
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 697-711 (2022)

DOI: 10.6688/JISE.202205_38(3).0012

697

Discovering Entity Columns of Web Tables

Effectively and Efficiently*

SI-YU CHEN AND NING WANG+

School of Computer and Information Technology

Beijing Jiaotong University

Beijing, 100044 P.R. China

E-mail: ChenSY725@126.com; nwang@bjtu.edu.cn+

Compared with traditional relational tables, web tables have no designated key attrib-

utes or entity columns, which make them difficult for machines to understand. The effec-

tiveness of existing methods for entity column detection usually depends on the coverage

of knowledge base, and efficiency of traversing knowledge base is low. In this paper, we

propose a novel framework for discovering entity columns in web tables based on approx-

imate primary functional dependency. We build the table schema dependency graph to

reflect semantic dependency relationships between columns of a web table. By calculating

the importance of each attribute node in the table schema dependency graph iteratively

based on LeaderRank, our method can detect entity columns accurately and efficiently for

both single-entity tables and multi-entity tables. The experimental results on real web da-

tasets show that our method significantly outperforms previous work in both effectiveness

and efficiency, especially for large tables.

Keywords: web table, entity column, functional dependency, table schema dependency

graph, LeaderRank

1. INTRODUCTION

Nowadays, more and more tabular data has emerged on the Internet [1]. These struc-

tured web tables have attracted much attention because they contain a large amount of

information. Compared with traditional relational tables, web tables are irregular, uncer-

tain and heterogeneous, which make them difficult for machines to understand their se-

mantics automatically. In order to utilize the rich wealth of web tables, semantic recovery

is necessary. Containing the names of real-world entities, the entity column is the most

semantically representative attribute column and often serves as key attributes of a web

table [2]. Discovering entity columns effectively and efficiently will be greatly helpful for

the annotation and understanding of web tables.

P. Venetis proposed a learning-based approach to detect entity columns, which built

feature functions and judged entity columns by SVM or binary classifier [2]. K. Braun-

schweig extended feature set with other features such as Relative Column Positions and

Key Indicators to identify entity columns by a classifier [3]. Due to the irregular and het-

erogeneous characteristics of web tables, it’s hard to find the distribution law of entity

columns, so the accuracy of above methods cannot be guaranteed. The mainstream ap-

proach of detecting entity column is based on knowledge base. J. J. Wang [4] and D. Deng

[5] used knowledge base to annotate table name and entity column with assumption that

Received May 18, 2020; revised October 7, 2020 & January 11, 2021; accepted January 26, 2021.

Communicated by Jiun-Long Huang.
* This work is supported by the National Key R&D Program of China (2018YFC0809800).
+ Corresponding author.

SI-YU CHEN AND NING WANG

698

there is only one entity column in a table, while N. Wang [6] proposed a framework for

identifying multiple entity columns in a web table based on Probase [7]. However, the

effectiveness of these methods entirely depends on the coverage of knowledge base, and

efficiency of traversing knowledge base is low. Furthermore, these methods are difficult

to extend to large-scale web tables because traversing the large knowledge base is time-

consuming process especially for large tables.

We propose to identify entity columns based on primary functional dependency [8],

which only focuses on the functional dependency with only primary attributes in its deter-

mining set. This kind of functional dependency can express the determination relationship

between primary attributes and non-primary attributes and are more helpful for entity col-

umn detection and topic discovery on web tables. Based on approximate primary func-

tional dependency set, we first build the table schema dependency graph which reflects

semantic dependency relationships between columns of a web table. Then we calculate

and sort the importance of each column in table schema dependency graph and select se-

mantic intensive columns as entity column candidates. Independent of knowledge base,

our method can detect entity columns accurately and efficiently for both single-entity ta-

bles and multi-entity tables, and is scalable for large web tables. Our major contributions

are summarized as follows:

(1) We are the first to propose an effective and efficient entity column discovery frame-

work based on approximate primary functional dependency.

(2) We propose to build table schema dependency graph and entity column scoring model

for a web table, which can be used to find semantically important attribute columns as

the final entity columns.

(3) The experimental results show that our method is more effective and efficient than pre-

vious work in either single-entity or multi-entity tables, and is more scalable for large

web tables.

2. RELATED WORK

In big data era, it is very important for machine to understand tables on the web. Early

work in table understanding focused on exacting tables from documents and web pages [9-

14], but relatively little work is about understanding the semantics and meaning associated

with tables. In this section, we briefly explain recent research work on detecting functional

dependency and identifying entity columns in tables.

Approximate functional dependency (AFD) is derived from functional dependency

(FD) to describe approximate determination relationship between attributes on tables with

heterogeneous and noisy data. The discovery of AFDs from web tables are helpful for

applications like entity column detection and topic discovery. Early researches only con-

sidered AFDs with single attribute on the left-hand side, in which CORDS could automat-

ically discover statistical correlations and soft functional dependencies between columns

[15], D. Z. Wang gave counting-based algorithms for deriving AFDs and their probabilities

[16], P. Mandros proposed to search AFDs by adopting an information theoretic approach

[17]. Furthermore, AFDMiner was proposed for mining approximate primary functional

dependency (aPFD) for both single-entity web tables (with only one entity column) and

DISCOVERING ENTITY COLUMNS OF WEB TABLES 699

multi-entity web tables (with more than one entity column) [8]. aPFDs focus on depend-

encies with primary attributes as the determining attributes, which can highlight semantic

information and are more helpful for entity column detection on web tables.

Entity columns contain the names of real-world entities and often serve as key attrib-

utes of a web table. Without designated key attributes, it is difficult for computers to un-

derstand the main topic of a web table and associate a concept in the knowledge taxonomy

with it. P. Venetis took the left-most column containing neither numbers nor dates as sub-

ject column. They also proposed a learning-based approach to detect entity columns auto-

matically by using five features and binary classifier [2]. Some of features, especially the

uniqueness of values and the column index, are specifically tailored to the characteristics

of single-concept tables. K. Braunschweig extended the feature set with six additional fea-

tures and trained a classifier using state-of-the-art techniques to identify potential entity

columns [3]. In contrast, J. J. Wang relied on Probase to detect entity columns and make

their judgment based on two kinds of evidence, requiring the entity column to contain

entities of the same concept and the header to contain attributes that describe entities in the

entity column [4]. Above entity column detection techniques assume that there is only one

entity column in a table which describes single concept, and neglect tables that describe

properties of multiple concepts as well as the relationships between them.

In fact, web tables are usually not normalized and can contain columns describing mul-

tiple concepts. K. Braunschweig proposed a normalization approach to decompose multi-

concept tables into smaller single-concept tables [18]. The basis of normalization is entity

keys. Multiple entity columns were identified in [6] based on knowledge base and concept-

attribute dependency. However, the effectiveness of this method depends on the coverage

of knowledge base, and it is not scalable to large web tables. In contrast, we propose to

discover entity columns based on approximate primary functional dependency. In depend-

ent of knowledge base, we build the table schema dependency graph to reflect semantic

dependency relationships between columns of a web table, and detect entity columns ef-

fectively and efficiently for web tables.

3. PROBLEM MODELING AND SOLUTION OVERVIEW

Our entity column detection method is based on approximate primary functional de-

pendency and table schema dependency graph. We will give problem modeling and solu-

tion overview in this section.

3.1 Problem Modeling

Approximate functional dependency (AFD) is derived from functional dependency

(FD) to describe approximate determination relationship between attributes on tables with

heterogeneous and noisy data. For any relation table r, X →~ Y is an AFD if and only if X→Y

holds for most of the tuples in r, where X (X⊆R) is called the determining set and Y (YR)

is called the dependent attribute [8]. We focus on approximate primary functional depend-

ency for entity column detection.

SI-YU CHEN AND NING WANG

700

Definition 1 (aPFD): Let R be a relation, X is a set of primary attributes of R and Y is a

non-primary attribute of R, if X →~ Y is an AFD, then it is called an approximate primary

functional dependency (aPFD for short), denoted as X ̂ →~ Y.
An aPFD X ̂ →~ Y represents the determination relationship between a set of primary

attributes X and a set of non-primary attributes Y in a web table. aPFDMiner is proposed in

[8] as a framework to mine approximate primary functional dependency for web tables. By

metrics and pruning strategies, aPFDMiner quantifies PFDs’ strength denoted as strength (X

→~ Y) and obtains aPFD set effectively and efficiently. We use {(X, Y, strength (X →~ Y))}to

denote an aPFD set.

Based on an aPFD set for a web table, we are able to build a table schema dependency

graph to reflect dependency relationship between columns in a web table. For a table with

N attributes, its schema dependency graph will have N + 1 nodes, including N attribute

nodes and one background node. By the strength of aPFDs in a web table, we can calculate

the importance of each attribute node in the table schema dependency graph iteratively and

identify entity columns in the table.

Definition 2 (DV): For a table with N attributes, a dependency vector (DV for short) is a

N-dimensional vector for each node in its table schema dependency graph. We can build

two types of dependency vector for a web table:

(1) The dependency vector of each attribute node attr, denoted as d
→
epattr. The ith compo-

nent of d
→
epattr represents the dependency degree that attr depends on the ith attribute

node vi, denoted as Dep(attr, vi).

(2) The dependency vector of background node BNode, denoted as d
→
epBNode. The ith com-

ponent of d
→
epBNode represents the similarity between the ith column name and the table

name, denoted as Dep(BNode, vi).

Definition 3 (TSDG): For a web table T with N attributes, its table schema dependency

graph (TSDG for short) is defined as a rooted weighted directed graph G = (r, V, E, W):

− r is the background node without out-degree, but has directed edges pointing to each

attribute node.

− V is a node set V(G) = {v1, v2, …, vN+1}, containing N attribute nodes and one background

node r.

− E is a set of dependency relationships between nodes in V, and vi, vjE iff v̂ i →~ vj holds

on T or vi is the background node.

− W is a set of weights. For each vi, vjE, there exists wvi, vjW, wvi, vj = Dep(vi, vj).

A background node is introduced to reflect semantic relationship between table name

and its columns. If the similarity between a table name and one of its column name is high,

this column might contain more information about table’s topic. Intuitively, it is more pos-

sible that this column is an entity column.

We will give examples and the explanation of above definitions in Section 4.2 after

the details of DV calculation is introduced.

3.2 Solution Overview

There is no doubt that entity columns should bring the strongest semantics in web

DISCOVERING ENTITY COLUMNS OF WEB TABLES 701

tables. So the problem of detecting entity columns in a web table could be converted into

another problem of finding semantic intensive columns within column set of the table. We

can settle the problem by assigning a numerical weight to each column in a web table and

measuring its relative importance within the column set, just like calculation of leaders in

social networks [19].

We propose a novel entity column mining framework ECMiner. After building table

schema dependency graph based on dependency vector, ECMiner calculates and sorts the

importance of each attribute column by LeaderRank [19, 20], and selects semantic inten-

sive columns as entity column candidates. Fig. 1 gives the framework of ECMiner, which

implements entity column detection in three steps.

DV Calculation. We use aPFD set from aPFDMiner, semantic similarity between col-

umn name and table name to calculate dependency vectors for a web table.

TSDG Building. For a web table with N attributes, the corresponding TSDG has N + 1

nodes including N attribute nodes and one background node. The directed edges in TSDG

are introduced based on dependency vectors for attribute nodes and the background node.

Scoring and Selection. We calculate the importance of each attribute node in TSDG and

select important attribute columns as the final results.

Fig. 1. An entity column mining framework for web tables.

https://en.wikipedia.org/wiki/Weighting

SI-YU CHEN AND NING WANG

702

4. ENTITY COLUMN MINING

We give the details about our entity column mining framework for web tables. Spe-

cific problems regarding DV calculation, TSDG building, scoring and selection approa-

ches are examined, and the proposed scheme is refined.

4.1 DV Calculation

Before constructing the TSDG for a web table, we should calculate the DVs for each

attribute node and the background node first.

DV of Attribute Node. For attribute node Y, its DV represents the dependency degree that

Y depends on other attributes. The degree of dependency can be obtained by strength(X ̂ →~

Y) from aPFD set. DV d
→
epY is calculated by Eq. (1), the ith component of which represents

the dependency degree that Y depends on the ith attribute node Xi.

d
→
epY =

1

(1,) (1,)

ˆ ˆ() ()
,..,

ˆ ˆ() ()

N

Y

i i
i N i N

Strength Strength

Strength Strength

X Y X Y
dep

X Y X Y

→ → =

 → →

 (1)

In relational table r, the Strength of X →~ Y reflects dependency degree between two

attributes. It can be quantified by Conf(X →~ Y), InfoGain(X →~ Y) and the proportion of

tuples in r on which X →~ Y holds. Conf(X →~ Y) is introduced to measure the probability that

Y becomes the dependent attribute of X, while InfoGain(X →~ Y) is defined as the reduction

rate of information uncertainty for Y under X. The details of strength quantification is de-

scribed in [8].

DV of Background Node. The DV of background node d
→
epBNode can be calculated by Eq.

(2). The ith component of d
→
epBNode is the similarity between the ith column name attri and

the table name title. In order to satisfy the condition of LeaderRank [19], we add the aver-

age value 1/N on each component to ensure that it is not equal to zero. We then normalize

the vector and get the final dependency degrees.

d
→
epBNode =

1

ode

(1,) (1,)

1 1
(,)+ (,)+

,...,
1 (,) 1 (,)

N

BN

i i
i N i N

Sim attr title Sim attr title
N Ndep

Sim attr title Sim attr title

=

+ +

 (2)

We use the fuzzy match to calculate the similarity between table name and column

name [21]. If the table name or any column name of the web table does not exist, the each

component of d
→
epBNode is equal to the average value 1/N.

4.2 TSDG Building

Based on DVs for a web table, we can build its TSDG. For a web table with N attrib-

utes, there are N attribute nodes and one background node in its TSDG. After calculating

DV of each node, we can introduce the directed edges between attribute nodes with depen-

DISCOVERING ENTITY COLUMNS OF WEB TABLES 703

dency degree not equal to zero. The background node have edges pointing to each attribute

node. The weight of each edge can be obtained from the components in DVs of attribute

nodes and the background node.

For the web table shown in Table 1, its initial TSDG has 5 attribute nodes and one

background node. Assuming that we get a set of approximate primary functional depend-

ency (aPFD) and its strength by aPFDMiner as: () 1.4;strength Film Year→ = strength

() 1.2; () 0.8; ()Film Director strength Film Nationality strength Film Award→ = → = →

= 0.9; () 1.2; () 0.6;strength Director Nationality strength Director Award→ = → = then

aPFD = {(Film, Year, 1.4), (Film, Director, 1.2), (Film, Nationality, 0.8), (Film, Award,

0.9), (Director, Nationality, 1.2), (Director, Award, 0.6)}. Furthermore, if we use title to

represent the name of Table 1 and assume that Sim(Film, title) = Sim(Director, title) = 0.5,

Sim(Year, title) = Sim(Nationality, title) = Sim(Award, title) = 0, we can figure out DVs

according to formula (1) and Eq. (2) as: d
→
epBnode = (0.1, 0.35, 0.35, 0.1, 0.1), d

→
epYear = (0.1,

0, 0, 0), d
→
epFilm = (0, 0, 0, 0, 0), d

→
epDirector = (0, 1, 0, 0, 0), d

→
epNationality = (0, 0.4, 0.6, 0, 0),

d
→
epAward = (0, 0.6, 0,4, 0, 0). During calculation of DV of attribute node, we regard

strength(X →~ Y) as 0 if X →~ Y is not in the aPFD set. After that, we introduce into the TSDG

6 directed edges between attribute nodes and 5 directed edges from the background node

to each attribute node. And finally, we add weight for each edge based on dependency

degree between nodes and create a final TSDG as in Fig. 2 (a).

Table 1. An example for web table.

Year Film Director Nationality Award
1 1971 Love Karoly Makk Hungary Jury Prize
2 1996 Crash David Cronenberg Canada Special Prize
3 1997 Western Manuel Poirier France Jury Prize
4 2007 Silent Light Carlos Reygadas Mexico Jury Prize
5 2006 Red Road Andrea Arnold UK Jury Prize

4.3 Scoring and Selection

Inspired by LeaderRank [19], an improved algorithm for sorting web pages based on

PageRank, our ECMiner settles the problem of detecting entity columns of a web table by

calculating and sorting the weight of each node in a TSDG, then selecting the semantic

intensive attribute columns as the final result. ECMiner iteratively calculates the weight
→
LRi of each node in the TSDG as Eq. (3).

()

()

()

1 2

1 2

ode ode

1 1

1 1

= 1 *V M*V

1 1

1 1

N

N

i

BN attr attr attr BN

i i

attr attr attr

i i

LR d d*

d dep d dep ,dep ,...,dep dep i

LR LR
d d dep ,dep ,...,dep i

LR LR

− −

− −

− +

 = − + =

=
 = − +

，

，

 (3)

d represents damping coefficient (usually 0.8), indicating that a part of weight of the

node is not used for transition. M is the transition matrix, calculated by the DVs of attribute

nodes as M = [d
→
epattr1

, d
→
epattr2

, …, d
→
epattrN

], ensuring the weight of each node can be em-

phasized reasonably. V is a jump vector with the initial value V = d
→
epBNode to effectively

avoid the hanging nodes and shorten the process of iteration.

SI-YU CHEN AND NING WANG

704

After several iterations, ECMiner will reach convergence and the weights of the nodes

are stable. We sort the components in the final LR, and select nodes with weight greater

than some threshold as the final entity columns.

Algorithm 1 describes the process of entity column detection. The input is a transition

matrix M and a jump vector V. At the beginning, the initial weight vector LR is calculated

(line 1). Then, LR is calculated iteratively according to Eq. (3) until convergence is reached

(line 2-12). At last, if LR value of column k reaches some threshold c, the column could be

regarded as an entity column in current table (13-20).

Algorithm 1: Entity Column Detection

Input: the transition matrix M //the DVs of attribute nodes as M = [d
→
epattr1

, d
→
epattr2

, …, d
→
epattrN

]

 the jump vector V //the DV of background node V = d
→
epBNode

Output: a list of entity columns Entityarr

1. LR1
 = (1 − d)* V + d*M*V;

2. LRcurr
 = LR1;

3. done = false;

4. i = 2;

5. while (!done)

6. done = true;

7. calculate LRi using Eq. (3);

8. for k = 1 to N do

9. if (|LRi [k] − LRcurr [k]| / LRcurr [k] >) then done = false;

10. LRcurr
 = LRi;

11. i = i+1;

12. end while

13. j = 1;

14. for k = 1 to N do

15. if (LRcurr [k] > c) then

16. Entityarr[j] = k;

17. j = j + 1;

18. endif;

19. Entityarr = SortbyLR (Entityarr)

20. return Entityarr;

For the TSDG shown in Fig. 2 (a), we can calculate the transition matrix M and jump

vector V using Eqs. (1) and (2), and get results as follows.

1 2

0.10 0 0 0 0

0.351 0 1 0.4 0.6

[, ,...,] 0.35 .0 0 0 0.6 0.4

0.10 0 0 0 0

0.10 0 0 0 0

Nattr attr attr BNode
M dep dep dep V dep

 = = = =

After several iterations in Algorithm 1, the weights of attribute nodes are stable, and

the final
→
LR = {0, 0.79, 0.21, 0, 0}, so we can mark “Film” and “Director” as the entity

columns of the web table in Fig. 2 (b).

DISCOVERING ENTITY COLUMNS OF WEB TABLES 705

(a) The table schema dependency graph. (b) The TSDG after iteration.

Fig. 2. The TSDG and its convergence result of Table 1.

5. PERFORMANCE EVALUATION

This section verifies the performance of the proposed entity column detection method

by experiments on two true web table datasets and comparison of the performance with

existing methods.

5.1 Experimental Environment

In order to evaluate the effectiveness and efficiency of our entity column mining

framework for web tables, we implemented our algorithms in java and used two true web

table datasets (the WikiTables Dataset 2017 (WIKI) [22] and the WebDataCommons Web

Table Corpus 2015 (WDC) [23]) to compare our ECMiner with exsiting entity column

discovery algorithms EDModel [4] and PGModel [6]. We extracted and selected 200 tables

with regular table structures and meaningful contents as experimental data. The character-

istics of 3 comparison method are described as follows.

EDModel: relies on Probase to detect entity columns and make the judgement based on

two kinds of evidence, which requires the entity column to contain entities of the same

concept and the header to contain attributes that describe entities in the entity column.

EDModel assumes that there is only one entity column in a table which describes single

concept, and neglect tables that describe properties of multiple concepts as well as the

relationships between them.

PGModel: is the first work for identifying multiple entity columns in a web table based

on concept-attribute dependency in knowledge base. The effectiveness of PGModel de-

pends on the coverage of knowledge base, and it is not scalable to large web tables.

ECMiner: discover entity columns based on aPFDs instead of knowledge base. Highlight-

ing semantic information by aPFDs, ECMiner can detect entity columns accurately and

efficiently for both single-entity tables and multi-entity tables, especially for large tables.

According to the size of the data set and the number of entity columns, we divide the

original data set into a LS data set (Large-size tables with Single entity column), a LM data

set (Large-size tables with Multiple entity columns), an MS data set (Medium-size tables

SI-YU CHEN AND NING WANG

706

with Single entity column), an MM data set (Medium-size tables with Multiple entity col-

umns), an SS data set (Small-size tables with Single entity column), an SM data set (Small-

size tables with Multiple entity columns). We compare ECMiner with EDModel and

PGModel in precision, coverage, F-measure, and runtime on above 6 datasets. The char-

acteristic statistics of single-entity and multi-entity table datasets are given as Table 2 and

Table 3 respectively.

Table 2. Characteristic statistics of single-entity table dataset.

Dataset #Col #Row

SS
Min 2 24
Max 4 52
Avg 3 38

MS
Min 4 56
Max 7 120
Avg 5 76

LS

Min 6 120
Max 11 282
Avg 8 156

Table 3. Characteristic statistics of multi-entity table dataset.

Dataset #Col #Row

SM
Min 4 12
Max 6 54
Avg 5 36

MM
Min 6 56
Max 9 144
Avg 7 89

LM

Min 8 152
Max 12 470
Avg 10 183

5.2 Evaluation of Effectiveness

We use precision, recall and F-measure to evaluate the effectiveness of entity column

detection methods. Precision measures the percentage of the output entity columns that are

desired. Compared with accuracy which measures the percentage of true positive and true

negative in all samples, precision metric is more targeted to the effectiveness of entity

column detection. In addition, we use recall to measure the percentage of the desired entity

columns that are output, and F-measure is the weighted harmonic mean of precision and

recall.

| _ _ |

| _ |

values truth values found
Precision

values found

= (4)

| _ _ |

| _ |

values truth values found
Coverage

values truth

= (5)

2 Coverage Precision
F measure

Coverage Precision

− =

+
 (6)

DISCOVERING ENTITY COLUMNS OF WEB TABLES 707

(a) Single-entity tables. (b) Multi-entity tables.

Fig. 3. Comparison of different methods in precision.

(a) Single-entity tables. (b) Multi-entity tables.

Fig. 4. Comparison of different methods in coverage.

(a) Single-entity tables. (b) Multi-entity tables.

Fig. 5. Comparison of different methods in F-measure.

Figs. 3-5 show the performance of different algorithms on single-entity tables and

multi-entity tables respectively in precision, coverage, F-measure. We have the following

observations:

SI-YU CHEN AND NING WANG

708

1. For precision, ECMiner significantly outperforms EDModel and PGModel for both

single-entity and multi-entity tables, especially on large dataset. As shown in Fig.3, the

average precision of our ECMiner is 0.84 and 0.90 for single-entity and multi-entity

tables, respectively, greatly exceeding EDModel (0.34 and 0.48) and PGModel (0.54

and 0.64). Table 4 specially give growth rates between ECMiner and other baseline

methods on datasets with different size (Small, Medium or Large). The precision of

EDModel and PGModel entirely depend on the coverage of the knowledge base for

attribute values in web tables. Not being restricted by the knowledge base and the num-

ber of entity columns, ECMiner gets higher precision because it is based on aPFDs

which focus on dependencies with primary attributes as determining attributes, and it

considers the semantic information of the table name and column name. In some cases,

especially when the quality of web tables is not high, ECMiner may focus on the wrong

node during iteration. It is our future work to improve our method to make it robust to

low-quality web tables.

Table 4. Precision growth between ECMiner and other methods.

 Small Medium Large Average

EDModel

Single-entity 117% 161% 216% 147%

Multi-entity 83% 74% 131% 87%

PGModel
Single-entity 39% 59% 108% 56%

Multi-entity 25% 53% 98% 41%

2. As the sizes of web tables increase from Small to Large, the precisions of the three

methods gradually decrease. Among them, the precision of ECMiner reduces 11% on

single-entity tables and 16% on multi-entity tables, while EDModel reduces 39% and

16%, and PGModel reduces 41% and 45%. Obviously, ECMiner has a smaller decline

in precision than other methods for large tables. The precision of ECMiner is more

stable on larger tables because each column is always abstracted as one attribute node

in ECMiner no matter how many attribute values the column have. But EDModel and

PGModel match more noisy labels when the number of attribute value increases.

3. As shown in Fig. 4, ECMiner also performs better in coverage with average 0.92 on

single-entity tables and 0.77 on multi-entity tables than the baseline methods. Taking

advantage of aPFDs between columns, ECMiner uses the LeaderRank to highlight the

importance of entity columns. Furthermore, ECMiner is not sensitive to the number of

entity columns and is less likely to miss entity columns, so its average coverage is

higher. For large datasets with more attributes in tables, the opportunity for iteration

algorithm to focus on the wrong node will increase. From the experimental results, we

can see that the coverage rate does not grow while increasing data size.

4. As the precision and coverage are higher, the F-measure of our ECMiner is also better

than baseline methods. In Fig. 5, the average F-measure of ECMiner reaches 0.87 and

0.83 for single-entity and multi-entity tables, respectively, significantly outperforming

EDModel (0.49 and 0.54) and PGModel (0.66 and 0.68).

DISCOVERING ENTITY COLUMNS OF WEB TABLES 709

5.3 Evaluation of Efficiency

Fig. 6 gives the comparison of different methods in runtime. The efficiency of our

ECMiner significantly outperforms other baseline methods, on either single-entity tables

or multi-entity tables. The average time cost of ECMiner is 0.5% of EDModel and 0.8%

of PGModel for single-entity tables, while it is only 0.3% of EDModel and 0.2% of

PGModel for multi-entity tables. As we know, EDModel and PGModel need to traverse

the large knowledge base to detect entity columns, which is time-consuming process espe-

cially for large tables. However, our ECMiner is based on LeaderRank with good conver-

gence and efficiency.

(a) Single-entity tables. (b) Multi-entity tables.

Fig. 6. Comparison of different methods in runtime.

6. CONCLUSIONS

Discovery of entity columns will greatly promote the understanding of web tables.

We propose an entity column discovery framework ECMiner based on approximate pri-

mary functional dependency. After building table schema dependency graph based on de-

pendency vector to reflect semantic dependency relationships between columns of a web

table, ECMiner calculates and sorts the importance of each attribute column by Leader-

Rank, and selects semantic intensive columns as entity column candidates. Our method

can detect entity columns accurately and efficiently for both single-entity tables and multi-

entity tables. The experimental results on real web datasets show that our method signifi-

cantly outperforms previous work in both effectiveness and efficiency, especially for large

tables.

SI-YU CHEN AND NING WANG

710

REFERENCES

1. M. J. Cafarella, A. Halevy, H. Lee, J. Madhavan, C. Yu, D. Wang, and E. Wu, “Ten

years of WebTables,” in Proceedings of the VLDB Endowment, Vol. 11, 2018, pp.

2140-2149.

2. P. Venetis, A. Halevy, J. Madhavan, M. Pasca, W. Shen, F. Wu, G. X. Miao, and C.

Wu, “Recovering semantics of tables on the web,” in Proceedings of the VLDB En-

dowment, Vol. 4, 2011, pp. 528-538.

3. K. Braunschweig, “Recovering the semantics of tabular web data,” Ph.D. Thesis, Dres-

den University of Technology, 2015.

4. J. J. Wang, H. X. Wang, Z. Y. Wang, and K. Q. Zhu, “Understanding tables on the

web,” in Proceedings of the 31st International Conference Conceptual Modeling,

2012, pp. 141-155.

5. D. Deng, Y. Jiang, G. L. Li, J. Li, and C. Yu, “Scalable column concept determination

for web tables using large knowledge bases,” in Proceedings of the VLDB Endowment,

Vol. 6, 2013, pp. 1606-1617.

6. N. Wang and X. R. Ren, “Identifying multiple entity columns in web tables,” Interna-

tional Journal of Software Engineering and Knowledge Engineering, Vol. 28, 2018,

pp. 287-309.

7. W. T. Wu, H. S. Li, H. X. Wang, and K. Q. Zhu, “Probase: a probabilistic taxonomy

for text understanding,” in Proceedings of SIGMOD Conference, 2012, pp. 481-492.

8. S. Y. Chen, N. Wang, and M. M. Zhang, “Mining approximate primary functional

dependency on web tables,” IEICE Transactions on Information and Systems, Vol.

E102-D, Vol. 3, 2019, pp. 650-654.

9. M. D. Adelfio and H. Samet, “Schema extraction for tabular data on the web,” in Pro-

ceedings of the VLDB Endowment, Vol. 6, 2013, pp. 421-432.

10. H. H. Chen, S. C. Tsai, and J. H. Tsai, “Mining tables from large scale HTML texts,”

in Proceedings of Conference on Computational Linguistics, 2000, pp. 166-172.

11. W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl, and B. Pollak, “Towards domain-

independent information extraction from web tables,” in Proceedings of WWW Con-

ference, 2007, pp. 71-80.

12. D. Jannach, K. Shchekotykhin, and G. Friedrich, “Automated ontology instantiation

from tabular web sources − the AllRight system,” Web Semantics, Vol. 7, 2009, pp.

136-153.

13. D. Pinto, A. McCallum, X. Wei, and W. B. Croft, “Table extraction using conditional

random fields,” in Proceedings of the 26th Annual International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval, 2003, pp. 235-242.

14. Y. Wang and J. Hu, “A machine learning based approach for table detection on the

web,” in Proceedings of WWW Conference, 2002, pp. 242-250.

15. I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga, “CORDS: automatic dis-

covery of correlations and soft functional dependencies,” in Proceedings of SIGMOD

Conference, 2004, pp. 647-658.

16. D. Z. Wang, L. Dong, and A. D. Sarma, “Functional dependency generation and ap-

plications in pay-as-you-go data integration systems,” in Proceedings of the 12th In-

ternational Workshop on Web and Databases, 2009.

DISCOVERING ENTITY COLUMNS OF WEB TABLES 711

17. P. Mandros, M. Boley, and J. Vreeken, “Discovering reliable approximate functional

dependencies,” in Proceedings of the 23rd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 2017, pp. 355-363.

18. K. Braunschweig, M. Thiele, and W. Lehner, “From web tables to concepts: a seman-

tic normalization approach,” in Proceedings of the 34th International Conference on

Conceptual Modeling, 2015, pp. 247-260.

19. L. Y. Lü, Y. C. Zhang, C. H. Yeung, and T. Zhou, “Leaders in social networks, the

delicious case,” PLoS ONE, Vol. 6, 2011.

20. S. Xu and P. Wang, “Identifying important nodes by adaptive LeaderRank,” Physic A:

Statistical Mechanics & its Applications, Vol. 469, 2017, pp. 654-664.

21. W. W. Cohen, P. Ravikumar, and S. E. Fienberg, “A comparison of string distance

metrics for name-matching tasks,” in Proceedings of International Conference on In-

formation Integration on the Web, 2003, pp. 73-78.

22. http://downey-n1.cs.northwestern.edu/public/.

23. http://www.webdatacommons.org/webtables/index.html.

 Si-Yu Chen (陈思宇) received her M.S. degree in School of

Computer and Information Technology, Beijing Jiaotong University,

China. She currently works in China CITIC Bank. Her research in-

terests include web data integration, data quality and data mining.

Ning Wang (王宁) received her Ph.D. degree in Computer Sci-

ence in 1998 from Southeast University in Nanjing, China. She is

currently serving as a Professor in School of Computer and Infor-

mation Technology, Beijing Jiaotong University, China. Her re-

search interests include web data integration, big data management,

data quality and crowdsourcing.

http://www.webdatacommons.org/webtables/index.html

