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Mining frequent patterns is a fundamental problem in data mining research. A con-

tinuity is a kind of causal relationship which describes a definite temporal factor with 
exact position between the records. Since continuities break the boundaries of records, 
the number of potential patterns will increase drastically. An alternative approach is to 
mine compressed or closed frequent continuities (CFC). Mining CFCs has the same 
power as mining the complete set of frequent patterns, while substantially reducing re-
dundant rules to be generated and increasing the effectiveness of mining. In this paper, 
we propose a method called projected window list (PWL) technology for the mining of 
frequent continuities. We present a series of frequent continuity mining algorithms, in-
cluding PROWL+, COCOA and ClosedPROWL. Experimental evaluation shows that 
our algorithm is more efficient than previously works.     
 
Keywords: data mining, frequent continuity, inter-transaction pattern, pattern growth, can- 
didate-free enumeration 
 
 

1. INTRODUCTION 
 

Mining frequent patterns in databases is the fundamental for the data mining disci-
pline. Recently, numerous studies have been made, including frequent itemsets [1, 2, 7], 
sequential patterns [3, 4, 6, 21], frequent episodes [16], periodic patterns [5, 8, 9, 17, 23], 
frequent continuities [10, 11, 22], causal relations [12, 20], etc. Some of the previous 
studies, such as those on frequent itemsets, are on mining contemporal relationships, i.e., 
the associations among items within the same transaction where the transaction could be 
considered as the items bought by the same customer, events which happened on the 
same day, etc. For the sake of applications, measures such as confidence and correlation 
have been used to infer rules of the form “the existence of item A implies the existence of 
item B.” For instance, a typical rule R1 will be “if a customer buys butter, there is 80% 
confidence that he buys bread at the same time.” The same concept can be applied to 
other applications as well, e.g. we can find rule R2 in the stock market, such as “the 
prices of TSMC and UMC go up together on the same day with 80% probability.” How-
ever, such rules indicate only statistical and contemporaneous relationships between items. 

From the investors’ point of view, a rule R3 like “When the price of stock TSMC 
goes up for two consecutive days, the price of stock UMC will go up on the third day 
with 60% probability.” may be more significant. This kind of causal rules between stocks 
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with definite temporal factors can be envisioned as a tool for describing and forecasting 
of the behavior of temporal databases. While a number of studies have been proposed for 
temporal relations, e.g. sequential patterns and frequent episodes, they have not consid-
ered definite temporal relationships. For instance, they can find a rule R4 like “When the 
price of stock TSMC goes up, the price of stock UMC will go up afterward.” The main 
difference between R3 and R4 is that R3 describes the temporal factor clearly between 
events, whereas R4 does not specify it. 

The problem of mining association rules with definite temporal factor was defined 
by Lu et al. [13], using the term “inter-transaction associations” in contrast to intra- 
transaction associations for contemporary associations. The term was used because it 
breaks the boundaries of transactions to cross-record temporal associations. From this 
definition, mining frequent episodes [14, 15] and periodic patterns [8, 23] from se-
quences are kinds of inter-transaction as well, if the input sequences for the mining tasks 
are regarded as transactional databases. Thus, in order to distinguish the problem of 
Tung’s from episodes and periodic patterns, we call such definite temporal associations 
“continuity” associations. A rule like R3 can be generated from frequent continuities, an 
inter-transaction association which correlates the definite temporal relationships with 
each object. 

Frequent continuities can be applied in several domains, including temporal, special 
databases, or other domains where the dimensional attribute is ordinal and can be divided 
into equal length intervals. For example, temporal intervals can be divided into days, 
months and seasons, etc. and special intervals can be divided into miles, regions and lon-
gitudes, etc. This type of pattern discovery can be used to study problem such as the evo-
lution of stock prices and related populations. 

Lu et al. [13] introduced inter-transaction association rules and developed two algo-
rithms, E-Apriori and EH-Apriori, for mining inter-transaction associations by extension 
of Apriori. Besides, Tung et al. [22] proposed an algorithm, FITI (First Intra Then Inter), 
for the mining of frequent continuities. FITI is a 3-phase algorithm that uses the impor-
tant property “A frequent continuity is composed of frequent intra-transaction itemsets 
and the don’t-care(*)/mismatching characters.” The first phase discovers intra-transact- 
tion itemsets. The second phase transforms the original database into another format to 
facilitate the mining of inter-transaction associations. The third phase follows the Apri-
ori-based mining. In order to make search quickly, FITI is devised with several hashing 
structures for pattern searching and generation. Similar to Apriori-like algorithms, FITI 
could generate a huge number of candidates and require several scans over the whole 
database to check which candidates are frequent. Therefore, we [11] introduced a pro-
jected window list technique, PROWL, which enumerates new frequent continuities by 
checking frequent items in the following time slots of an existent frequent continuity. 
PROWL utilizes memory for storing both vertical and horizontal formats of the database, 
therefore it discovers frequent continuities without candidate generation. However, this 
algorithm was only applied to sequences of events instead of transactional databases. 

Since continuities break the boundaries of records, the number of potential continui-
ties and the number of rules will increase drastically. Therefore, we proposed the mining 
of compressed continuities [10] as an alternative idea. A compressed continuity is a con-
tinuity which is composed of only closed itemsets and the don’t-care characters. In this 
paper, we summarize a series of algorithms using PROWL technique and advance one 
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step further to discover closed frequent continuities (CFC) which have no proper su-
per-continuity with the same support in databases. Mining CFCs has the same power as 
mining the complete set of frequent continuities, while substantially reducing redundant 
rules to be generated and increasing the effectiveness of mining. The performance study 
shows that our algorithms are efficient and scalable for continuity mining, and are about 
an order of magnitude faster than the previous algorithm, FITI. The rest of this paper is 
organized as follows. Section 2 reviews related work in pattern mining. We define the 
problem of frequent continuities mining in section 3. Section 4 presents a series of our 
algorithms. Experiments on both synthetic and real world datasets are reported in section 
5. Finally, conclusions are made in section 6. 
 

2. RELATED WORKS 
 
Over the past decade, many methods have been proposed to discover and explain 

aspects of behaviors hidden in temporal databases TD (see [19] for a survey). In this sec-
tion, we distinguish four pattern mining tasks including sequential patterns, frequent epi-
sodes, periodic patterns and frequent continuities and make an overall comparison. 

The problem of mining sequential patterns was introduced in [3]. This problem is 
formulated as “Given a set of sequences, where each sequence consists of a list of ele-
ments and each element consists of a set of items, and given a user-specified minsup 
threshold, sequential pattern mining is to find all of the frequent subsequences, i.e., the 
subsequences whose occurrence frequency in the set of sequences is no less than min-
sup.” The main difference between frequent itemsets and sequential patterns is that A 
sequential pattern considers the order between items, whereas frequent itemset does not 
specify the order. Srikant et al. proposed an Apriori-based algorithm, GSP [21]. However, 
an Apriori-like algorithm may suffer from handling a huge number of candidate sets and 
multiple database scans. To overcome these drawbacks, Han et al. extend the concept of 
Pattern-Growth and proposed the PrefixSpan algorithm by prefix-projected pattern growth 
[18] for sequential pattern mining.  

The task of mining frequent episodes was defined on a sequence of event sets where 
the events are sampled regularly. An episode is defined to be a collection of events in a 
specific window interval that occur relatively close to each other in a given partial order 
[14]. Mannila et al. defined two kinds of episode: serial and parallel [14]. Serial episodes 
consider patterns with a specific order, while parallel episodes have no constraints on the 
relative order of eventsets. Take Fig. 1 for example and consider a window size of 3. 
There are seven matches of the serial episode 〈AC, BD〉, from E1 to E7, in the TD in Fig. 1. 
Meanwhile there are 13 matches of parallel episode {A, B, C, D} which occurs in sliding 
window [1, 3], [2, 4], [3, 5], [4, 6], [5, 7], [6, 8], [7, 9], [8, 10], [9, 11], [10, 12], [11, 13], 
[12, 14] and [14, 16]. Mannila et al. also presented an Apriori-like algorithm, WINEPI 
[14], for finding all serial/parallel episodes that are frequent enough. They also presented 
MINEPI [15], an alternative approach for the discovery of frequent episodes based on 
minimal occurrences of episodes. Instead of counting the number of windows containing 
an episode, MINEPI looks at the exact occurrences of an episode and the relationships 
between those occurrences. Note that an episode considers only the partial order relation, 
instead of the actual positions, of events in a time window bound. 
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Fig. 1. An example of temporal database TD. 

 
Unlike episodes, a periodic pattern considers not only the order of events but also 

the exact positions of events [8, 9, 23]. To form periodicity, a list of k disjoint matches is 
required to form a contiguous subsequence with k satisfying some predefined minimum 
repetition threshold. For example, in Fig. 1, pattern (AC, *, BD) is a periodic pattern that 
matches P1, P2, and P3, three contiguous and disjoint matches, where eventset {A, C} 
(resp. {B, D}) occurs at the first (resp. third) position of each match. Note that P4 is not 
part of the pattern because it is not located contiguously with the previous matches. To 
specify the occurrence, we use a 4-tuple (P, l, rep, pos) to denote a valid segment of pat-
tern P with period l starting from position pos for rep times. In this case, the segment can 
be represented by ((AC, *, BD), 3, 3, 1). Algorithms for mining periodic patterns also fall 
into two categories, horizontal-based algorithms, LSI [23], and vertical-based algorithms, 
SMCA [8, 9]. 

A continuity pattern is similar to a periodic pattern, but without the constraint on the 
contiguous and disjoint matches. For example, pattern [AC, *, BD] is a continuity with 
four matches P1, P2, P3, and P4 in Fig. 1. The term continuity pattern was coined by our 
pervious work in [11] to replace the general term inter-transaction association defined by 
Lu et al. in [13], since episodes and periodic patterns are also a kind of inter- transaction 
associations. In comparison, frequent episodes are a loose kind of frequent continuities 
since they consider only the partial order between events, while periodic patterns are a 
strict kind of frequent continuities with constraints on the subsequent matches. In a word, 
frequent episodes are a general case of the frequent continuity, and periodic patterns are a 
special case of the frequent continuity. As noted in the introduction, two algorithms have 
been proposed for the task. FITI [22] is an Apriori-based algorithm which uses BFS 
enumeration for candidate generation and scans the horizontal-layout database. The 
PROWL algorithm [11], on the other hand, generates frequent continuities using DFS 
enumeration and relies on the use of both horizontal and vertical format. 
 

Table 1. Comparison of various pattern mining capacities. 
 Notation Order Temporal Input Constraint 
Frequent Itemset {i1, …, in} N N a transaction DB  
Sequential Pattern I1, …, In Y Y a sequence DB  
Serial Episode 〈I1, …, In〉 Y Y a sequence  
Parallel Episode {I1, …, In} N Y a sequence  
Frequent Continuity [I1, …, In] Y Y a sequence 1 

Periodic Pattern (I1, …, In) Y Y a sequence 1,2 

1 Fixed interval between Ii and Ii+1.  2 Contiguous match. 
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Table 1 shows the comparison of the above mining tasks with frequent itemsets. The 
“Order” represents whether the discovered pattern contains order; the “Temporal” indi-
cates whether the task is defined for a temporal database. According to the input database, 
frequent itemsets and sequential patterns are similar since they are defined on databases 
where the order among transactions/sequences is not considered; whereas episodes, con-
tinuities, and periodic patterns are similar for they are defined on sequences of events 
that are usually sampled regularly. Frequent itemsets and sequential patterns are defined 
for a set of transactions and a set of sequences, respectively. Frequent itemsets show con-
temporal relationships, i.e., the associations among items within the same transaction; 
whereas sequential patterns present temporal relationships among items within transac-
tions of customer sequences. Finally, the differences of other patterns are summarized in 
Table 1 as discussed above. 
 

3. PROBLEM DEFINITION 
 
In this section, we define the problem of frequent continuity. We start from the defi-

nition of frequent continuity mining, then introduce the notion of compressed continuity 
and CFC, in turn. Let E be a set of all events. An event set is a non-empty subset of E. 
The input sequence can be described using a more general concept like a temporal data-
base TD. A TD is a set of time records where each time record is a tuple (tid, Xi) for time 
instant tid and eventset Xi (Xi ⊆ E). Note that tid is an ordinal dimension and is divided 
into equal length interval. A sliding window W is a block of W continuous intervals along 
the time domain. A database stored in form of (tid, Xi) is called horizontal format (e.g. 
Fig. 1). We say that an event set Y is supported by a time record (tid, Xi) if and only if Y 
⊆ Xi. An event set with k events is called a k-eventset. 

Definition 1  A continuity with time window bound W is a nonempty sequence P = [p1, 
p2, …, pW] where p1 is an eventset and others are either an eventset or *, i.e. pj ⊆ E or {*} 
for 2 ≤ j ≤ W.  

The symbol “*” is introduced to allow mismatching (the “don’t care” position in a 
pattern). Since a continuity can start anywhere in a sequence, we only need to consider 
patterns that start with a non-“*” symbol. 

Definition 2  A length of a continuity P = [p1, p2, …, pW] is the number of positions 
contains eventset in P. 

A continuity P is called an L-continuity or has length L if exactly L positions in P 
contain eventset. For example, [“AC”, *, *] is an 1-continuity; [“AC”, *, “BD”] is a 
2-continuity which has length 2. 

Definition 3  Given a continuity P = [p1, p2, …, pW] and a subsequence of W continuous 
slots D = (d1, d2, …, dW) in TD (also called a sliding window), we say that D supports P 
if and only if, for each position j (1 ≤ j ≤ l), either pj = * or pj ⊆ dj is true. D is also called 
a match of P.  
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In general, given a TD and a pattern P, multiple matches of P may exist. In Fig. 1, 
P1, P2, …, P4 are four matches of the continuity pattern [AC, *, BD]. 

Definition 4  The concatenation of two continuity patterns P = [p1, …, pw1
] and Q = 

[q1, …, qw2
] is defined as P ⋅ Q = [p1, …, pw1

, q1, …, qw2
]. P is called a prefix of P ⋅ Q.  

Definition 5  An inter-transaction association rule generated from continuity patterns 
is an implication of the form X ⇒ Y, where  

1. X, Y are continuities with window w1 and w2, respectively.   
2. The concatenation X ⋅ Y is a continuity with window w1 + w2.  

Similar to the studies in mining intra-transaction rules, continuity inter-transaction 
association rules are governed by two interestingness measures: support and confidence. 

Definition 6  Let |TD| be the number of transactions in the TD. Let Sup(X ⋅ Y) be the 
number of matches with respect to continuity X ⋅ Y and Sup(X) be the number of matches 
with respect to continuity X. Then, the support and confidence of an inter-transaction 
association rule X ⇒ Y are defined as  

( ) ( ),  .
| | ( )

Sup X Y Sup X YSupport Confidence
TD Sup X

⋅ ⋅
= =                         (1) 

Definition 7  A continuity C is a frequent continuity if and only if the number of sup-
ports of C is at least the required user-specified minimum supports (i.e., minsup).  

Example: Let threshold minimum support (minsup) and minimum confidence (minconf) 
be 25% and 60% respectively. An example on an inter- transaction association rule with 
maximum time window bound (maxwin) = 3 from the database in Fig. 1 will be: [AC, *] 
⇒ [BD]. This rule (Eventset {B, D} occurs two slots later after eventset {A, C}.) holds in 
the TD with support = 25% (4/16) and confidence = 67% (4/6).  

As in classical association rule mining, if the frequent continuities and their support 
are known, the inter-transaction rule generation mining is straightforward. Hence, the 
problem of mining inter-transaction rules is reduced to the problem of determining fre-
quent continuities and their support. Therefore, the problem is formulated as follows: 
given a minsup and a window bound maxwin, our task is to mine all frequent continuities 
from TD with support greater than minsup and window bound less than maxwin. Since 
frequent continuity mining often generates a very large number of frequent continuities, 
it hinders the effectiveness of mining. Therefore, we proposed an alternative idea to mine 
compressed/CFCs, which have the same power as mining the complete set of frequent 
continuities, while substantially reducing redundant pattern generation and increasing the 
effectiveness of the mining process. 

Definition 8  A compressed continuity with time window bound W is a nonempty se-
quence CP′ = [cp1, cp2, …, cpW] where cp1 is a closed frequent itemset and others are 
either closed frequent itemsets or *.  
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In Fig. 1, pattern [AC, *, D] is a compressed frequent continuity in Fig. 1, while pat-
tern [A, *, D], [C, *, D] are not compressed frequent continuity patterns since event A 
and C are not closed frequent itemsets. 

Definition 9  Given two continuities P = [p1, p2, …, pu] and P′ = [p′1, p′2, …, p′v], we say 
that P is a super-continuity of P′ (i.e., P′ is a sub-continuity of P) if and only if, for each 
non-* pattern p′j (1 ≤ j ≤ w), p′j ⊆ pj+o is true for some integer o. The integer o is also 
called the offset of P and v + o ≤ u.  

For example, continuity P = [AC, E, BD] is a super-continuity of continuity P′ = [E, 
B, *], since the pattern E (B, resp.) is a subset of E (BD, resp.) with offset 1. On the con-
trary, continuity P′′ = [E, B, AC] is not a sub-continuity of P, since P′′ can not map to P 
with a fixed offset. Note that if we don’t consider the offset in the continuity matching, 
the continuity P′ will not be a sub-continuity of continuity P. 

Definition 10  A continuity C = (c1, c2, …, cW) is a CFC if there exists no proper su-
per-continuity of C that has the same support as C in database.  

With CFCs, we can directly generate a reduced set of inter- transaction rules without 
having to determine all frequent continuities, thus reducing the computation cost. 
 

4. THE ALGORITHMS 

This section presents the algorithms for frequent/compressed/closed continuities. 

4.1 PROWL+ 

In this section, we extend the PROWL [11] for frequent continuity mining in TD. 
Unlike Apriori-like algorithm, PROWL enumerates new frequent continuities by con-
catenating a frequent item in the projected window list of an existent frequent continuity 
using DFS enumeration. To facilitate this enumeration, PROWL utilizes memory for 
storing both the time slots for each event (called vertical formats, e.g. Fig. 2 (a)) and the 
events at each time slot (called horizontal formats, e.g. Fig. 1). To see how PROWL 
works, we defined the so called projected window list, starting from the definition of the 
timelist for continuity. Formally, the time list of a continuity pattern P records the sliding 
windows that support P, particularly, the last time slots of all matches. 
 
  

Event Time List 
A 1, 4, 7, 8, 11, 14 
B 3, 5, 6, 9, 12, 16 
C 1, 4, 7, 8, 11, 14, 15 
D 3, 5, 6, 9, 12, 13, 16 
E 2, 5, 8, 10, 13, 15 

 
ID F.I. Time List Note 
[1] {A} 1, 4, 7, 8, 11, 14  
[2] {B} 3, 5, 6, 9, 12, 16  
[3] {C} 1, 4, 7, 8, 11, 14, 15 C.F.I. 
[4] {D} 3, 5, 6, 9, 12, 13, 16 C.F.I. 
[5] {E} 2, 5, 8, 10, 13, 15 C.F.I. 
[6] {A, C} 1, 4, 7, 8, 11, 14 C.F.I. 
[7] {B, D} 3, 5, 6, 9, 12, 16 C.F.I. 

(a) Vertical database layout.            (b) Encoding table of the frequent itemsets. 
Fig. 2. Vertical format and frequent itemsets for example database TD. 
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Definition 11  Given a TD and a continuity P with time window bound W, let Ii denote 
a subsequence of W time slots Ii = (TD[ti], TD[ti + 1], …, TD[ti + W − 1]) in TD that sup-
ports P. Assume there are k matches of P in TD. The time list of P is defined as P.timelist 
= {t1 + W − 1, t2 + W − 1, …, tk + W − 1}, i.e. the set of the last time slots of all matches. 

By definition, each event is itself continuity with window size equal to one. The 
time list for an 1-continuity pattern is consistent with the time list for an event. Now, we 
define the projected window list of a pattern as follows. 

Definition 12  Given the time list of a continuity P, P.timelist = {t1, t2, …, tk} in TD, the 
projected window list (PWL) of P with offset TD is defined as P.PWLtd = {w1, w2, …, 
wk} , wi = ti + td for 1 ≤ i ≤ k. Note that a time slot wi is removed from the projected list if 
wi is greater than | TD|, i.e. wi ≤ | TD| for all i. 

If an itemset X is frequent in the projected window list of pattern P with offset 1, we 
refer to the concatenation P ⋅ X as an extension of P and P ⋅ X.timelist = P.PWL1 ∩ 
X.timelist. We call X a frequent follower of P. Take Fig. 1 as an example. The time list of 
continuity [C] is {1, 4, 7, 8, 11, 14, 15}, the projected window list is P[C].PWL1 = {2, 5, 8, 
9, 12, 15, 16}, which is also the time list for continuity [C, *] (the don’t care character 
has a time list which includes all time slots). Therefore, the projected window list of [C, 
*] is P[C,*].PWL1 = {3, 6, 9, 10, 13, 16}. Since [D] is a frequent item in P[C,*].PWL1 (min-
sup = 25%), we can concatenate pattern [C, *] with pattern [D] as a frequent continuity 
[C, *, D], which has the time list = {3, 6, 9, 13, 16}. In this way, PROWL discovers fre-
quent continuities without candidate generation. 

However, PROWL was designed only for sequences of events, not for eventset se-
quences where multiple events can occur at a time slot. The reason for this is that the 
pattern growing method considers only one single events instead of eventsets at one time. 
To extend PROWL to general TD, we utilize the important property that a frequent inter- 
transaction continuity pattern must be made up of frequent intra-transaction itemsets [22]. 
Therefore, The PROWL+ algorithm consists of three phases, including intra-transaction 
itemset mining, database transformation and inter-transaction continuity mining. 

• The first phase of PROWL+ involves the mining of frequent intra-transaction itemsets. 
Since the third phase of the algorithm requires the time lists of each intra-transaction 
itemset, this phase is mined using a vertical mining algorithm, Charm [24], for frequent 
itemsets mining. 

• The second phase is database transformation, where it encodes each frequent itemset 
(abbreviated F.I.) with a unique ID and constructs a recovered horizontal database 
composed of the IDs. To illustrate, Fig. 2 (b) shows the encoding table of F.I. in Fig. 1. 
Next, based on the time lists of the frequent itemsets together with the encoding table, 
we construct a recovered horizontal database as shown in Fig. 3. 

 
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Code [1] 

[3] 
[6] 

[5] [2] 
[4] 
[7] 

[1] 
[3] 
[6] 

[2] 
[4] 
[5] 
[7] 

[2]
[4]
[7]

[1]
[3]
[6]

[1]
[3]
[5]
[6]

[2]
[4]
[7]

[5] [1]
[3]
[6]

[2]
[4]
[7]

[4]
[5]

[1] 
[3] 
[6] 

[3] 
[5] 

[2] 
[4] 
[7] 

Fig. 3. Recovered horizontal database of TD.
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Given the recovered horizontal database RD, the encoding table VD, minsup, maxwin; 
Procedure of PROWL+() 
1. for each ID IDi ∈ VD do  
2.    Pattern[0] = IDi; 
3.    for j = 1 to maxwin − 1 do  
4.       Pattern[j] = *; 
5.    Project(VD[IDi], Pattern, 1); 
6. end 

Subprocedure of Project(TimeList, Pattern, Layer) 
1. begin if (Layer ≤ maxwin) then 
2.    TimpVD.clear(); 
3.    for each time instant Ti ∈ TimeList do 
4.       if (Ti < |RD|) then 
5.          PWL = Ti + 1; 
6.          for each ID IDj ∈ RD[PWL] do 
7.             TempVD[IDj].insert(PWL); 
8.    begin for each ID IDi ∈ TempVD do 
9.       if (TempVD[IDj].size ≥ minsup) then 

10.          Pattern[Layer] = IDi; 
11.          Project(TempVD[IDi], Pattern, Layer + 1); 
12.          Output Pattern; 
13.       Pattern[Layer] = *; 
14.       Project(TimeList, Pattern, Layer + 1); 
15.    end 
16. end 

Fig. 4. PROWL+: frequent continuity mining algorithm. 
 

• In the third phase, we discover all frequent continuities from the recovered horizontal 
database by concatenating a frequent continuity with the F.I.s in its projected window 
lists using depth-first enumeration. Fig. 4 outlines the proposed PROWL+ algorithm. 
For each frequent 1-continuity P, or equivalently frequent itemset (ID), we calculate its 
projected window list with offset 1 from P.timelist and examine the time slots of 
P.PWL in RD (steps 3-7 in the Project) to find all followers, i.e. IDs. New frequent 
continuities are formed by concatenating P with a frequent follower (steps 9-10 of Pro-
ject). The procedure Project is applied recursively to enumerate all continuities with 
known frequent continuities as their prefixes. The recursive call stops when the layer is 
greater than maxwin (step 1 of procedure Project). 

We illustrate the PROWL+ algorithm using the following example. 

Example: Given minsup = 25% (4 times) and maxwin = 3, the frequent itemsets for Fig. 
1 include {A}, {B}, {C}, {D}, {E}, {A, C} and {B, D}. Each frequent itemset is encoded 
with a unique ID as shown in Fig. 2 (b). Then, we construct a recovered horizontal data-
base composed of the IDs by the time lists of the frequent itemsets (see Fig. 3). 

For ID [1], the projected window list is P[1].PWL = {2, 5, 8, 9, 12, 15}, which is also 
the time list of continuity [[1], *]. By examining the time slots of P[1].PWL in Fig. 3, the 
number of occurrences for [1], [2], [3], [4], [5], [6] and [7] in P[1].PWL1 are calculated 
respectively as 1, 3, 2, 3, 4, 1 and 3. Since only [5] has sufficient support, others are sim-
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ply ignored. Therefore, the frequent continuity generated from prefix [1] is [[1], [5]], i.e. 
[A, E], with 4 matches. Note that the frequent continuities should be decoded from its 
original symbol sets while it is being output. Using depth-first enumeration, we examine 
the frequent IDs in P[[1],[5]].PWL = {3, 6, 9, 16} to extend the continuity [[1], [5]], where 
we acquire three continuities including [[1], [5], [2]], [[1], [5], [4]] and [[1], [5], [7]], 
each with 4 occurrences. Note that the projected window list of these three continuities is 
{4, 7, 10} (time record 17 (16 + 1) is greater than sequence length 16), they can not be 
extended to any longer, so the calls to procedure Project stop. 

Recursively, we apply the above process to continuity [[1], *]. The projected win-
dow list of [[1], *] is P[[1],*].PWL = {3, 6, 9, 10, 13, 16}. In this layer, we find the fre-
quent IDs [2], [4] and [7] in time records of P[[1],*].PWL. Thus, three continuities are gen-
erated: [[1], *, [2]], [[1], *, [4]], and [[1], *, [7]], (i.e. [A, *, B], [A, *, D], [A, *, BD]). The 
extensions of the continuities can be mined by applying the above process respectively to 
each continuity. In summary, all frequent continuities with window 2, and having prefix 
[1] can be generated by concatenating [1] with a frequent event in P[1].PWL or the don’t 
care symbol. Similarly, we can find all frequent continuities having prefix [2] by con-
structing P[2].PWL and mining them respectively. The set of frequent continuities is the 
collection of patterns found in the above recursive mining process. 

4.2 COCOA 

Since inter-transaction associations break the boundaries of transactions, the number 
of potential itemsets and the number of rules will increase drastically. This reduces not 
only efficiency but also effectiveness since users have to sift through a large number of 
mined rules to find useful ones. Thus, we apply closed frequent itemset mining instead of 
frequent itemset mining in the first phase to reduce the number of IDs [10]. For example, 
frequent itemsets {A} and {B} in Fig. 2 (b) can be ignored since they are not closed fre-
quent itemsets, thus enumeration beginning with [1] and [2] can be eliminated. Therefore, 
we have a similar three-phase algorithm, COCOA, (Compressed Continuity Analysis), 
where the other two phases in COCOA are exactly the same as in PROWL+, while the 
first phase is replaced by CHARM [25] for closed frequent itemset mining. The result of 
the mining is the compressed continuities, as defined in Definition 8. Similar to COCOA, 
we can also replace the first phase of FITI by mining closed frequent itemset to discover 
compressed continuities. We call the corresponding algorithm ComFITI. The algorithm 
performances between COCOA and of ComFITI are compared in section 5. 

4.3 ClosedPROWL 

Although compressed continuity reduces the number of continuities, they are not the 
minimum set which represent all continuities. The ideal set is the CFC which is the target 
of ClosedPROWL. Similar to PROWL+ and COCOA, the ClosedPROWL algorithm also 
consists of three phases. In the first phase, we mine frequent closed itemsets (abbreviated 
C.F.I.). The second phase is the same as PROWL+, but only the closed patterns are 
transformed. The third phase of ClosedPROWL is outlined in Fig. 5. We apply two prun-
ing strategies: sub-itemset pruning and sub-continuity pruning to reduce redundant 
enumeration in lines 9-11 and 15 of the ClosedProject procedure, respectively. The sub- 
itemset pruning strategy can be stated as follows. 
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Given recovered the horizontal database RD, Vertical database VD, minsup and maxwin; 
Procedure of ClosedPROWL() 
1. for each ID IDi ∈ VD do  
2.    if (VD[IDi].size ≥ minsup) then 
3.      Pattern[0] = IDi; 
4.      for j = 1 to maxwin − 1 do  
5.         Pattern[j] = *; 
6.      Project(VD[IDi], Pattern, 1); 
7. end 

Subprocedure of ClosedProject(TimeList, Pattern, Layer) 
1.  begin if (Layer ≤ maxwin) then 
2.     TimpVD.clear(); 
3.     PHTab.clear();   // Hash Table for SubItemset Pruning 
4.     for each time instant Ti ∈ TimeList do 
5.        if (Ti < |RD|) then 
6.           PWL = Ti + 1; 
7.           for each ID IDj ∈ RD[PWL] do 
8.              TempVD[IDj].insert(PWL); 
9.     for each ID IDi ∈ TempVD do 

10.        if (TempVD[IDj].size ≥ minsup) then 
11.           SubItemsetPruning(TempVD[IDi], PHTab); 
12.     for each entity Hi ∈ PHTab do  
13.        Pattern[Layer] = HIi.ID; 
14.        Project(TempVD[IDi], Pattern, Layer + 1); 
15.        SubContinuityPruning(Hi.Sup, Pattern, Layer + 1); 
16.        Pattern[Layer] = *; 
17.        Project(TimeList, Pattern, Layer + 1); 
18.  end 

Fig. 5. ClosedPROWL: closed frequent continuity mining algorithm. 

 
Sub-itemset pruning: For two C.F.I. x and y in the project window list of a continuity P, 
if Sup(P ⋅ [x]) = Sup(P ⋅ [y]), the sub-itemset pruning works as following properties:  

1. If x ⊂ y, then remove x since all extensions of P ⋅ [x] must not be closed.      
2. If x ⊃ y, then remove y since all extensions of P ⋅ [y] must not be closed.      
3. If x.timelist = y.timelist and neither x ⊂ y nor x ⊃ y, then remove both x and y, since all 

extensions of P ⋅ [x] and P ⋅ [y] must not be closed. 

The correctness of the pruning can be proven by the following lemma and theorems. 

Lemma 1  Let P = [p1, p2, …, pw] and Q = [q1, q2, …, qw] be two frequent continuities 
and P.timelist = Q.timelist. For any frequent continuity U, if P ⋅ U is frequent, then Q ⋅ U 
is also frequent, vice versa.  

 
For example, the time lists of continuities [C, D] and [C, BD] in Fig. 1 are both {5, 

9, 12, 16}. The probable frequent followers in the projected window list of pattern [C, D] 
and [C, BD] with offset 1 are the same, e.g., {B} : 1, {D} : 2, {B, D} : 1, {E} : 2, {D, E} : 
1 (the number after “:” indicate the support counts). 



KUO-YU HUANG, CHIA-HUI CHANG AND KUO-ZUI LIN 

 

1052 

 

Theorem 1  Let P = [p1, p2, …, pw, pw+1] and Q = [p1, p2, …, pw, p′w+1] be two continui-
ties. If pw+1 ⊂ p′w+1 and Sup(P) = Sup(Q), then all extensions of P must not be closed. 

Proof: Since pw+1 is a subset of p′w+1, wherever p′w+1 occurs, pw+1 occurs. Therefore, 
P.timelist ⊇ Q.timelist. Since Sup(P) = Sup(Q), the equal sign holds, i.e. P.timelist = 
Q.timelist. For any extension P ⋅ U of P, there exists Q ⋅ U (Lemma 1), such that Q ⋅ U is 
a super-continuity of P ⋅ U, and (P ⋅ U).timelist = P.PWL|U| ∩ U.timelist = Q.PWL|U| ∩ 
U.timelist = (Q ⋅ U).timelist. Therefore, P ⋅ U is not a CFC.  

Theorem 2  Let P = [p1, p2, …, pw, pw+1] and Q = [p1, p2, …, pw, p′w+1] be two continui-
ties. If P.timelist = Q.timelist and neither pw+1 ⊂ p′w+1 nor pw+1 ⊃ p′w+1, then all extensions 
of P and Q must not be closed.  

Proof: Consider the continuity U = [p1, p2, …, pw, pw+1 ∪ p′w+1]. U.timelist = P.timelist ∩ 
Q.timelist. Since P.timelist = Q.timelist, we have U.timelist = P.timelist = Q.timelist. Us-
ing Theorem 1, all extensions of P and Q can not be closed because Sup(U) = Sup(P) = 
Sup(Q).  

In order to make the pruning efficient, we devise a hash structure, PHTab (prune 
header table) with PHsize buckets. All C.F.I.s with the same support counts are hashed 
into the same bucket. Each entry in the same bucket records a frequent ID x of the current 
continuity P, the time list of P ⋅ [x], and the support count of P ⋅ [x]. The comparison of 
two frequent C.F.I. x and y in the projected window lists of a continuity P is restricted to 
the frequent IDs in the same buckets with the same support. As shown in Fig. 6, each 
new generated C.F.I. Pattern(Hi.ID) must be examined by sub-itemset pruning strategy. 
Firstly, we initialize the bucket number bkNum as Hi → size%PHSize (see line 1 in pro-
cedure SubItemsetPruning). If the C.F.I. of Hi.ID, Pattern(Hi.ID), is the subset of some 
C.F.I. Pattern(Hj.ID) in PHTab[bkNum], property 1 is applied (lines 5-7). Conversely, we 
employ property 2 to delete the unnecessary C.F.I. in PHTab[bkNum] if the new gener-
ated continuity is the superset of the C.F.I. (lines 8-10). To apply property 3, we remove 
both Hi.ID and Hj.ID from PHTab[bkNum] if their timelists are equivalent (lines 
11-14).The sub-itemset pruning technique removes the non-closed sub-continuity of CFC 
with zero offset since the pruning is invoked within a local search of a continuity. For 
those sub-continuities of CFCs with non-zero offset, they can still be generated in the 
mining process. Therefore, we need a checking step to remove non-CFCs. Again, a hash 
structure, FCTab, is devised to facilitate efficient sub-continuity checking as the follow-
ing:  

bkNum = Sup(P)%BucketSize.                                        (2) 

The procedure SubContinuityPruning is shown in Fig. 7. If the new generated con-
tinuity X has the same support with a sub-continuity Y in FCTab, Y can be pruned since Y 
is not a closed continuity (lines 5-7). On the other hand, if X is a sub-continuity of an 
existing one Y in FCTab, we simply ignore X (lines 8-10). We will use the following ex-
ample to illustrate the mining process of ClosedPROWL and its corresponding flowchart 
is depicted in Fig. 8. 
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SubProcedure of SubItemsetPruning(TempVD[IDi], PHTab) 
1.  bkNum = TempVd[IDi].size%BucketSize; 
2.  IsClosed = ture; 
3.  for each entry Hj ∈ PHTab[bkNum] do 
4.     if (TempVD[IDi].size == Hj.sup) then 
5.        if (Pattern(IDi) ⊂ Pattern(Hj.sup)) then 
6.           IsClosed = false;   // Prune Subtree of IDi 
7.           break; 
8.        else if (Pattern(IDi) ⊃ Pattern(Hj.ID)) then 
9.           Delete Hj;   // Prune Subtree of Hj.ID 

10.           break; 
11.        else if (TempVD[IDi].timelist == TempVD[Hj.ID].timelist) then 
12.           Delete Hj;   // Prune Subtree of IDi and Hj 
13.           IsClosed = false; 
14.           break; 
15.     if (IsClosed) then 
16.        Add IDi into PHTob[bkNum]; 

Fig. 6. SubItemsetPruning: sub-itemset pruning strategy. 

 
SubProcedure of SubContinuityPruning(Sup, Pattern, Layer) 

1.  bkNum = Sup%BucketSize; 
2.  IsClosed = ture; 
3.  for each entry Pi ∈ FCTab[bkNum] do 
4.     if (sup == Pi.sup) then 
5.        if (Pattern ⊂ Pi.Pattern) then 
6.           Delete Pi;   // Prune Subtree of Hj.ID 
7.           break; 
8.        else if (Pattern ⊃ Pi.Pattern) then 
9.           IsClosed = false; 

10.           break; 
11.     if (IsClosed) then 
12.        Add Pattern into FCTab[bkNum]; 

Fig. 7. SubContinuityPruning: sub-continuity pruning strategy. 

 
Fig. 8. Process of ClosedPROWL for prefix [3]. 
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Example: Given minsup = 25% (4 times) and maxwin = 3, we discover all closed fre-
quent continuities as follows. Let the bucket size of both hash structures be 4. Phase I 
and Phase II of ClosedPROWL produces closed frequent itemsets and recovered hori-
zontal database, including the IDs [3], [4], [5], [6] and [7] (see Fig. 2 (b). The mining 
process for prefix [3] is shown in Fig. 8. By examining the time slots of P[3].PWL1 the 
frequent continuities generated from prefix [3] are [[3], [4]], [[3], [5]] and [[3], [7]] with 
4 matches. To apply the subitemset pruning, we insert these three continuities into the 
PHTab of prefix [[3]] at bucket matches%4. Since the ID [4] ({D}) is a sub-itemset of the 
ID [7] ({BD}), the continuity [[3], [4]] is removed (see Fig. 9 (a)). Therefore, only the 
continuities [[3], [5]] and [[3], [7]] are inserted into FCTab. 
  

Bucket Frequent ID Sup Time list 
[4] 4 {5, 9, 12, 16}
[5] 4 {2, 5, 8, 15}0 
[7] 4 {5, 9, 12, 16}

1    
2    
3    

 

Bucket Frequent ID Sup Time list 
[4] 4 {3, 6, 9, 16} 0 
[7] 4 {3, 6, 9, 16} 

1    
2    
3    

(a) PHTab of the prefix [C].                  (b) PHTab of the prefix [C, E].  
Fig. 9. Pruning header table (PHTab) for sub-itemset pruning. 

 
Bucket Continuity Sup 

[C, E] 4 
[C, BD] 4 

[C, E, BD] 4 
0 

[C, *, BD] 4 
1 [C, *, D] 5 
2   
3 [C] 7 

Fig. 10. Frequent continuity table (FCTab) for sub-continuity checking. 

 
Next, the projected window list of {[3], [5]} is P{[3],[5]}.PWL1 = {3, 6, 9, 16}. In this 

layer, there exists two frequent IDs in P{[3],[5]}.PWL1, [4] and [7]. Again, we apply the 
sub-itemsets pruning to remove ID [4] (see Fig. 9 (b)) because [4] ⊂ [7] ({D} ⊂ {B, D}). 
For prefix [3], there are six potential closed continuities that insert into FCTab, including 
[3], [[3], [5]], [[3], [7]], [[3], [5], [7]], [[3], *, [4]], [[3], *, [7]] as shadow parts in Fig. 8. 
Finally, we apply the sub-continuity pruning to remove non-closed continuities, the fre-
quent continuity table after mining in prefix [3] is shown as Fig. 10. Taking bucket 0 in 
FCTab as an example, since continuities [C, E] ([[3], [5]]) is a sub-continuity of the con-
tinuity [C, E, BD] ([[3], [5], [7]]), it can be removed. Similarly, [C, *, BD] is also a 
sub-continuities of [C, E, BD], so it can be removed. After employing the sub-continuity 
pruning, we find four potential closed frequent continuities of the prefix [C] ([3]), in-
cluding [C], [C, *, D], [C, E] and [C, E, BD]. Note that these closed continuities are not 
all closed continuities in the overall data since they could be removed by their super- 
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continuities with the same support in other prefix pattern. For example, after mining 
process of prefix [4], [5], [6] and [7], we will find five closed frequent continuities, in-
cluding [C], [AC, *, BD], [AC, *, D], [AC, E, BD] and [C, BD] of the TD in Fig. 1. 

4.4 Correctness 

We prove the correctness of the ClosedPROWL algorithm in this section. Since the 
search space of the PROWL and COCOA are the same as ClosedPROWL except for the 
pruning strategies, they can be proved similarly. 

Lemma 2  The time list of a continuity P = [p1, p2, …, pw] is P.timelist =
1

. .w
i w ii

p PWL −=∩  

We define the closure of an itemset p, denoted c(p), as the smallest closed set that 
contains p. If p is closed, then c(p) = p. By definition, Sup(p) = Sup(c(p)) and p.timelist = 
c(p).timelist. 

Theorem 3  A CFC is composed of only closed itemsets and don’t care characters.  

Proof: Assume P = [p1, p2, …, pW] is a closed continuity, and some of the pis are com-
posed of non-closed itemsets. Consider the continuity CP = [c(p1), c(p2), …, c(pW)],  
CP.timelist =

1 1
( ). .w w

i w i i w ii i
c p PWL p PWL− −= =

=∩ ∩ = P.timelist (Lemma 2). Therefore, P  
is not a closed continuity. We thus have a contradiction to the original assumption that P 
is a closed continuity and thus conclude that “all closed continuities P = [p1, p2, …, pW] 
are composed of only closed itemsets and the don’t-care characters”.  

Theorem 3 is an important property as it provides a different view of mining closed 
frequent continuities. The observation tells us that instead of mining frequent itemsets, 
we can mine closed frequent itemsets before mining closed frequent continuities. 

Theorem 4  The ClosedPROWL algorithm generates all closed frequent continuities.  

Proof: First of all, the anti-monotone property “if a continuity is not frequent, all its su-
per-continuities must be infrequent” is sustained for closed frequent continuities. Ac-
cording to Theorem 3, the search space composed of only closed frequent itemset covers 
all closed frequent continuities. ClosedPROWL’s search is based on a complete set enu-
meration space. The only branches that are pruned as those that do not have sufficient 
support. The sub-itemset pruning only removed non-closed continuities (Theorem 1). 
Therefore, ClosedPROWL correctly identifies all closed frequent continuities. On the 
other hand, sub-continuity checking remove non-closed frequent continuities. Therefore, 
the ClosedPROWL algorithm generates all and only closed frequent continuities.  

4.5 Extra-large   

The proposed algorithms are basically memory-based algorithms, and their effi-
ciency comes from the removal of database scans and candidate generation that are re-
quired by FITI. If the data is too large to fit in the memory space, a partition-and-valida- 
tion strategy can be used to handle such a case. Suppose the TD is composed of n time 
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records, we divides the n time records into k partitions. Since the frequent continuities 
consider the cross-transaction patterns, each partition should has maxwin − 1 overlapping 
area to avoid losing patterns in generation. Each partition can be handled in memory by 
our algorithms. The local minimum support count for a partition is minsup multiplied by 
the number of time records in that partition, while the global minimum support count in a 
database is minsup multiplied by the number of time records in the database. Therefore, 
not all local frequent continuities are global frequent continuities. Such false-positive 
continuity patterns (frequent under local minimum support, but not frequent under global 
minimum support) must under go an additional scan in order to determine their support 
count. Take Fig. 11 as an example. Let minsup = 25% (4 times) and maxwin = 3, suppose 
the memory only maintain 7 time records each time. Therefore, we divides the 16 time 
record windows into 3 partitions, partitions 1 to 3, as shown in Fig. 11. Firstly, we mine 
the local frequent continuities which satisfied the local minimum support 25% (⎡7 × 
25%⎤ = 2 times) in each partition. Finally, we scan the TD once to check which continu-
ity is true-positive frequent continuities, satisfying the global minimum support of 25% 
(⎡16 × 25%⎤ = 4 times). 

 
Fig. 11. Partition example. 

 
4.6 Space Requirements and Improvement  

Since the projected window list technique employs depth first enumeration for min-
ing frequent continuities, it only generates longer patterns based on shorter ones. Spe-
cifically, it does not generate/maintain any candidate patterns for checking. However, 
ClosedPROWL needs to maintain generated continuities for subitemset and subcontinu-
ity pruning. Compared with COCOA, we require additional memory to store PHTab and 
FCTab. Assume that average matches of each continuity and the number of potential con-
tinuities are t and n respectively. The maximum space requirement of PHTab is n × t (n 
entities in PHTab). Similarly, the space requirement in FCTab is m × t, where m is the 
number of frequent closed continuities. When the number of closed continuities grows 
very large, it is unrealistic to maintain patterns in the main memory. To reduce the mem-
ory cost, we can apply only subitemset pruning and store the FCTab in disk, then read 
disk-resident buckets and apply sub-continuity pruning to remove non-closed continui-
ties. The related experiments are demonstrated in the session below. 

5. EXPERIMENTS 

In this section, we report the performance study of the proposed algorithms on both 
synthetic data and real world data. Since the three phases of the proposed algorithms 
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have good correspond once with three phases of the FITI algorithm, it is possible to mine 
various continuities by combining various Phase Is with Phase III of FITI (FITI-3) and 
PROWL. The combinations are shown in Table 2. We already know the mining process 
of FITI and PROWL+, where the first phase involves frequent itemset mining. If we 
mine closed frequent itemsets at Phase I and apply FITI-3 or PROWL, we will get com-
pressed frequent continuities. We call the algorithms ComFITI and COCOA, respectively. 
Finally, the closed frequent itemset mining at Phase I combined with PROWL and the 
pruning strategies at Phase III results the mining of ClosedPROWL for frequent closed 
continuities. We compare the five algorithms using synthetic data. All the experiments 
are performed on a 2.8GHz Pentium PC with 2.5 Gigabytes main memory, running Mi-
crosoft Windows/NT. All the programs are written in Microsoft/Visual C++ 6.0. In the 
following experiments, the size of PHTab and FCTab is set to 1000. 
 

Table 2. Comparison of various mining tasks. 
Mining Task Phase I Phase III Algorithm 

FITI-3 FITI Continuity Frequent Itemset 
PROWL PROWL+ 
FITI-3 ComFITI Compressed 

PROWL CCOA 
Closed 

Closed Frequent Itemset
PROWL + Pruning ClosedPROWL 

Table 3. Meanings of symbols. 
Sym Definition Default
|D| # of time instants 100K
N # of events 500 
T Average transaction size 10 

|C| # of candidate continuities 2 
L Average continuity length 3 
I Average itemset length 2 
W Average window length 5 

Sup Average support 2% 

 
5.1 Synthetic Data 

For performance evaluation, we use synthetically generated temporal data, D, con-
sisting of N distinct symbols and |D| time instants. A set of candidate continuities C, is 
generated as follows. First, we decide the window length using geometrical distribution 
with mean W. Then L (1 < L < W) positions are chosen for non-empty event sets. The 
average number of frequent events for each time slot is set to I. The number of occur-
rences of a candidate continuity follows a geometrical distribution with mean Sup × |D|. A 
total of |C| candidate continuities are generated. With all candidate continuities generated, 
we then assign events to each time slot in D. The number of events in each time instant is 
picked from a Poisson distribution with mean T. For each time instant, if the number of 
the events in this time instant is less than T, the insufficient events are picked randomly 
from the symbol set N. Table 3 shows the notations used and their default values. 
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(a) Execution time v.s. data size.                 (b) Memory usage v.s. data size. 

    
(c) Execution time v.s. minsup.                (d) Memory usage v.s. minsup. 

Fig. 12. Performance comparison I. 

 
We start by looking at the performance of ClosedPROWL with default parameter 

minsup = 0.6% and maxwin = 5. Fig. 12 (a) shows the scalability of the algorithms with 
varying database size. ClosedPROWL is faster than FITI (by a magnitude of 5 for |D| = 
500K). The scaling with database size was linear. Therefore, the scalability of the pro-
jected window lists technique is proved. Another remarkable result is that COCOA per-
forms better than ComFITI for the same mining task (compressed frequent continuity 
mining). The reason for the considerable execution time of FITI and ComFITI is that 
they must count the supports of all candidate continuities. 

The memory requirement of the algorithms with varying database size is shown in 
Fig. 12 (b). In this case, the number of frequent continuities and closed frequent conti-
nuities are 13867 and 1183 respectively. The compression rate (# of closed frequent con-
tinuities /# of frequent continuities) is about 9%. As the data size increases, the memory 
requirement of ClosedPROWL, COCOA and FITI increases as well. However the mem-
ory usages of FITI and ClosedPROWL are about the same at |D| = 100K and the differ-
ence is only 18MB at |D| = 500K. As data size increases, ClosedPROWL requires more 
additional storage to maintain frequent continuities (FCTab). Therefore, we modify the 
algorithm as described in section 4.6 to disk-resident ClosedPROWL (labelled Closed-
PROWL(Disk)). As illustrated in Fig. 12 (b), the memory requirement of the Closed-
PROWL(Disk) is thus less than FITI but more than COCOA for subitemset pruning 
(PHTab). Since the number of closed frequent continuities is less (approximately 1000), 
the time cost between ClosedPROWL and ClosedPROWL(Disk) is very small (between 
1-3 sec). Therefore, we didn’t report the time cost of ClosedPROWL(Disk) Fig. 12. 

The runtime and memory usage of FITI and ClosedPROWL on the default data set 
with varying minimum support threshold, minsup, from 0.4% to 1.6% are shown in Figs. 
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12 (c) and (d). Clearly, ClosedPROWL is faster and more scalable than both FITI and 
ComFITI with the same memory requirements (by a magnitude of 5 and 3 for minsup = 
0.4% respectively), since the number of frequent continuities grows rapidly as the min-
sup diminishes. ClosedPROWL and ClosedPROWL(Disk) require 129MB and 94MB at 
the minsup = 0.4%, respectively. Note that the number of closed frequent continuities is 
3576 at minsup = 0.4%. However, the number of closed frequent continuities is very few 
(1100-1200) between minsup = 0.6 and minsup = 1.6, so the improvement of memory 
requirement is only 1-3MB. Thus maintaining closed frequent continuities (FCTab) in 
ClosedPROWL needs 35MB main memory approximately. Meanwhile, we can observe 
that the pruning strategies of ClosedPROWL increase the efficiency considerably (by a 
magnitude of 2) through the comparison between ClosedPROWL and COCOA in Fig. 12 
(c). In summary, projected window list technique is more efficient and more scalable 
than Apriori-like, FITI and ComFITI, especially when the number of frequent continui-
ties be- comes really very large. 

The advantage of ClosedPROWL over FITI becomes even evident when the maxi-
mum window maxwin is increased since the number of frequent continuities often in-
creases drastically as maxwin increases as shown in Figs. 13 (a) and (b). For the same 
reason, the same behavior can be observed in Figs. 13 (c) to (h). As shown in these fig-
ures, the compression rate varies with various parameter maxwin, I, T and L. Practically, 
it could be related to the characteristics of the data. This could also be phrased as “dif-
ferent data may have different relationships between compression rate and parameters”. 
Note that there is a cross line in Fig. 13 (g), the reason is that the first phase of mining 
closed frequent itemsets in COCOA and ClosedPROWL requires some extra-cost for 
closed itemset validation. Thus, for inter-transaction of length one, COCOA and Closed-
PROWL not only didn’t improve the efficiency, but costs some extra-validation.  
 
5.2 Real World Dataset  
 

We also apply ClosedPROWL, COCOA and FITI to a data set comprised of ten 
stocks (electronics industry) in an the Taiwan Stock Exchange Daily Official list for 2618 
trading days from September 5, 1994 to June 21, 2004. We discretize the stock price of 
go-up/go-down into five level: Upward-High(UH): ≥ 3.5%, Upward-Low(UL): < 3.5% 
and 0%, Changeless(CL): 0%, Downward-Low(DL): > − 3.5% and < 0%, Downward- 
High(DH): ≤ − 3.5. 

In this case, the average events in each time slot is 10, and the number of events is 
50 (10 × 5). Fig. 14 (a) shows the running time with an increasing support threshold, 
minsup, from 5% to 11%. Fig. 13 (c) shows the same measures with varying maxwin. As 
the maxwin/minsup threshold increases/decreases, the gap between FITI and Closed-
PROWL in the running time becomes more substantial. Finally, Figs. 13 (b) and (d) show 
the compression rate with varying minsup and maxwin. As the maxwin threshold in-
creases or minsup threshold decreases, the compression rate is increased since the num-
ber of frequent continuities will increase drastically. Since we only choose ten stocks for 
this experiment randomly, they could have the same characters and trends. Therefore, the 
compression rate didn’t have a major difference. However, ClosedPROWL still outper-
forms FITI. The main reason is that the pruning strategies of ClosedPROWL play an im-
portant role in efficiency even though compression rate is low.  
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(a) Execution time v.s. maxwin.               (b) # of patterns v.s. maxwin.  

   
(c) Execution time v.s. I.                    (d) # of patterns v.s. I.    

   
(e) Execution time v.s. T.                   (f) # of patterns v.s. T.   

   
(g) Execution time v.s. L.                  (h) # of patterns v.s. L.  

Fig. 13. Performance comparison II. 

 
In summary, the experiments show the our algorithms are more scalable than FITI in 

both synthetic and real data. Although ClosedPRWOL needs more space than FITI in 
pattern maintenance, we also introduce a disk-resident ClosedPRWOL to overcome this 
problem. Besides, we also use the concept of compressed frequent continuities in FITI, 
the result demonstrate ComFITI is more efficiency than FITI as our expectation. Fur-
thermore, we also show ClosedPROWL is useful in pattern compression. 
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(a) Scaling with minsup in stock data.       (b) Compression rate with varying minsup.  

   
(c) Scaling with maxwin in stock data.     (d) Compression rate with varying maxwin.   

Fig. 14. Performance comparison III. 

6. CONCLUSIONS 

In this paper, we propose a series of algorithms for the mining of frequent continui-
ties. We show that the three-phase design lets the projected window list technique, which 
was designed for sequences of events, also applicable to general temporal databases. The 
proposed algorithm uses both vertical and horizontal database formats to reduce the 
searching time in the mining process. Therefore, there is no candidate generation and 
multi-pass database scans. The main reason that projected window list technique outper-
forms FITI is that it utilizes memory for fast computation. This is the same reason that 
later algorithms for association rule mining outperform Apriori. Even so, we have dem-
onstrated that the memory usage of our algorithms is actually more compact than the FITI 
algorithm. Furthermore, with subitemset pruning and sub-continuity checking, Closed-
PROWL Successfully discovered efficiently all closed continuities. For future work, main- 
taining and reusing old patterns for incremental mining is an emerging and important 
research. Furthermore, using continuities in prediction is also an interesting issue. 
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