queries with the query types 6-8.

AN EFFICIENT INDEX AND DATA DISTRIBUTION SCHEME FOR XML 177

Fig. 15. (a) Access time ratio on the Mondial data set for the XML queries with the query types 1-5.

Fig. 15. (b) Access time ratio on the Mondial data set for the XML queries with the query types 6-8.

Also, as shown in Figs. 14 (a), (b) and 15 (a), (b), the ratio of access time in our
proposed distribution scheme with the different initial quantum sizes is almost equal to
the ratio of access time in the PS+Pre/Post indexing method. It means that:

1. The quantum size in a broadcast cycle does not affect the ratio of access time.
2. Our proposed distribution scheme does not degrade the performance of XML query-

ing at the mobile clients in term of access time.

Although the performance of XML querying in terms of access time in our pro-
posed distribution scheme and the PS+Pre/Post indexing method are almost equal but the
index information in the PS+Pre/Post indexing method is disseminated at the first part of
a broadcast cycle. It means that mobile clients which tune in to the broadcast channel
after the index information is disseminated over the broadcast channel must wait until the
next broadcast cycle beings. This waiting time increases the access time (Refer to Exam-
ple 1). However, in our proposed distribution scheme, the partial and relevant parts of
the index information and the XML data are distributed in the current broadcast cycle in
such a way that mobile clients can process XML queries without exploiting the XML
stream at the beginning of the next broadcast cycle. This is the advantage of our pro-
posed distribution scheme compared to the PS+Pre/Post indexing method.

MOHAMMAD JAVANI AND MEGHDAD MIRABI

178

5.3 Experimental Results on Tuning Time

Figs. 16 and 17 show the ratio of tuning time in processing the different types of

XML queries on the different XML data sets. As shown in Figs. 16 (a) and 17 (a), the
ratio of tuning time in our proposed distribution scheme with the different initial quan-
tum sizes is less than the ratio of tuning time in the OSA, TSA, SPA, DIX, C-DIX in-
dexing methods for the XML queries with the query types 1, 2, 3, 4, and 5. It means that
the performance of XML querying in our proposed distribution scheme is better than the
performance of XML querying in the OSA, TSA, SPA, DIX, C-DIX indexing methods
in terms of tuning time.

Fig. 16. (a) Tuning time ratio on the Shakespeare data set for the XML queries with the query types 1-5.

Fig. 16. (b) Tuning time ratio on the Shakespeare data set for the XML queries with the query types 6-8.

Fig. 17. (a) Tuning time ratio on the Mondial data set for the XML queries with the query types 1-5.

AN EFFICIENT INDEX AND DATA DISTRIBUTION SCHEME FOR XML 179

Fig. 17. (b) Tuning time ratio on the Mondial data set for the XML queries with the query types 6-8.

As shown in Figs. 16 (a), (b) and 17 (a), (b), the ratio of tuning time in our proposed
distribution scheme with the different initial quantum sizes is almost equal to the ratio of
tuning time in the PS+Pre/Post indexing method. It means that:

1. The quantum size in a broadcast cycle does not affect the ratio of tuning time.
2. Our proposed distribution scheme does not degrade the performance of XML query-

ing at the mobile clients in term of tuning time.

Although the performance of XML querying in terms of tuning time in our pro-

posed distribution scheme and the PS+Pre/Post indexing method are almost equal but the
index information in the PS+Pre/Post indexing method is disseminated at the first part of
a broadcast cycle. It means that mobile clients which tune in to the broadcast channel
after the index information is disseminated over the broadcast channel must wait until the
next broadcast cycle beings. This waiting time increases the access time (Refer to Exam-
ple 1). However, in our proposed distribution scheme, the partial and relevant parts of
the index information and the XML data are distributed in the current broadcast cycle in
such a way that mobile clients can process XML queries without exploiting the XML
stream at the beginning of the next broadcast cycle. This is the advantage of our pro-
posed distribution scheme compared to the PS+Pre/Post indexing method.

7. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a new XML index and data distribution scheme for the
XML indexing method proposed in [25] by partially partitioning both the XML indexes
and data and then distributing them into suitable positions over a broadcast channel. We
also devised an algorithm to generate a wireless XML stream based on our proposed
distribution scheme. In addition, we devised algorithms to process different types of
XML queries over a broadcast channel based on our proposed distribution scheme. By
performing several experiment using different XML data sets, we demonstrated that our
proposed distribution scheme does not degrade the performance of XML querying at the
mobile clients in terms of access time and tuning time.

MOHAMMAD JAVANI AND MEGHDAD MIRABI

180

In the future, we intend to investigate other issues which are not considered in this
paper. First, we attempt to propose a caching strategy for mobile clients in order to im-
prove the performance of XML query processing in terms of access time. Second, we at-
tempt to propose a novel XML data placement scheme over multiple wireless broadcast
channels in the case that the broadcast channels have different bandwidths and error rates.

REFERENCES

1. T. Imieĺinski and B. R. Badrinath, “Data management for mobile computing,” SIG-
MOD Record, Vol. 22, 1993, pp. 34-39.

2. T. Imielinski, S. Viswanathan, and B. R. Badrinath, “Energy efficient indexing on
air,” in Proceedings of ACM SIGMOD International Conference on Management of
Data 1994, pp. 25-36.

3. S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast disks: Data manage-
ment for asymmetric communication environments,” in Proceedings of ACM SIG-
MOD International Conference on Management of Data, 1995, pp. 199-210.

4. T. Imielinski, S. Viswanathan, and B. R. Badrinath, “Data on air: Organization and
access,” IEEE Transactions on Knowledge and Data Engineering, Vol. 9, 1997, pp.
353-372.

5. Y. D. Chung and M. H. Kim, “An index replication scheme for wireless data broad-
casting,” Journal of Systems and Software, Vol. 51, 2000, pp. 191-199.

6. Y. D. Chung and M. H. Kim, “Effective data placement for wireless broadcast,”
Distributed and Parallel Databases, Vol. 9, 2001, pp. 133-150.

7. Y. D. Chung, S. H. Bang, and M. H. Kim, “An efficient broadcast data clustering
method for multipoint queries in wireless information systems,” Journal of Systems
and Software, Vol. 64, 2002, pp. 173-181.

8. M.-S. Chen, K.-L. Wu, and P. S. Yu, “Optimizing index allocation for sequential
data broadcasting in wireless mobile computing,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 15, 2003, pp. 161-173.

9. C.-C. Lee and Y. Leu, “Efficient data broadcast schemes for mobile computing en-
vironments with data missing,” Information Sciences, Vol. 172, 2005, pp. 335-359.

10. Y. D. Chung, S. Yoo, and M. H. Kim, “Energy and latency efficient processing of
full-text searches on a wireless broadcast stream,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 22, 2010, pp. 207-218.

11. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, “Extensible
markup language (XML) 1.0 (5th ed.) W3C recommendation,” http://www.w3.org/
TR/REC-xml/, 2008.

12. Y. D. Chung and J. Y. Lee, “An indexing method for wireless broadcast XML data,”
Information Sciences, Vol. 177, 2007, pp. 1931-1953.

13. J. P. Park, C.-S. Park, and Y. D. Chung, “Energy and latency efficient access of
wireless XML stream,” Journal of Database Management, Vol. 21, 2010, pp. 58-79.

14. J. P. Park, C.-S. Park, and Y. D. Chung, “Lineage encoding: An efficient wireless
XML streaming supporting twig pattern queries,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 25, 2012, pp. 1559-1573.

AN EFFICIENT INDEX AND DATA DISTRIBUTION SCHEME FOR XML 181

15. Y. Qin, W. Sun, Z. Zhang, and P. Yu, “An efficient document-split algorithm for on-
demand XML data broadcast scheduling,” in Proceedings of the IET Conference on
Wireless, Mobile and Sensor Networks, 2007, pp. 759-762.

16. W. Sun, Y. Qin, P. Yu, and Z. Zhang, “On-demand XML data broadcast in wireless
computing environments,” in Proceedings of the 3rd International Conference on
Wireless Communications, Networking and Mobile Computing, 2007, pp. 3035-3038.

17. Y. Qin, W. Sun, Z. Zhang, P. Yu, and Z. He, “Query-grouping based scheduling
algorithm for on-demand XML data broadcast,” in Proceedings of the 4th Interna-
tional Conference on Wireless Communications, Networking and Mobile Computing,
2008, pp. 1-4.

18. J. P. Park, C.-S. Park, M. K. Sung, and Y. D. Chung, “Attribute summarization: A
technique for wireless XML streaming,” in Proceedings of the 2nd International
Conference on Interaction Sciences: Information Technology, Culture and Human,
2009, pp. 492-496.

19. Y. Qin, W. Sun, Z. Zhang, P. Yu, Z. He, and W. Chen, “A novel air index scheme
for twig queries in on-demand XML data broadcast,” in Proceedings of the 20th In-
ternational Conference on Database and Expert Systems Applications, LNCS 5690,
2009, pp. 412-426.

20. W. Sun, P. Yu, Y. Qing, Z. Zhang, and B. Zheng, “Two-tier air indexing for on-
demand XML data broadcast,” in Proceedings of the 29th IEEE International Con-
ference on Distributed Computing Systems, 2009, pp. 199-206.

21. Y. Qin, H. Wang, and L. Sun, “Cluster-based scheduling algorithm for periodic
XML data broadcast in wireless environments,” in Proceedings of the 25th IEEE In-
ternational Conference on Advanced Information Networking and Applications
Workshop, 2011, pp. 855-860.

22. J. Wu, P. Liu, L. Gan, Y. Qin, and W. Sun, “Energy-conserving fragment methods
for skewed XML data access in push-based broadcast,” in Proceedings of the 12th
International Conference on Web-Age Information Management, 2011, pp. 590-601.

23. C.-S. Park, C. S. Kim, and Y. D. Chung, “Efficient stream organization for wireless
broadcasting of XML data,” in Proceedings of the 10th Asian Computing Science
Conference on Advances in Computer Science: Data Management on the Web,
LNCS 3818, 2005, pp. 223-235.

24. S.-H. Park, J.-H. Choi, and S. Lee, “An effective, efficient XML data broadcasting
method in a mobile wireless network,” in Proceedings of the 17th International Confer-
ence on Database and Expert Systems Applications, LNCS 4080, 2006, pp. 358-367.

25. M. Mirabi, H. Ibrahim, and L. Fathi, “PS+Pre/Post: A novel structure and access
mechanism for wireless XML stream supporting twig pattern queries,” Pervasive and
Mobile Computing, Vol. 2013, http://dx.doi.org/10.1016/j.pmcj.2013.09.009.

26. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and J.
Siméon, “XML path language (XPath) 2.0 (2nd ed.),” http://www.w3.org/TR/xpath-
20/, 2010.

27. M. Mirabi, H. Ibrahim, N. I. Udzir, and A. Mamat, “An encoding scheme based on
fractional number for querying and updating XML data,” Journal of Systems and
Software, Vol. 85, 2012, pp. 1831-1851.

MOHAMMAD JAVANI AND MEGHDAD MIRABI

182

Mohammad Javani obtained his Master degree in Com-
puter Engineering from the University of Kashan, Iran in 2016.
His research interests include formal methods, communication
networks, and mobile computing.

Meghdad Mirabi obtained his Master and Ph.D. degrees in
Computer Science from the Universiti Putra Malaysia (UPM),
Malaysia in 2009 and 2013, respectively. His research interests
include data management in distributed (Mobile, P2P, Grid, and
Cloud) computing and security in distributed computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

