
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 24, 1175-1186 (2008)

1175

Short Paper__

A Temporal Aggregation Method

for Update-Intensive Applications*

SUNG TAK KANG, YON DOHN CHUNG+ AND MYOUNG HO KIM

Department of Computer Science
Korea Advanced Institute of Science and Technology

Yusung-Gu, Daejon, 305-701, Korea
+Department of Computer Science and Engineering

Korea University
Seongbuk-Gu, Seoul, 136-713, Korea

The temporal aggregation in temporal databases is an extension of the conventional

aggregation including the time as a range condition of the aggregation. In this paper, we
propose a new tree based structure for the temporal aggregation, called the CTA-tree. In
the CTA-tree, we transform the time interval of a temporal data record into a value,
called the T-value, using the Corner transformation and column-scan transformation.
Then, we index the data records according to their T-values. Through analyses and ex-
periments, we evaluate and compare the performance of the proposed method with the
conventional method, and show the efficiency of the proposed method for the update-
intensive applications.

Keywords: temporal aggregation, corner transformation, data structures, temporal data-
bases, databases

1. INTRODUCTION

Temporal database (TDB) systems provide built-in supports for efficient storing and
querying of time-varying data [1]. The TDB is essential to various applications such as
the trend analysis, version management and video data management. It is also popularly
used for managing temporal data in data warehouses.

The early research on the TDB mainly the considered conceptual problems such as
modeling, query languages, and implementation related problems − the indexing, query
processing and storage management [2, 3]. The recent research on the TDB has focused
on the temporal operations including the temporal aggregation and their processing tech-
niques [4-9].

The aggregation is an operation that calculates a value or selects a representative
value from a (part of) relation. The temporal aggregation extends the conventional ag-
gregation to include the time concept on the domain and the range of aggregation. It is

Received June 2, 2006; revised November 6, 2007 & March 6, 2008; accepted March 13, 2008.
Communicated by Suh-Yin Lee.
* This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the

Korea government (MOST) (No. R0A-2007-000-10046-0).
+ Corresponding author.

admin
打字機文字
DOI:10.1688/JISE.2008.24.4.11

SUNG TAK KANG, YON DOHN CHUNG AND MYOUNG HO KIM

1176

essential to the statistical tasks, decision support applications, data warehouses and
OLAP. There have been several proposals for the temporal aggregation processing, most
of which are tree-based approaches. In the tree-based approach, a special tree structure is
built for the records, and the temporal aggregates are computed by traversing the con-
structed tree structure. Therefore, the efficient tree construction and aggregate computa-
tion techniques are the key to the improvement of the performance.

The SB-tree [7] is one of the most popularly used disk-based temporal aggregation
method. It stores all possible time intervals that can be made by the given time interval
and their aggregate values. It is useful when the time domain is narrow compared with
the number of temporal data records. However, this situation is not so usual. In addition,
the SB-tree has some drawbacks in update-intensive situations. In the worst case, there
can be 2N index records in the tree when we insert N temporal data records, and thus,
O(log N) disk updates are needed for one temporal data record insertion.

In this paper, we propose a new tree structure, named the Corner Transformation-
based Aggregation tree (CTA-tree), and an aggregate processing method based on the CTA-
tree. Through analyses and performance experiments, we show the advantages of the pro
posed method.

The remainder of the paper is organized as follows. Section 2 describes some pre-
liminary knowledge for our study. Section 3 describes the structure of the CTA-tree and
the aggregation processing method. In section 4, we analyze the complexity of the pro-
posed method and evaluate the performance of the proposed method through experiments.
Finally, we conclude the paper in section 5.

2. PRELIMINARIES

2.1 Background

The whole time-line is partitioned into a number of intervals based on the time in-
tervals of temporal data, and each partitioned interval may have a different aggregate
value. The maximal continuous intervals on which we have the same aggregate values
are called constant intervals. A temporal aggregation denotes the operation that makes
constant intervals and computes their aggregate values. Therefore, the temporal aggrega-
tions can be used to see the changes of aggregate values on time. Fig. 1 shows an exam-
ple of the temporal aggregation. Fig. 1 (a) is a set of temporal data records, and Fig. 1 (b)
is the time diagram of them. Fig. 1 (c) shows the temporal aggregation results for the
MAX and COUNT operations based on this data set. Here, the constant intervals for
MAX are [0, 9], [10, 15], [16, 16], [17, 18], and so on. Those for COUNT are [0, 2], [3,
5], [6, 9], [10, 11], [12, 12], and so on.

2.2 Related Work

There were many proposals for the temporal aggregation. Some approaches [3-5]
were based on the main-memory, and the others [9, 10] were based on the disk. Since the
amount of data in the TDB becomes very large, the memory-based approaches are con-
sidered inappropriate for real applications. Therefore, in this paper, we focus on the disk-
based approaches.

A TEMPORAL AGGREGATION METHOD FOR UPDATE-INTENSIVE APPLICATIONS

1177

No Start time End time Value
1 0 9 16
2 3 11 10
3 6 15 13
4 13 25 5
5 17 22 9
6 20 28 18
7 19 25 11
8 21 23 15

 (a) Temporal data. (b) Time diagram for (a).

Start time End time MAX Start time End time COUNT
0 9 16 0 2 1
10 15 13 3 5 2
16 16 5 6 9 3
17 18 9 10 11 2
19 19 11 12 12 1
···· ···· ···· ···· ···· ····

(c) Temporal aggregation results for MAX and COUNT.
Fig. 1. An example of temporal aggregation.

The SB-tree [7] was proposed as a disk-based method for the temporal aggregation

and known to be the most efficient [5]. It is based on the segment-tree and B-tree. The
temporal aggregation processing based on the SB-tree consists of two steps: the tree con-
struction and aggregate value computation with a depth-first-search on the tree. The time
intervals of child nodes partition their parent interval. That is, the time intervals of sib-
ling nodes are disjoint, and the union of them makes their parent interval. The constant
intervals and their aggregate values are maintained in the leaf nodes. The internal nodes
have time intervals and their aggregate values. Since the aggregate values in the leaf
nodes are partial aggregate values, rather than the complete values for the constant inter-
vals, we have to compute the real aggregate values by a depth-first search on the tree i.e.,
the aggregate values are computed by traversing the nodes on the path from the root to a
leaf. Fig. 2 illustrates the construction of the SB-tree for the COUNT operation using the
data set in Fig. 1 (a).

When a new temporal data record is inserted into the SB-tree, new index records are
generated by partitioning the time intervals of leaf nodes that intersect the time interval
of the new temporal data. (The components in the tree structure are different from the
temporal data. For example, a component in the tree contains a time point instead of a
time interval in the temporal data. In the paper, we refer to the components in the tree
structure as the index records for the purpose of distinguishing them from the temporal
data records.) There can be at most two new index records in the leaf nodes for the inser-
tion of a single data record. Fig. 2 (a) shows the SB-tree after inserting data record 1.
There is one index record (9, 1), which means the upper bound of the time interval [0, 9]
and its aggregate value. After inserting data record 2, the SB-tree becomes as in Fig. 2
(b), where the constant intervals become [0, 2], [3, 9], and [10, 11]. After inserting data
record 3, the SB-tree becomes as in Fig. 2 (c). The internal node N1 has one index record

16

10

13

18

9
5

0 6
3 9

11
13

15
17

19
22 25 28

11

15

20
21 23

SUNG TAK KANG, YON DOHN CHUNG AND MYOUNG HO KIM

1178

 (9, 1)

(2, 1)
(9, 2)
(11, 1)

(a) After inserting temporal data 1. (b) After inserting temporal data 2.

(2, 1)
(5, 2)

(9, 3)
(11, 2)
(15, 1)

(5, 0)N1

N2 N3

(2, 1)
(5, 2)

(9, 3)
(11, 2)

(5, 0) (11, 0)N1

N2 N3

(12, 1)
(15, 2)
(25, 1)

N4
(c) After inserting temporal data 3. (d) After inserting temporal data 4.

Fig. 2. The construction of the SB-tree for COUNT.

and the index record has the time interval [0, 5] and its aggregate value ‘0’. The time
intervals in the internal nodes are updated when the time interval of a new data record
covers them. For example, the aggregate value for the time interval [0, 5] becomes 1
when a new temporal data with a time interval [0, 8] is inserted. Fig. 2 (d) shows the
SB-tree after inserting temporal data record 4.

The SB-tree has some drawbacks. In the environment where the same time points
are not frequent, O(log N) disk updates are needed for one record insertion, where N is
the number of temporal data records in the tree. This is because we have to update the
values in the internal nodes on the path from the root node to a leaf node, and the height
of the tree is proportional to O(log N). In addition, we have to store about 2N index re-
cords since each insertion usually generates two new index records.

3. THE PROPOSED METHOD

In this work, we use the Corner transformation and column-scan transformation
techniques to make a scalar value for indexing time intervals. (We call the transformed
value the T-value). The time intervals are transformed into T-values, and then constructed
into a tree structure, called the CTA-tree.

3.1 T-value Generation using the Corner and Column-scan Transformation

The T-value generation process consists of the following two steps. In the first step,
we map a time interval into a spatial point using the Corner transformation [10]. By the
Corner transformation, a time interval [ts, te] is mapped to a spatial point (ts, te). In the
transformed space, the way to find the time intervals that intersect with a given time in-
terval is as follows: When determining whether two time intervals I1 and I2 intersect with
each other, we compare the start time of one with the end time of the other. That is, the
time intervals that intersect with the given time interval [ts, te] will have the start time less
than or equal to te, and the end time greater than or equal to ts.

In Fig. 3, we illustrate an example of a Corner-transformed time interval I([3, 8]),
where p is the point that is transformed from I. Here, the time intervals that intersect with

A TEMPORAL AGGREGATION METHOD FOR UPDATE-INTENSIVE APPLICATIONS

1179

p

A

B C

3 8

3

8

y=x

x(ts)

y(te)

Fig. 3. The region of points that satisfy the given time interval.

I are represented by the region which is specified by x ≤ 8(I.te) and y ≥ 3(I.ts). Also,
since I.te ≥ I.ts, y ≥ x. The points in A are specified by x ≤ 8 and y ≥ 8, those in B are
by x ≤ 3 and 3 ≤ y ≤ 8, and those in C are by 3 ≤ x ≤ 8, 3 ≤ y ≤ 8 and y ≥ x.
Therefore, in order to find time intervals that intersect with the given time interval I([3,
8]), we have only to search the points located in A, B, and C (i.e., the shaded area in the
figure).

In the second step, we transform the spatial point into a value, called T-value, using
a linear transformation technique. There have been various linear transformation tech-
niques like the Z-ordering and Hilbert curves that map the multidimensional data into
one-dimensional data [11]. Among these transformation techniques, we use the column-
scan transformation for simplicity. In the column-scan transformation, a spatial point is
treated as a big number. For example, assume that the value of time is a two-digit number.
Then, the T-value for the time interval of a temporal data record, [30, 40], is 3040. (In all
of the examples in the rest of paper, we use this simple transformation technique).

3.2 The Structure of the CTA-tree

The CTA-tree consists of two kinds of nodes: A-node and I-node. An A-node (ag-
gregate node) stores the index records each of which consists of a T-value and the ag-
gregate value for the T-value. An I-node (index node) indexes A-nodes or other I-nodes.
An index record in the I-node consists of a T-value and a pointer to its child. The T-value
in the I-node is the upper bound of the T-values in the child. The index records in the
deepest I-node (e.g. I1 and I2 in Fig. 4 (d)) whose child nodes are A-nodes have one addi-
tional component, which is the largest end time among the time intervals in the A-nodes
to which the I-node points.

Fig. 4 shows the construction steps of the CTA-tree for the example data in Fig. 1
(a). We describe the time points as two-digit numbers, and thus the T-values as four-digit
numbers. That is, the T-values of the index records in Fig. 1 (a) are 0009, 0311, 0615,
1325, and so on. Here, we assume that the capacity values (i.e., the number of index re-
cords) for an I-node and an A-node are 2 and 3, respectively.

Fig. 4 (a) shows the CTA-tree after inserting temporal data record 1 and 2 in Fig. 1
(a). After inserting temporal data record 3 and 4, the CTA-tree becomes as in Fig. 4 (b).
After inserting the data record 4 into the CTA-tree, A1 splits into A1 and A2, and then, I1
becomes the new root. Now, we insert a new index record in I1. The T-value of the new
index record is decided as if we split the x-axis of the 2-D space. Thus, the T-value be-
comes 0599 and A2 contains the records whose T-values are greater than or equal to 0600.

SUNG TAK KANG, YON DOHN CHUNG AND MYOUNG HO KIM

1180

(0009, 1)
(0311, 1)

(0009, 1)
(0311, 1)

(0615, 1)
(1325, 1)

(0599, 11)I1

A1 A2
(a) After inserting temporal data 1 and 2. (b) After inserting temporal data 3 and 4.

(0009, 1)
(0311, 1)

(0615, 1)
(1325, 1)

(1722, 1)
(2028, 1)

I1

A1 A2 A3

(0599, 11) (1699, 28)

(0009, 1)
(0311, 1)

(0615, 1)
(1325, 1)

(1722, 1)
(1925, 1)

I1

A1 A2 A3

(2028, 1)
(2123, 1)

I2

A4

I3

(0599, 11) (1699, 28) (1999, 25)

1699

(c) After inserting temporal data 5 and 6. (d) After inserting temporal data 7 and 8.

Fig. 4. The construction of the CTA-tree for COUNT.

Now, the largest end time of the index record is 11. This means that 11 is the largest end
time of all the time intervals in A1. Fig. 4 (c) shows the CTA-tree after inserting data
record 5 and 6. After inserting temporal data 7 and 8, the CTA-tree becomes as in Fig. 4
(d). In this process, A3 splits into A3 and A4, I1 splits into I1 and I2, and a new I-node I3
becomes the new root.

When we insert a temporal data record in an A-node, some optimization can be con-
sidered for each of the following two aggregation classes:

• For the temporal aggregations of COUNT, SUM and AVG, we can merge two index

records X1 and X2 into X3 whose time interval is [the start time of X1, the end time of
X2] and the aggregate value is the same to that of X1, if the start time of X2 is (the end
time of X1 + 1) and the aggregate value of X1 is the same to that of X2.
♦ Let us show an example based on the COUNT operation. Suppose two index re-

cords X1 and X2 whose intervals are [3, 10] and [10, 20], respectively. Also, there
are no other index records that are relevant to these intervals. Then, since the count
values of X1 and X2 are 1, and their intervals are contiguous, we can merge them
into a new index record X3, where the count value of X3 is 1 and the interval of X3
is [3, 20].

• For the temporal aggregations of the MAX and MIN, we can merge two index records
X1 and X2 into X1 if the time interval of X1 covers the time interval of X2 and the ag-
gregate value of X1 is greater (less for MIN) than or equal to that of X2.
♦ Suppose two index records X1 and X2, where their intervals and MAX values are [5,

25] and [10, 20], and 10 and 5, respectively. Since the time interval of X1 includes
that of X2 and the MAX value of X1 is greater than that of X2, X1 and X2 can be
merged into X1.

A TEMPORAL AGGREGATION METHOD FOR UPDATE-INTENSIVE APPLICATIONS

1181

3.3 Aggregation Processing on the CTA-tree

The condition phrase of a temporal aggregation consists of a time interval I that

consists of a start time ts and an end time te. In order to process the temporal aggregation,
we visit all the paths of I-nodes that satisfy the given condition. To find the paths, we use
the T-values and the largest end times in I-nodes. The T-values in the I-nodes are the up-
per bounds of T-value ranges. The time intervals that intersect with the given time inter-
val I are represented by the T-values which are formed as ‘αβ’ where α ≤ I.te and β ≥ I.ts.
The query area that contains these T-values is a part of rectangle as shown in Fig. 3. (We
can treat the query area as a rectangle since there are no data below the y = x line). We
visit a child if the T-value range intersects with the query area. We use the largest end
times in the deepest I-nodes to decide whether we have to visit child nodes or not. Al-
though the T-value of an index record in the deepest I-node intersects the query area, we
need not visit the child node if the largest end time is less than the start time of the given
time interval. This is because there are no index records whose time intervals intersect
with the given time interval.

While visiting the nodes, partial results of aggregation are gathered from A-nodes.
And we can compute the total result by merging these partial results. For example, as-
sume that the time interval is [1, 9] in the given condition. Then, in Fig. 4 (d), we visit
the paths I3-I1-A1 and I3-I1-A2. The partial results from the above two paths are {([1, 2], 1),
([3, 9], 2)} and {([6, 9], 1)}. Those results can be described as {([1], 1), ([3], 2), ([10],
0)} and {([6], 1), ([10], 0)}, since the constant intervals can be expressed as a sequence
of start times. By merging these results, the total result can be computed as {([1], 1), ([3],
2), ([6], 1), ([10], 0)}.

4. ANALYSES AND EXPERIMENTS

4.1 Complexity Analyses

In this section, we analyze the number of disk updates required for one data record

insertion and the number of index records in the tree after inserting N records.
In the SB-tree, we need 2h − 1 disk updates for one record insertion in the worst

case, where h is the height of the tree. This worst case occurs when the following two
conditions are satisfied in an I-node: (1) the time interval of the inserted record covers at
least one time interval and intersects two time intervals, and (2) the aggregate value for
the time interval covered by the inserted time interval is changed due to the insertion. In
this case, the internal node must be updated so as to store the changed aggregate value.
And, we must visit the child nodes of the two index records whose time intervals inter-
sect with the inserted time interval. This process is repeated for the two paths starting
from the root node. Because the number of nodes of each path is (h − 1) except the root
node, we need 2h − 1 updates for one data record insertion.

In the CTA-tree, an insertion of temporal data record requires only two disk updates
in the worst case. We store a new index record in an A-node i.e., we update the A-node.
The index records in the deepest I-nodes have the largest end times, and these largest end
times are changed when the new data record has an end time greater than them. For one
data record insertion, we update the index record in the deepest I-node whose child node

SUNG TAK KANG, YON DOHN CHUNG AND MYOUNG HO KIM

1182

is the A-node into which we insert the new data record. Therefore, we need only two disk
updates even in the worst case, one for the A-node and one for the deepest I-node. In the
case of node splits, the update cost of the CTA-tree is equal to that of the SB-tree. How-
ever, since most insertions are processed by only node updates, the insertions causing
node splits are not frequent.

In the SB-tree, two index records can be generated for one record insertion. When
we insert a temporal data record, two time points, ‘the start time-1’ and ‘the end time’,
are placed in the A-nodes if necessary. Therefore, in the worst case, there can be totally
2N index records in the tree for N temporal data records. In the CTA-tree, at most one
index record will be generated for one data record insertion. Therefore, totally N index
records can be generated in the worst case.

Table 1. The worst case analysis of storage and update cost.

 The number of disk updates
required for one record insertion

The number of index records in the tree
for storing N temporal data records

SB-tree 2h − 1 2N
CTA-tree 2 N

4.2 Performance Experiments

We experimentally compared the performance of the SB-tree and the CTA-tree with
respect to (i) the storage cost, (ii) the update cost and (iii) the aggregation processing
time. For the experiments, we generated a set of temporal data records, and construct the
SB-tree and CTA-tree for the data set. We assumed that all attributes have non-negative
values. The experimental parameters are the number of data records and the density. The
numbers of data records are 10000, 20000, 50000, 100000, 200000, 500000 and 1000000.
We assumed that the time interval has a uniform distribution. The density is the ratio of
unique time points to the number of all time points. The density values are 0, 2, 4, 6, 8,
10, 12, 14, 16, 18, and 20%. The length of time intervals varies according to the numbers
of temporal data and density values. All attributes and pointers are 4 bytes in size.

0 20 40 60 80 100
0

5

10

15

20

25

st
or

ag
e

co
st

 (n
um

be
r o

f d
is

k
pa

ge
s(

x1
00

0)
)

number of temporal data (x10000)

 SB-tree CTA-tree

0 20 40 60 80 100

0

1

2

3

4

5

6

up
da

te
 c

os
t (

nu
m

be
r o

f d
is

k
up

da
te

s)

number of temporal data (x10000)

 SB-tree CTA-tree

Fig. 5. The storage and update cost for various numbers of temporal data.

A TEMPORAL AGGREGATION METHOD FOR UPDATE-INTENSIVE APPLICATIONS

1183

0 5 10 15 20
8

9

10

11
st

or
ag

e
co

st
 (n

um
be

r o
f d

is
k

pa
ge

s(
x1

00
0)

)

density (%)

 SB-tree CTA-tree

0 5 10 15 20

0

1

2

3

4

5

up
da

te
 c

os
t (

nu
m

be
r o

f d
is

k
up

da
te

s)

density (%)

 SB-tree CTA-tree

Fig. 6. The storage and update cost for various densities.

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

pr
oc

es
si

ng
 ti

m
e

(n
um

be
r o

f d
is

k
ac

ce
ss

es
)

ratio (%)

 SB-tree CTA-tree

Fig. 7. The aggregation processing time.

Firstly, in Fig. 5, we examine the disk usage and the number of disk updates for one

temporal data record insertion. The figure shows that the CTA-tree uses less space than
the SB-tree. The disk usage of the CTA-tree is about 2/3 of that of the SB-tree when the
number of temporal data is 1000000. Also, it shows that the CTA-tree updates less disk
pages than the SB-tree. The number of disk updates of the CTA-tree is about 1/4 of that
of the SB-tree when the number of data is 1000000.

Fig. 6 shows the disk usage and the number of disk updates for various densities.
The number of temporal data records is 500000. Although the number of disk pages of
the SB-tree decreases as the density becomes higher, the CTA-tree uses still less. Also, it
is observed that the number of disk updates does not change in both the trees, and that of
the CTA-tree is about 1/4 of that of the SB-tree.

Fig. 7 shows the number of disk accesses for processing temporal aggregations. We
set the number of data as 500000 and the density as 10%. We change the length of the
time interval as 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10% of the entire time length. Although the
SB-tree is slightly superior to the CTA-tree, the difference is very little.

As the size of the TDB increases, the amount of data for the temporal aggregation
increases. Also, many update-intensive applications make frequent insertions into the
temporal databases. For example, in the applications like LBS (Location Based Service),

SUNG TAK KANG, YON DOHN CHUNG AND MYOUNG HO KIM

1184

the number of mobile phones in a cell changes very frequently. These changes produce
lots of insertions of new temporal records into the database. In these update-intensive
environments, the proposed method shows good performance behaviors – the low stor-
age overhead, the low insertion overhead, and the similar aggregation processing per-
formance compared with the SB-tree.

5. CONCLUSIONS

Aggregate functions calculate a value or select a representative value from a (part
of) relation. They are essential to many applications. But there are many differences be-
tween the conventional aggregation and the temporal aggregation that supports the time
dimension. Thus, techniques for the conventional aggregation are not easy to be used
directly for the temporal aggregation.

There have been several proposals to compute temporal aggregates. Among them,
the SB-tree is known to be the most efficient [5]. However, the SB-tree is not efficient in
highly update-intensive environments, since the SB-tree requires O(log N) disk updates
for one temporal data insertion, and 2N index records are generated in the tree when we
insert N temporal data.

In the paper, we proposed a new tree structure called the CTA-tree and an aggregate
processing method based on the CTA-tree. We used two transformation techniques (the
Corner transformation and column-scan transformation) to make a value for indexing,
and store the index records based on those values. The CTA-tree supports efficient inser-
tions of temporal data records and effective query processing. Through analyses and ex-
periments, we evaluated the aggregation processing performance, update efficiency and
storage cost of the proposed and the conventional methods. The results showed that our
CTA-tree has better storage utilization and needs fewer disk updates than the SB-tree
without sacrifice of aggregation processing efficiency.

REFERENCES

1. C. S. Jensen and R. T. Snodgrass, “Temporal data management,” IEEE Transactions
on Knowledge and Data Engineering, Vol. 11, 1999, pp. 36-44.

2. J. S. Kim and M. H. Kim, “An effective data clustering measure for temporal selec-
tion and projection queries,” Decision Support Systems, Vol. 30, 2000, pp. 33-50.

3. E. Zimanyi, “Temporal aggregates and temporal universal quantification in standard
SQL,” SIGMOD Record, Vol. 35, 2006, pp. 16-21.

4. J. S. Kim, S. T. Kang, and M. H. Kim, “On temporal aggregate processing based on
time points,” Information Processing Letters, Vol. 71, 1999, pp. 213-220.

5. D. Zhang, A. Markowetz, V. Tsotras, D. Gunopulos, and B. Seeger, “Efficient com-
putation of temporal aggregates with range predicates,” Principles of Database Sys-
tems, 2001, pp. 237-245.

6. D. Zhang, D. Gunopulos, V. J. Tsotras, and B. Seeger, “Temporal and spatio-tem-
poral aggregations over data streams using multiple time granularities,” Information
Systems, Vol. 28, 2003, pp. 61-84.

7. J. Yang and J. Widom, “Incremental computation and maintenance of temporal ag-

A TEMPORAL AGGREGATION METHOD FOR UPDATE-INTENSIVE APPLICATIONS

1185

gregates,” VLDB Journal, Vol. 12, 2003, pp. 262-283.
8. B. Moon, I. F. V. Lopez, and V. Immanuel, “Efficient algorithms for large temporal

aggregation,” IEEE Transactions on Knowledge and Data Engineering, Vol. 15,
2003, pp. 744-759.

9. D. Gao, J. Alving, and G. Gendrano, “Main memory-based algorithms for efficient
parallel aggregation for temporal databases,” Distributed and Parallel Databases,
Vol. 16, 2004, pp. 123-163.

10. J. W. Song, K. Y. Whang, Y. K. Lee, M. J. Lee, and S. W. Kim, “Spatial join proc-
essing using corner transformation,” IEEE Transactions of Knowledge and Data En-
gineering, Vol. 11, 1999, pp. 688-695.

11. V. Gaede and O. Gunther, “Multidimensional access methods,” ACM Computing
Surveys, Vol. 30, 1998, pp. 170-231.

Sung Tak Kang received his Ph.D. and M.S. degrees in Computer Science from
Korea Advanced Institute of Science and Technology, Daejeon, Korea, in 2004 and 1998,
respectively, and his B.E. degree in Computer Science from Korea Advanced Institute of
Science and Technology, Daejeon, Korea, in 1996. His research interests include tempo-
ral databases, data warehouses and online analytical processing.

Yon Dohn Chung is an associate professor in the department of Computer Science

and Engineering, Korea University, Seoul, Korea. He received his B.S. degree in Com-
puter Science from the Korea University in 1994, and his M.S. and Ph.D. degrees in
Computer Science from Korea Advanced Institute of Science and Technology (KAIST),
Daejon, Korea, in 1996 and 2000, respectively. His research interests include mobile
databases, data processing over wireless/mobile/sensor networks and distributed systems.
He is a member of the ACM and IEEE.

Myoung Ho Kim received his B.S. and M.S. degrees in Computer Engineering

from the Seoul National University, Seoul Korea, in 1982 and 1984, respectively, and his
Ph.D. degree in Computer Science from Michigan State University, East Lansing, MI, in
1989. In 1989, he joined the faculty of the Department of Computer Science at KAIST,
Daejon, Korea, where currently he is a professor. His research interests include database
systems, data stream processing, sensor networks, workflow, XML and distributed proc-
essing. He is a member of the ACM and IEEE Computer Society.

