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Deep feedforward network (DFN) is the general structure of many well-known deep
neural networks (DNN) for image classification. The recent research emphasizes on going
deeper and wider network architecture to achieve higher accuracy and lower misclassifica-
tion rate. This paper provides a study and investigation on stacking three basic operation of
neural layers, i.e. convolutional layer, pooling layer and fully connected layer. As a result,
a new framework of convolutional deep feedforward network (C-DFN) is proposed in this
paper. C-DFN performed significantly better than deep feedforward network (DFN), deep
belief network (DBN), and convolutional deep belief network (C-DBN) in MNIST dataset,
INRIA pedestrian dataset and Daimler pedestrian dataset. The convolutional layer acts as
a trainable feature extractor improving the network performance significantly. Moreover, it
reduced 14% of the trainable parameters in DFN. With the use of trainable activation func-
tion such as PReLU in the C-DFN, it achieves an average misclassification rate of 9.22% of
the three benchmark datasets.

Keywords: convolution network, deep feedforward network, fully connected network,
stacking effect, convolutional deep belief network

1. INTRODUCTION

Deep Feedforward Network (DFN) is the fundamental network architecture in the
recent development of deep learning neural networks for image classification. DFN is
a computer algorithm that mimics biological neural network to solve complicated real-
world application. Going deeper and wider network architecture has attracted large re-
search attention due to the improvement of classification accuracy. A multiple layers deep
structures neural networks (DNN) can be applied in many complicated task such as object
recognition [1], speech recognition [2], and handwritting recognition [3]. The develop-
ment of DNN has been exponentially growing after AlexNet [4] showed a drastic drop of
top-5 error from 26.2% to 15.4% in the ImageNet large scale visual recognition challenges
[5]. In the subsequent years, DNNs such as ZF net [6], VGG net [7], and GoogLeNet [8]
was developed in deeper and wider neural networks to compete in ImageNet Challenge.
Microsoft research team [9] developed the largest DNN structure containing 152 layers
and hence it achieved 3.6% of misclassification rate in the challenge. However, the study
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of very deep network architecture always associates with the stacking of network layers
and involvement of large computing resources.

Klambauer et al. [10] introduced self-normalizing to normalize the output of acti-
vation function with the convergence of zero mean and unit variance. This convergence
property allows fully-connected neural network (FCN) to be trained in multiple layers
without having vanishing and exploding gradient problems. Hinton et al. [11] proposed
a layer-wise pre-training algorithm in deep belief network to solve the vanishing gradient
problem. Other FCN architectures such as dropout network [12], maxout network [13],
and dropConnect network [14] solved the overfitting problems of the FCN. Lin et al.
[15] proposed network in network (NiN) combining convolutional and fully connected
network as a micro network in NiN architecture. In the micro-network, it consists of
convolutional layer (CL), pooling layer (PL) and the fully connected network (FL) which
act as a potent function approximator. As a result, NiN is able to reduce the test error of
CIFAR-10 and CIFAR-100 to 8.81% and 35.6% respectively. Lee et al. [16] combined a
CL with DBN to scale down the large image and invariant to local translation. With the
above-mentioned literature reviews, the effect of stacking FCN and CNN sequentially has
not been fully studied instead of going deeper architecture.

In this paper, investigation of the effect of stacking three types of network layers
sequentially, i.e. (1) CL; (2) PL and; (3) FL. The layers are sequentially added in the
network to understand the effect of networks layers in term of classification accuracy.
Subsequently, convolutional deep feedforward network (C-DFN) consisting of one CL,
one PL and five FLs is proposed in the network. The CL is used as a trainable feature ex-
tractor and obtains features which are invariance to translations, rotation and scale before
fed into the four layers of FCN which acts as universal approximator for classification.
The main contributions of this paper are: (1) Investigation of the effect to stack three type
network layers, i.e. CL in three filter size, PL and FL; (2) the proposed C-DFN consisting
of one CL, one PL and four FLs for classification; (3) Four different types of architecture
performance i.e. DFN, C-DFN, DBN, ad C-DBN were investigated on MNIST dataset,
Daimler pedestrian dataset, and INRIA person dataset. This paper is organised as follows:
Section 2 describes the architecture of C-FDN. Section 3 describes the experimental setup
and experimental results discussion. Section 4 concludes this chapter.

2. CONVOLUTIONAL DEEP FEEDFORWARD NETWORK

Convolutional deep feedforward network (C-DFN) [17] is made up of a convolu-
tional layer (CL), a pooling layer (PL), and followed by four fully connected layers (FLs)
as shown in Fig. 1. CL is used as a trainable feature extractor to extract unique features
from the input image which are invariant to scale, rotation, and translation [17]. In this
section, the C-DFN architecture will be described in detail. The architecture process is
divided into two parts: forward propagation and backpropagation computation.

2.1 Forward Propagation

The input data is forward propagated from input layer to multiple hidden layers until
it reaches the output layer to produce an output signal. In the following section, the
forward propagation computation is described in detail in each layer of the C-DFN.
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2.1.1 Convolutional layer

In the convolutional layer, the input image, di is convoluted with i× j learnable ker-
nels, kij and go through the activation function, f (·) to form the output feature map, vl

j.
The convolutional operation is defined as follows [18]:

Fig. 1. Convolutional deep feedforward network.

vl
j = f

(
∑

i∈M j

dl−1
i ∗ kl

i j +bl
j

)
, (1)

where Mj represents input maps. dl−1
i represents ith input channel from the previous layer.

vl
j denotes output of convolutional layer. l represented the number of layer. Each output

map is given an additive bias, bj after the input image is convoluted with learnable kernels.

2.1.2 Max pooling layer

Once input image is convoluted with kernels, a subsampling layer is used to build up
spatial and configural invariance. It could reduce the computing process by reducing half
of the feature maps size. Max pooling is performed in non-overlapping neighbourhood
using Eq. (2).

zi jk = max(vi, j+n,k+m). (2)

Max pooling obtains the maximum value in the neighbourhood of n×m. The output of
the subsampling layer is subsequently arranged into an input vector of deep feedforward
network (DFN).

2.1.3 Deep feedforward layer

Deep feedforward network is made up of multiple fully connected layer (FL). The
input signal is multiplied with the weight connection, w ji and then plus with a bias. A
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fully connected layer can be formed using Eq. (3).

xl
j =

m

∑
i=1

w ji× yl−1
i +bi, (3)

where m is the total number of inputs applied to neuron j. yl−1
i is input of FL from the

previous layer’s output. The output signal yl
j of FL is given as follows:

yl
j = f (xl

j). (4)

where f (·) is the activation function of the network. The output signal is then compared
with the targeted output to produce an error back-propagated into the network layer by
layer, which is described in the next section.

2.2 Backpropagation

In the backpropagation, an error signal is calculated by comparing the output of the
network with the targeted output. The resulting error signal is propagated through the
network in backward direction, layer by layer. In this paper, stochastic gradient descent
backpropagation algorithm [19] is used to update the weights connection in C-DFN. After
the parameters of DFN is updated, the error signal is backpropagated to the subsampling
layer and convolutional layer. For the subsampling layer, the local gradient from the DFN
is multiplied with the subsampling layer. The local gradients of convolutional layer for
kernels update is defined as follows [18]:

δ
l
j = f ′(u j) ·up(δ l+1

j ), (5)

where f ′(·) is the derivatives of activation function, uj is ∑i∈Mj(d
l−1
i ∗ kl

ij +bl
j) as the pre-

activation input, and up(·) represents up-sampling the local gradients from layer l+1,
which is the local gradients from subsampling layer. The gradient of bias, bj is summing
all the entries of δ l

j as follows:

δE
δb j

= ∑
q,r
(δ l

j)qr. (6)

Finally, the gradients to updates the kernels are computed using Eq. (7).

δE
δkl

i, j
= ∑

q,r
(δ l

j)qr(pl−1
i )qr, (7)

where (pl−1
i )qr is the patch in vl−1

i that is element-wise multiplication with kl
i,j. It com-

putes the element at (q,r) in the output convolutional map vl
j.
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3. SIMULATION RESULTS AND DISCUSSION

Four types of network structure were investigated, i.e. DBN, C-DBN, DFN and C-
DFN. The experiments involved the change of filter size in a CL, stacking a number of CL,
stacking a number of FL, and stacking a number of convolutional and pooling layer (CP).
All the network structures were developed using MATLAB 2013b software and TitanX
GPU. The convolutional kernel is initialized with Gabor filter [20]. Four Gabor filters
[21, 22] is used as the convolution kernels in the CL to extract the pertinent information
from the raw image 28× 28. In the experiments, Leaky Rectified Linear Unit (LReLU)
with a = 0.25 is set in the activation function of the network [23]. Besides that, weight
decay 1× 10−4 is implemented during the training process. All the experimental results
were the average results of three times repeated experiment simulations for 100 training
epochs. The network structures investigation were performed on handwritten digit dataset
(MNIST). The architecture performance comparison between DFN, DBN, C-DFN, and
C-DBN were conducted on MNIST dataset [3], INRIA person dataset [24], and Daimler
classification dataset [25].

Fig. 2. Input for fully connected layer in different types of network structure (a) raw input (28×28);
(b) (3×3) CP output; (c) (5×5) CP output; (d) (7×7) CP output; (e) (3×3) CPCP output.

Table 1. Misclassification rate of three type of Gabor filter sizes.
Network Structure Train Misclassification Testing Misclassification

(3×3) CPFL 11.94 11.86
(5×5) CPFL 14.00 13.35
(7×7) CPFL 16.51 17.66

3.1 Experiment #1: Change of Filter Size in the Network

In the first experiment, the relationship between filter sizes and the performance of
the network was investigated to conclude the effect of filtering size in the network. CPFL
network consists of one CL, one PL, and one FL. Table 1 showed the MNIST dataset
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experimental results. This experiment investigated three different sizes of Gabor filter
used in CL i.e. 3×3, 5×5 and 7×7. Based on the experimental result, smaller filter size
achieved the lowest misclassification rate which is 11.86% in MNIST dataset. This is
because smaller filter size was able to capture very fine details of the image while having
a bigger filter size will leave out minute details in the image. The effect of using different
size of filter can be observed in Fig. 2 with blurry output image.

3.2 Experiment #2: Stacking Fully Connected Layers

As concluded from Section 3.1, the best filter size for convolutional layer was 3×3
because smaller filter size could retain more spatial information from the input. In the
experiment #2, the filter size was fixed to 3×3. CP2FL was referred to one CL, one
PL and two FLs. This experiment stacked up to five FLs sequentially to investigate the
performance of the network. Table 2 showed that stacked up to four FLs obtained the
lowest misclassification rate which is 2.6% in MNIST dataset. Stacking five layers of FLs
did not reduce the testing misclassification rate. This was due to the excessive number of
neurons in a network will lead to overfitting problem.

Table 2. Misclassification rate of increasing number of stacked fully connected layer.
Network Structure Train Misclassification Testing Misclassification

CPFL 11.94 11.86
CP2FL 1.15 4.29
CP3FL 0.63 2.83
CP4FL 0.76 2.6
CP5FL 0.7 2.86

Table 3. Misclassification rate of increasing number of stacked convolutional layer.
Network Structure Train Misclassification Testing Misclassification

CPFL 11.94 11.86
2CPFL 11.7 10.91
3CPFL 15.55 14.41

3.3 Experiment #3: Stacking Convolutional Layers

This experiment uses CPFL as a baseline to investigate the network performance by
stacking multiple layers of the CL. 2CPFL was referred to two CLs, one PL and one FL.
Table 3 showed that adding a convolutional layer on CPFL with the reduction effect of
the testing misclassification rate from 11.86% to 10.91%. Adding one more convolutional
layer on 2CPFL the misclassification rate increases to 14.41%. However, according to [7],
stacking of two CLs with 3×3 filter size has the same effective receptive field of the 5×5
CL. Therefore, in this experiment, the training and testing performance of 2CPFL had
achieved a better recognition rate than CPFL with 5×5 filter size. Similarly, 3CPFL had
performed better than CPFL with 7×7 filter size as shown in Table 1.
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3.4 Experiment #4: Stacking Convolutional Layers and Subsampling Layers

In experiment #4, CPFL was applied as a baseline to investigate the effect of adding
PL after every CL of the network structure. Experimental results in Table 4 showed
that adding more PL contributed to worse misclassification rate. The effect of PL was
to reduce the dimensionality of feature maps while remaining the rotational and shift
invariant features of the local region. The spatial relationship between local regions are
disappear due to the region compression. Therefore, adding more PLs introduced the
information loss for the classification task.

Table 4. Misclassification rate of three type of stacked CP layers.
Network Structure Train Misclassification Testing Misclassification

CPFL 11.94 11.86
CPCPFL 15.59 14.68

CPCP2FL 16.3 14.56
CPCPCPFL 68.81 69.97

3.5 Comparison of DFN, DBN, C-DFN, and C-DBN

After the experiments were being conducted in the previous section, CP4FL network
structure consisting of one CL, one PL and four FLs obtained the lowest misclassification
rate 2.6% in MNIST dataset. In this network, the relationship of inter-connected pixels is
fully linked with weights parameter although the number of convolutional kernels is small.
In addition, a stack of equal length of the FL has relatively improved the performance of
the recognition rate when the network is going deeper.

In this experiment, CP4FL is renamed as C-DFN. This section compared DFN, C-
DFN, DBN, and C-DBN architecture performance on MNIST dataset, Daimler pedestrian
dataset, and INRIA person dataset. In addition, PReLU activation function is added to the
networks for further investigation. In Table 5, C-DFN with LReLU activation function
achieved the lowest misclassification rate among all the network architectures. Based on
three datasets performance evaluation showed in Table 5, C-DFN with LReLU reduced
misclassification rate to the average of 9.41%. C-DFN with PReLU reduced the misclas-

Table 5. Performance evaluation of FCN architectures on three dataset using LReLU
and PReLU.

Dataset

Misclassification rate (%)

LReLU PReLU

DFN C-DFN DBN C-DBN DFN C-DFN DBN C-DBN

MNIST 1.73 1.32 1.74 1.48 1.74 1.59 1.60 1.47

INRIA 16.45 13.11 17.27 13.42 15.72 12.69 15.90 12.60

Daimler 13.85 13.81 15.42 15.47 13.49 13.39 15.16 15.31

Average 10.68 9.41 11.48 10.12 10.32 9.22 11.04 9.79
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sification rate to the average of 9.22%. C-DBN with LReLU reduced misclassification
rate to the average of 10.12%. C-DBN with PReLU reduced the misclassification rate to
the average of 9.79%. Therefore, the CL acts as a trainable feature extractor improved the
network performance significantly. Moreover, it reduced 14% of the trainable parameters
in DFN.

4. CONCLUDING REMARKS

Three basic layers i.e. convolutional layer (CL), pooling layer (PL) and fully con-
nected layer (FL) are sequentially added for performance investigation. In CL, the small-
est size of the receptive field captures better local region of an input. However, if the size
of the convolutional layer has not grown wider, the recognition rate may become poor
due to the loss of connecting information. The requirement of increasing the number of
filters across one layer is important to improve the connectivity of local information. PL
has the effect of subsampling for reducing dimensionality and introducing some degree
of invariance to local translation and distortion in the input. In a FL, the relationship of
inter-connected pixels are linked with weight parameters. Therefore, the stack of equal-
length of the FL has relatively improved the performance of the recognition rate when
the network is grown deeper. In addition, experimental results showed that a CL with
four FLs (C-DFN) performed significantly better than DFN, DBN, and C-DBN using
three datasets. As a result, C-DFN with LReLU recorded an average misclassification
of 9.41% as compared to C-DBN with average misclassification rate of 10.12%. On the
other hand, C-DFN with PReLU achieved the lowest misclassification rate of 9.22% as
compared to C-DBN with 9.79%. For future work, parametric activation function shall be
further investigated to improve and adapt the network configuration in deeper network.
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