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An efficient technique for progressive lossless compression of volumetric data is 

described. It is based on the quadtree data structure and exploits the expected similarities 
between the neighboring slices. The proposed approach has better compression ratio than 
the octree method. A small amount of memory is required since only two slices need to 
be located in the memory at a time, which makes it suitable for hardware implementation. 
A built-in compression in volumetric scanners could considerably reduce the transfer 
and storage requirements for volumetric medical data.   
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1. INTRODUCTION 
 

Volumetric data (also called voxel data) are becoming more and more popular form 
of representation of interiors of 3D geometric objects. Their elemental particle voxel is a 
volume element, which represents a value in 3D space. It is analogous to a pixel, which 
represents data in 2D space. 

In different applications in medicine, biology, physics and geology, voxel represen-
tation is used for exploration and visualization of volumetric data. In medicine, for ex-
ample, computerized tomography (CT) or magnetic resonance imaging (MRI) scanners 
generate data as a set of slices – two dimensional raster images. Vertical mesh slices are 
used for seismic analysis in structural geology. Physical phenomena like fluid simulation 
or terrain erosion modeled by fractals are also often presented by slices. A perfect de-
scription of the examined object is obtained by arranging the slices one after another 
along the spatial axis. Up to now, the main focus has been on the visualization of the data 
sets [1]. Different algorithms were developed (i.e., ray casting [2], shear-warp factoriza-
tion [3]). Due to the significant progress of computer technology, real-time visualization 
of the voxel data has become possible recently [4]. 

The problems that still remain in practice are related to storage of voxel data and its 
transfer over networks. A typical voxel data set may occupy a few hundred MB of disk 
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space, which makes data compression a necessity. Usage of general-purpose compres-
sion techniques such as ZIP could be the first option. However, these techniques do not 
exploit particular properties of voxel data such as coherence of the data and homogeneity 
of individual regions, which could significantly improve the efficiency of the compres-
sion. Besides, they do not support progressive transmission and visualization of data. 
Consequently, development of special-purpose compression algorithms adapted to voxel 
data is needed.   

The compression of volume data with quantization was introduced by Hesselink and 
Ning in 1992 [5]. They used a very simple approach that is based on the reduction of the 
number of bits used for a representation of a value of single voxel. Clearly, this is a lossy 
compression method. In 1993 Muraki introduced the usage of wavelet coding as an al-
ternative way of describing voxel data [6], but he did not think of it as a compression 
technique. Despite this, his approach can be regarded as an important contribution to-
wards the development of new compression methods for voxel data. In 1997 Zhu, Ma-
chiraju, Fry and Moorhead presented a method that at first divides the voxel space into 
subspaces using octree structure [7]. This method is lossless and its additional advantage 
is that it can also easily be transformed into a lossy method with controllable quality. 
Many authors have later used this technique in connection with visualization algorithms. 
In 2001 Ma and Shen described the usage of this method for compression of time-vary-  
ing (dynamic) volume data [8]. 

The above methods can be roughly classified as vector quantization and octree com-
pression. Vector quantization is a lossy method and hence not appropriate for applica-
tions where volumetric data needs to be visualized to the smallest detail (e.g., in medical 
diagnostics). Octree compression is based on recursive uniform division of volumetric 
space into subspaces. In order to perform the compression, the whole voxel space has to 
be loaded into memory, which represents a serious drawback in practice.  

In this paper, an alternative approach to lossless compression of the volumetric data 
is presented. It is based on the quadtree data structure [9] and exploits the expected simi-
larities between the neighboring slices. In video compression [10] the interframe differ-
ence trees are used for compressing the video stream. However, the applicability is dif-
ferent due to the fact that video compression is a lossy method and does not support pro-
gressive visualization. The proposed approach is similar to the work of F. F. Rodler [11] 
in that it compresses volumes using a hierarchical (Harr/quadtree) decomposition of in-
dividual slices of a volume with encoding that takes advantage of coherence with neigh-
boring slices. While Rodler’s technique is indeed more sophisticated supporting random 
access and compression with an added thresholding step, the algorithm is rather complex 
which makes it difficult to implement in hardware. In our approach, a small amount of 
memory is required since only two slices need to be located in the memory at a time, 
which makes it suitable for hardware implementation. Besides, Rodler’s approach is 
lossy, which restricts its use in some applications in practice (i.e., medical diagnosis).  

2. QUADTREE COMPRESSION 

In octree compression, volumetric data set is associated with a cube recursively split 
into subcubes up to the smallest nondivisible element of a digital volume − voxel. By 
analogy, data structure in the quadtree compression refers to a square area recursively 
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divided into subsquares up to the smallest nondivisible element of a digital image - pixel. 
The third dimension is achieved by processing the subsequent series of slices represent-
ing the given 3D object. One of the main advantages of the octree method is the very 
efficient determination and encoding of homogeneous areas. The technique also has 
some disadvantages. The whole dataset needs to be loaded into the memory for process-
ing and compression and most algorithms even require datasets with dyadic (power-of-  
two) resolution.  

Our goal was to develop an algorithm for lossless compression of volumetric data 
that would try to overcome all the above disadvantages. The proposed quadtree based 
compression algorithm keeps most of the advantages of the octree based compression 
(efficient determination of homogenous areas, progressive reconstruction). In addition, 
we were looking for a solution with relatively modest resource requirements for possible 
implementation in a CT or MRI scanner.  

In quadtree compression, the input data consist of a set of uncompressed slices. The 
image area of each slice is divided into four regions or blocks and the resulting areas are 
recursively further divided. At the lowest level, a block consists of 8 × 8 = 64 pixels. The 
homogenity of each block at the lowest level is determined and the average value of pix-
els is calculated. A block is homogenous if all its pixels have equal values. 

The image area of a slice is associated with a quadtree; it is a tree with four branches 
at each non-leaf node, and is generated by the following bottom-up procedure:  
 
• the blocks at the lowest level are associated with the leaves of the quadtree, 
• a node of an upper level of the quadtree (father) is obtained by associating the corre-

sponding four neighboring blocks (sons) of the lower level, 
• if the sons are homogenous and have equal average values of pixels, they are deleted 

(quadtree pruning) and the father becomes a leaf of the quadtree.  
 
Data structure for storing the quadtree of a slice refers to a full quadtree template 

(FQT). A FQT consists of records corresponding to the nodes of a full quadtree. Each 
record carries information about the position, size, father and sons of a quadtree node. 
The nodes are identified by a unique index.  

Consider a simple illustrative example shown in Fig. 1. A slice is depicted in Fig. 1 
(a), the greyscale mapping in Fig. 1 (b) and FQT is partly sketched in the upper part of 
Fig. 1 (c). For convenience, the size of the slice is 16 × 16 pixels and the block at the 
lowest level has 4 × 4 pixels. The first record of FQT (the root) has the size of the whole 
slice, it has no father, its sons are nodes 2, 3, 4, 5. Similarly, node 2 has the size 8 × 8, its 
father is node 1, its sons are nodes 6, 7, 8, 9. The position of each node is referenced to 
the left bottom corner of the slice. 

The data of the slice is organized in a data structure shown in Fig. 1 (c) below the 
FQT. Each record contains: index, node type, average value, and pixel set pointer. Index 
refers to the corresponding record in the FQT. Node types are: father nodes (type 1) and 
leaves (types 2 and 3). Leaves of type 2 correspond to the homogenous blocks. Leaves of 
type 3 correspond to the non-homogenous blocks at the lowest level. Average value is 
the level of the grey scale mapping corresponding to the average value of pixels con-
tained in the block. Pixel set pointer points to the pixel values of non-homogenous blocks 
at the lowest level that are stored separately. 
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(a) Example of a slice.              (b) Greyscale mapping. 
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(c) Full quadtree template and the quadtree data structure composed of QSF and PXF file. 

Fig. 1. Organization of the data structure. 

 
The distinction between node types 2 and 3 is done because it is convenient in prac-

tice to store the quadtree data structure in two separate files:  
 
• Quadtree Structure File (QSF) describing the upper levels of the quadtree, including the 

leaves of the homogenous blocks,  
• Pixel Data File (PXF) describing pixel values of the non-homogenous blocks at the 

lowest level. 
 

For a brief overview of the acquired data sets, only the first few levels in a progres-
sive reconstruction are sufficient hence only QSF file is required. For the full reconstruc-
tion, both QSF file and PXF file are processed. 

 
2.1 The Algorithm 

 
The compression algorithm, suitable for hardware implementation consists of the 

following steps: 
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Step 1: Initialization. The first slice si is loaded and its quadtree is generated and stored 
in QSF file. If si includes non-homogenous leaves at the lowest level they are 
stored in PXF file. 

Step 2: Processing. The slice si+1 is loaded and the corresponding quadtree is generated. 
The difference quadtree DQsi,si+1, is generated by the Boolean intersection of the 
quadtrees and stored. Next, slice si+2 is loaded and its quadtree is generated. The 
difference quadtree DQsi+1,si+2, is generated and stored. The process is repeated for 
all the remaining slices. The difference quadtrees are stored in QSF files and op-
tionally in PXF files, if they include non-homogenous leaves at the lowest level. 

Step 3: Entropy encoding. As in other compression algorithms, entropy encoding of the 
stored data is performed using RLE and Huffman coding, [12]. 

Decompression is performed in a progressive way. Data from the first quadtree level 
are extracted and the process is repeated for the next levels until the required level of 
details is achieved.  

An example of progressive reconstruction and visualization of a liver dataset with 
234 slices of 512 × 512 pixels (total size 119,808 kB) is shown in Fig. 2. The reconstruc-
tion levels 1 – 6 are performed only from the QSF file, while for the full reconstruction 
both QSF and PXF files are required. Table 1 shows the number of kB needed to transfer 
the voxel data set. 
 

Table 1. The size of the transferred data in the reconstruction levels of Fig. 2. 
Reconstruction level Transferred data (kB) Fig. 2 

1 2  
2 6  
3 27  
4 119 (a) 
5 503 (b) 
6 2,113 (c) 

FULL 49,497 (d) 

    
    (a)                  (b)                 (c)                  (d) 

Fig. 2. Progressive reconstruction and visualization of a liver dataset. 

3. HARDWARE IMPLEMENTATION 

Reported data compression algorithms are typically implemented in software tools 
for storage and manipulation of volumetric data sets. An interesting alternative would be 
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to implement data compression within the system that actually generates the volumetric 
data. Our work was motivated by the goal of developing a data compression algorithm 
that could be implemented in hardware as a part of a CT or MRI scanner control logic. 
Hardware implementation of various algorithms allows much higher execution frequen-
cies and widens the algorithm’s usage [13]. 

The quadtree algorithm was implemented in Field-Programmable Gate Array 
(FPGA) using the development board Celoxica RC1000 [14] and development suite Ce-
loxica DK [15]. The purpose of the prototype version was to gain experience in optimi-
sation of algorithm structure for the prospective embedded implementations.  

Celoxica RC1000 hardware platform is a standard PCI bus card equipped with a 
XILINX VirtexTM chip XCV2000E with 2,541,952 system gates. It has 8 Mb of SRAM 
directly connected to the FPGA in four 32 bit wide memory banks. The memory is also 
visible to the host CPU across the PCI bus as if it was normal memory. Each of the 4 
banks may be granted to either the host CPU or the FPGA at any time. Data can therefore 
be shared between the FPGA and host CPU by placing it in the SRAM on the board. It is 
then accessible to the FPGA directly and to the host CPU either by DMA transfers across 
the PCI bus or simply as a virtual address. High speed Direct Memory Access (DMA), 
data buffering and clock speed control make it suitable for high speed compression ap-
plications. 

The DK Design Suite software provides the environment necessary to implement 
the target software-compiled design described in a C-based design language Handle-C in 
FPGA. Sequential programs can be written in Handel-C just as in conventional C. Han-
del-C also includes parallel constructs that may considerably speed up the application. 
The compiler compiles and optimises Handel-C source code into a file suitable for simu-
lation (netlist). The resulting file can be placed and routed on a real FPGA using XILINX 
ISE Foundation Kit. There are, however, some restrictions (i.e., floating point variables 
are not supported, functions may not be recursive) that the designer must be aware of 
when writing the code in Handel-C or translating the source C code into Handel-C. 

In practice, such an FPGA would be placed on the Printed Circuit Board (PCB) 
within the CT or MRI scanners, which ensures fast and effective hardware compression. 
With a proper selection of an FPGA we can influence the resolution of the images and 
their bit-depth, or if needed due to the constraints, larger FPGA can be used to fulfill the 
resolution demands. An example of different resolutions and their hardware constraints is 
presented in Table 3. 

4. EXPERIMENTAL RESULTS 

In practice, the proposed technique was first implemented in C++ and tested on nu-
merous medical data. A comparison with the octree-based compression is given in [16], 
where in average 15 percent better compression rate has been obtained by quadtree com-
pression. For illustration, a short summary for some typical examples in medicine and 
fractals is shown in Table 2. 

The comparison should, of course, include other aspects such as space (memory) 
complexity, time (CPU) complexity, robustness, etc. In this paper, however, we focus 
primarily on the feasibility of hardware implementation. While in octree compression,  
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Table 2. Comparison of quadtree and octree compression algorithm. 

Dataset Resolution Original 
size (kB) 

Quadtree  
compression (kB) 

Octree  
compression (kB) 

Liver 512 × 512 × 234 119,808 49,497 54,629 
Head 512 × 512 × 85 43,521 17,582 18,755 
Spine 512 × 512 × 60 30,721 10,633 11,248 
Teapot 256 × 256 × 178 11,392 1,291 2,264 

Fractal1 512 × 512 × 512 131,072 945 1,611 
Fractal2 512 × 512 × 512 131,072 303 1,504 

Table 3. Implementation details for different resolutions with 16-bit data precision. 

Resolution Total equivalent 
gates 

Occupied 
slices 

LUTs used for 
RAM LUTs as logic 

256 × 256 2,158,344 7,868 16,370 5,356 
512 × 512 5,866,987 14,337 51,707 8,400 

 
the complete dataset has to be loaded into memory (which makes hardware implementa-
tion very difficult or even impossible), quadtree compression requires much smaller 
memory space and the task of implementing the algorithm in hardware can be easily ac-
complished by today’s programmable devices. In our case, some effort was nevertheless 
necessary to translate the C++ code into Handel-C. This was mainly due to the fact that 
two different groups were involved: one focusing on volumetric data compression and 
the other experienced in programmable logic applications. Table 3 shows the resulting 
implementation details of the quadtree compression algorithm. Celoxica RC1000 hard-
ware platform that was used in our preliminary case study allows implementations up to 
256×256 resolution. Implementations of higher resolution can be managed by larger 
FPGAs. 

5. CONCLUSIONS 

A quadtree based approach for lossless compression of volumetric data is described. 
It supports progressive data transmission and visualization. Comparative case studies on 
medical data sets have shown that it provides in general better compression ratio than the 
octree compression. Since only two consecutive slices are processed at a time the method 
requires a small amount of memory, which makes it particularly suitable for hardware 
implementations. Consequently, a built-in compression in volumetric scanners could 
considerably reduce the transfer and storage requirements for volumetric medical data. 
The aim of this paper is to highlight the main points of the approach enabling the poten-
tial user to implement the compression technique in practice. 
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