
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 36, 495-512 (2020)
DOI: 10.6688/JISE.202005_36(3).0002

495

A Novel Debugging Technique Based on Lightweight Crash
Report Considering Security

DONGMIN JANG1, SUJUNE LEE1, YOOWON JANG2, HOHYEON JEONG1 AND EUNSEOK LEE3

1Department of Electrical and Computer Engineering
2Department of Software Platform

3School of Software
Sungkyunkwan University

Suwon, 16419 Korea
E-mail: {jangdm; hoakw; jangyoowon; jeonghh89; leees}@skku.edu

Crashes can occur due to code defects while using released software. This is mainly

caused by various errors ranging from simple errors to unhandled exceptions. When a
crash occurs, a crash report is generated and transmitted to the developer to debug the
code. Debugging for tracing and correcting them is a very important task in terms of im-
proving the dependability of the software. The problem is that the crash report contains
too much information. So that it is difficult to focus on the core information related to the
crash. To make matters worse, in the security-critical situation, such as the case of the
defense-related sites to which this paper is targeted, important exception information of
client for debugging is not properly provided. In this paper, to solve the above problem,
we propose a novel technique to automatically generate high-quality lightweight crash
report with high security by collecting exception and memory information useful for er-
ror tracing without violating user’s personal information in the execution environment.
Furthermore, we propose a precise error tracing technique by linking the crash report
with the source code of the development environment. To validate the proposed tech-
nique, we applied it to prominent open source projects, such as security, registry, and so
on using the MS Windows platform. And we compared the results with WinDbg, the
most powerful tool available for the same purpose. As a result, our proposed technique
improves security by excluding five critical information that threatens security while
maintaining error tracing accuracy of existing research. In addition, the amount of infor-
mation needed for error tracing is reduced by 72%, making it easier for developers to re-
solve errors. Finally, the automation of crash report generation and error tracing improves
error tracing efficiency by reducing the time required for error analysis by 78%.

Keywords: software debugging, error tracing, crash report auto-generation, secure crash
report, memory dump

1. INTRODUCTION

The functions of the software provided to users are becoming increasingly complex.
As a result, the size of software and the cost of development have increased over the past
several decades. In this situation, the most expensive part of the software life cycle is
debugging, which accounts for about 50% of the total development cost [1, 2]. Since the
cost of debugging increases in proportion to the life cycle of the software, the most cost
part is the debugging performed during the maintenance phase after the software is re-
leased [3, 4]. Fig. 1 shows the process of debugging the software is released. If an error
occurs while running the software released in the execution environment, a crash report

Received April 23, 2019; revised July 5 & September 1, 2019; accepted September 3, 2019.
Communicated by Chang-Shing Lee.

DONGMIN JANG, SUJUNE LEE, YOOWON JANG, HOHYEON JEONG, EUNSEOK LEE

496

is generated and a crash report is sent to the developer. After receiving the crash report
generated in the execution environment, the developer analyzes the crash report in the
development environment, to trace and correct the location of the error. Then, when all
the tests pass, the developer has a recursive structure to release the software again. The
workflow in Fig. 1 is a very important task in improve the dependability of software.
Software crash is often caused by uncomplicated problems such as unhandled exceptions
in simple errors [5]. However, if a novice developer who does not have enough know-
ledge of debugging is error tracing, it takes more time to solve even it is a simple prob-
lem, which reduces the efficiency of error tracing. In addition, experienced developers
are involved if the software requires complex debugging. However, even experienced
developers may find it difficult to debug and take a long time to work [6]. In this paper,
we discuss three main causes (error report generation, analysis, and error tracing) of de-
bugging difficulties, and propose an error tracing method that facilitates debugging even
for novice developers who are not skilled.

Fig. 1. Debugging process of the released software.

First, when an error occurs, the existing crash report generation step generates a
dump file contain information, such as system information, memory dump, and crash
dump from the operating system [7-9]. At this time, all or part of the generated raw
dump file is attached to the crash report [8, 10-13]. In this case, the developer can con-
firm various items of information about the execution environment. However, there is a
disadvantage that developers cannot easily debug problems because they need to analyze
the unprocessed information of a crash report. Another problem is that if the user deac-
tivates the ability to send crash reports generated by the operating system, the developer
will not receive the error information and will not be able to trace the error [8]. For ex-
ample, a dump file of security-critical software used by a defense security agency or
government agencies that has security implications contains a lot of important infor-
mation, so it difficult to keep trace of the error because the dump file is not provided to

A NOVEL DEBUGGING TECHNIQUE BASED ON LCR CONSIDERING SECURITY 497

the developer.
Second, the existing crash report analysis step processes the information of the

crash report generated in the execution environment. Thus, the developer can analyze the
contents of the dump file more easily [14], and receive the information necessary for
error tracing [15, 16]. However, information that is not fully processed can contain
meaningless data in the error tracing phase. In addition, there is a possibility that other
module information list, and personal information used by the user among the attached
data may be included, which is also weak in terms of security [17]. Therefore, it may
take a long time to process the information, due to the dump data collected together with
the unnecessary data for error tracing. Also, there is a lot of data to analyze including the
processed error information (or crash information), which requires a lot of time and ef-
fort by the developer.

Fig. 2. (a) Crash report generation in the execution environment.

Fig. 2. (b) Error tracing in the development environment.

Third, the error tracing step of the existing error tracing techniques [15, 16] uses
error information and source code to trace errors in files or functions. However, since the
tracing scale is large, additional time and effort is required by the developer to find the
accurate error location. For the most popular error tracing tool in Windows environments
WinDbg [14], statement-level error tracing is performed using the program database in-
formation [18], dump file, and source code used in the debugging mode of the Integrated
Development Environment (IDE). However, in order to trace errors on a statement-level
basis, the developer must do two manual analyzes as shown in Fig. 2. If the software
crashes in the execution environment as shown in Fig. 2 (a), the user must generate the
dump file and manually send the dump file to the developer to trace the error. When a
user sends a dump file to a developer, a file level error tracing is needed to first deter-
mine what version of the software has crashed. As shown in Fig. 2 (b), the developer
extracts the build information by input the dump file received from the user and the

DONGMIN JANG, SUJUNE LEE, YOOWON JANG, HOHYEON JEONG, EUNSEOK LEE

498

symbol file path. This allows you to check the source code path in the development en-
vironment while checking the version of the software. Secondly, the developer can trace
statement-level errors by placing a dump file, symbol file path, and source file path as
input to WinDbg. Developer can trace errors in this way, but user cannot error trace them
unless you provide a dump file for security problem or other reasons in execution envi-
ronment. In addition, even if developer receive a dump file from the execution environ-
ment, two manual analysis tasks require additional debugging time and effort [19].

In order to overcome these limitations, we propose the automatic generation and
analysis of crash reports and automated error tracing for efficient debugging. The pro-
posed automatic crash report generation step collects from the dump data only the exe-
cutable file unique number, relative virtual address information, stack information, and
executable environment information, which are the minimum information required for a
statement-level error tracing. By processing the collected data, it is possible to generate a
lightweight crash report that does not contain personal information (Section 3.2). In ad-
dition, the lightweight crash report delivered to the developer can be analyzed to identify
software that require error tracing automatically (Section 3.3), and to analyze the pro-
gram database of the software to automatically trace statement-level errors (Section 3.4).

The contribution of this paper is as follows:

 The efficiency of crash report generation is increased by the collection of information
that is essential for error tracing as a lightweight crash report unlike existing crash re-
ports.

 Crash report can be used with security-sensitive software as it improves security while
eliminating user private information and module information other than errors.

 When a software crash occurs, the software architecture of the client-server structure
allows the developer to always receive a crash report and tracing the error to the
statement-level.

 Debugging costs can be reduced by automating error trace information collection,
crash report generation, and statement-level error tracing.

To verify the validity of this research, we apply the proposed technology to trendy

open source projects [20-29] by each category. The experimental result show crash re-
ports automatically generated by the proposed technology have only about 28% of the
information of existing reports, reducing the information to be analyzed. Also, the time
required for error tracing is reduced by about 78%. In addition, solves the problem that
crash reports are not attached to developers due to security problems in software (e.g.,
defense security software, government related software, etc.). The above solution elimi-
nates security-related information (other module information list, and personal infor-
mation, etc.) in the execution environment, thereby maintaining the accuracy of error
tracing and improving the security of error report. As a result, we confirmed the effec-
tiveness of debugging efficiency improvement by automatically generating lightweight
crash reports with enhanced security and automating statement-level error tracing.

The rest of the paper is organized as follows. Section 2 reviews related studies on
error tracing techniques. Section 3 describes the proposed techniques. Section 4 presents
the experimental results for the proposed technique. Section 5 discusses threats to valid-
ity. Finally, Section 6 concludes the paper.

A NOVEL DEBUGGING TECHNIQUE BASED ON LCR CONSIDERING SECURITY 499

2. RELATED WORK

In general, the starting point for debugging released software is when software that
runs in the execution environment experiences a crash, such as an unhandled exception.
In order to solve the above-mentioned situation that deteriorates the usability of the
software, research [15, 16] and tools [14, 30] have been provided for performing error
tracing tasks. These techniques [14-16, 30] basically assume debugging after the devel-
oper receives the crash report with the dump file attached. A dump file is a file that
stores the system status at a specific point in time provided by the operating system, and
includes various status information, such as system information, CPU status, memory
dump, and process information.

Fig. 3. Crash point specific to relative virtual address (RVA) by environment.

RETracer [15] is a binary-level backward taint analysis service that is suitable for
large-scale crash reporting. The input to the RETracer extracts the binaries of the dump
file information, the stack memory of individual processes, the crash thread, and the
memory dump of a crash. Then, a backward data-flow graph is generated based on the
crash point of the stack, and a bad value node, such as a damaged pointer, is selected.
The service analyzes the address value of the selected node, and traces the error by func-
tion. In the case of CrashLocator [16], the crash stack information is used to trace the
error. The software analyzes the call graph and control flow to obtain crash stack infor-
mation, and calculates the suspicion score of approximate function through backward
slicing. The calculated suspicion score is ranked, and transmitted to the developer.
Therefore, the developer can check the top n functions to find the error. These studies
[15, 16] reduce the debugging cost by extracting meaningful information from the dump
file for error tracing. However, because the unit of error tracing is a file or function unit,
the developer must perform additional error tracing to determine the exact location of the
error. Because of this, the time and effort employed by the developer is high.

WinDbg [14] is a support tool for postmortem analysis debugging [31] provided by

DONGMIN JANG, SUJUNE LEE, YOOWON JANG, HOHYEON JEONG, EUNSEOK LEE

500

Microsoft. This tool is the most popular used and powerful tool for debugging in the
Windows environment. It can analyze the dump data through various commands by in-
putting the dump file created in the Windows environment. Dump analysis includes
source code debugging, memory dump file, crash dump, breakpoint setting, and call
stack [32, 33]. In addition, the information is processed, and provides output in a text
format that can be understood by the developer. However, the analysis output is huge,
and requires a lot of relevant experience and knowledge for developers to trace errors.
Moreover, so as to trace statement-level errors in the source code, the developer must
first extract the information (executable file or dynamic library file) of the module that
crashed in the crash dump and satisfy both the conditions. The satisfying conditions are:
1) there is program database file path information in the extracted module information,
and 2) there is a section in which the Relative Virtual Address (RVA) and source code
line information are mapped in the program database file in the corresponding path. If
both of the above conditions are satisfied, it is possible to trace the source code state-
ment-level error through a specific point of crash. Fig. 3 shows a schematic of the tech-
nology [34]. The schematic shows that it is possible to trace source code statement-level
errors through a crash point (Section 3.2). CrashRpt [30] is an open source-based error
reporting library and program. The tool generates a crash report containing a screenshot,
a dump file, and a hexa-type error log at the time of the crash, and delivers it to the de-
veloper.

Fig. 3. Crash point specific to relative virtual address (RVA) by environment.

Although it is possible to reduce the debugging cost by using the above tools, Win-
Dbg [14] has many limitations for statement-level error tracing, and when the constraints
are not satisfied, developers must manually trace the error. CrashRpt [30] only supports
the generation and delivery of a crash report, so the cost of error tracing is large. Com-
monly both tools communicate dump data to the developer, which may contain personal
information.

As shown in Table 1, the above studies [15, 16] and tools [14, 30] have significant
impact on the generation, analysis, and error tracing phases of crash reports. However,
CrashLocator and CrashRpt perform real time error monitoring to detect errors in the

A NOVEL DEBUGGING TECHNIQUE BASED ON LCR CONSIDERING SECURITY 501

execution environment. Therefore, personal information and information of all the run-
ning processes may be collected and it is vulnerable to security. In particular, CrashRpt
is more vulnerable to security because it snapshots the desktop of the execution envi-
ronment. When the software crash is detected, most tools generate a dump file. RETracer
and WinDbg require the user to manually create a dump file. But CrashLocator is ex-
cluded from the comparison because it starts error tracing based on the assumption that
there is a crash report. The output data is different for each technology, and the data that
a developer intuitively understands and debugs the errors is a crash report. A crash report
is the best output data because it contains comprehensive debugging information as well
as software crash information. Crash report of CrashRpt is in binary-level, so developers
need to convert it to natural language, and WinDbg needs to analyze 82 different infor
mation (to filter unnecessary information for debugging). Comparing the error tracing
level, RETracer, CrashLocator, and CrashRpt are function-level error tracing. WinDbg
cannot do statement-level error tracing without further analysis as shown in Fig. 2 (b).

Table 1. Comparison of existing error tracing techniques and proposed error tracing
technique.

 RETracer
Crash

Locator
CrashRpt WinDbg

Proposed
Technique

1) Error
monitoring

X O O X X

2) Data
collection

Dump file
generation
(Manual)

N/A
Dump file
generation

(Auto)

Dump file
generation
(Manual)

Dump file
generation

(Auto)

3) Method of
error analysis

Backward
taint

analysis

Ranking
suspicious
functions

Capture and
Replay

Dump file
analysis

Selection of
essential
dump file

4) Output
Tainted
function

paths

Error
ranking list

Dump file
* Crash report

(#82 info.)
* Crash report

(#23 info.)
Snapshot

Crash report
(Binary-level)

5) Error
tracing level

Function Function Function
Limited

statement
Un-limited
statement

6) Security
consideration

X X X X O

* Detailed information is given in Table 2.

The above related technologies have a limitation that security cannot be assured due
to the risk of leakage of personal information due to error monitoring and dump file in-
formation. And additional debugging cost is required for statement-level error tracing.

3. METHODOLOGY

This section describes how to automatically generate crash reports by collecting
only the necessary information for error tracing, and how to trace errors based on the
generated crash report.

DONGMIN JANG, SUJUNE LEE, YOOWON JANG, HOHYEON JEONG, EUNSEOK LEE

502

3.1 Overview

Fig. 4 shows a flowchart of the proposed method and the detailed process of crash
report automatic generation, analysis and statement-level error tracing in this paper.

First, if a crash occurs while running the released software in the execution envi-
ronment, the automatic crash report generation step (Section 3.2) is performed. At this
stage, the software performs (1) dump file creation; (2) collection of essential infor-
mation for error tracing; and (3) crash report auto generation, and sends the crash report
to the development environment. After completing the above steps, the crash report
analysis phase (Section 3.3) is performed in the development environment. This step (1)
analyzes the content of the crash report received in the execution environment; (2) finds
the project path that matches the released software based on the analysis result; and (3)
finds and analyzes the program database file of the project. Finally, the error tracing step
(Section 3.4) is performed. In this step, two input values are used: (1) the interval ad-
dress of the crash point included in the crash report; and (2) the source code-RVA map-
ping information extracted in the line section of the program database file. Therefore, the
proposed method does not require the developer to ask the user for a dump file, unlike
the logic of WinDbg (Fig. 2), which is a popular error tracing tool. In addition, security
is considered by generating a crash report with only essential information for error trac-
ing, except for security sensitive information such as user personal information. Also, the
efficiency of the debugging work is improved by the developer automating the crash
report generation, and the error trace of the statement-level.

Fig. 4. Overview of crash report generation, analysis, and error tracing methods.

3.2 Crash Report Auto Generation

The goal of the automatic crash report generation step is to collect only the infor-
mation that is necessary for statement-level error tracing in the execution environment,
generating a crash report, and then delivering it to the developer.

A NOVEL DEBUGGING TECHNIQUE BASED ON LCR CONSIDERING SECURITY 503

3.2.1 Collection of crash information

Table 2 shows 82 information obtained from the existing dump file [35], and 23 er-
ror tracing collection of information the crash report proposed in this paper. The pro-
posed crash report collects four types of information from the dump file. The collected
information items are system information, module information, thread information, and
exception information.

Table 2. Comparison between legacy (WinDbg) and the proposed crash report collection
information.

System Info.
(#4)

OSBUILD OSNAME OSPLATFORM TYPE

BUILDOSVER STR

Module Info.
(#8)

BUCKET ID
BUCKET ID MOD

TIMEDATESTAMP
BUCKET ID OFFSET

FAILURE BUCKET ID FAILURE EXCEPTION CODE FAILURE FUNCTION NAME

FAILURE MODULE NAME MODULE NAME

Thread Info.
(#4)

FAULTING IP FOLLOWUP IP STACK TEXT

THREAD ATTRIBUTES

Exception
Info.
(#7)

DEFAULT BUCKET ID ERROR CODE EXCEPTION CODE

EXCEPTION CODE STR EXCEPTION RECORD EXCEPTION ADDRESS

PROCESS NAME

Excluded
Info.
(#59)

* Security-sensitive
 information

ANALYSIS SESSION
TIME

ANALYSIS SESSION
HOST

ANALYSIS SESSION
ELAPSED TIME

ANALYSIS SOURCE ANALYSIS VERSION
BUCKET ID FUNCTION

STR

BUCKET ID IMAGE STR
BUCKET ID MOD

CHECKSUM
BUCKET ID MODULE

STR
BUCKET ID MODVER

STR
BUCKET ID PREFIX STR BUGCHECK STR

BUILD VERSION STRING BUILDDATESTAMP STR BUILDLAB STR

CONTEXT
DEBUG FLR IMAGE

TIMESTAMP
DUMP CLASS

DUMP FLAGS DUMP QUALIFIER DUMP TYPE
EXCEPTION

PARAMETER1
EXCEPTION

PARAMETER2
FAILURE ID HASH

FAILURE ID HASH
STRING

FAILURE IMAGE NAME
FAILURE PROBLEM

CLASS
FAILURE SYMBOL NAME FAULT INSTR CODE FOLLOWUP

FOLLOWUP NAME IMAGE NAME
LAST CONTROL

TRANSFER

* MODLIST SHA1 HASH
* MODLIST WITH
TSCHKSUM HASH

NUMBER PARAMETERS

OS LOCALE OS REVISION OSBUILD TIMESTAMP

OSEDITION OSSERVICEPACK PRIMARY PROBLEM CLASS

PROBLEM CLASSES PRODUCT TYPE
SERVICEPACK

NUMBER
STACK COMMAND SUITE MASK SYMBOL NAME

SYMBOL STACK
INDEX

TARGET TIME
* THREAD SHA1 HASH

MOD
* THREAD SHA1 HASH

MOD FUNC
* THREAD SHA1 HASH

MOD FUNC OFFSET
USER LCID

WATSON BKT MO-
DOFFSET

WATSON BKT MOD-
STAMP

WATSON BKT MODULE

WATSON BKT PROCSTAMP WRITE ADDRESS

DONGMIN JANG, SUJUNE LEE, YOOWON JANG, HOHYEON JEONG, EUNSEOK LEE

504

The system information collects the operating system type, operating system version,
processor level, and processor architecture information. This system information enables
the developer to understand the environmental information of the execution environment
in order to reproduce the error. Also, if the development environment is different from
the execution environment, it is difficult for developers to trace errors. Therefore, basic
information about the system is essential. The module information collects the name of
the module, which is an executable file or dynamic library, the physical address and size
of the module loaded into the physical memory, and the unique number of the module.
This module information provides overall information about the module in error. When a
version is upgraded due to the bug fixing of adding additional function in the module, a
version-specific module is stored in the development environment. Therefore, it is nec-
essary to provide information for exploring the same module among the various modules
in the development environment and the module in which the error occurs in the execu-
tion environment. The thread information collects the call stack information by using the
thread ID, back trace method, and thread attribute in which the exception occurs. This
information can be traced back to the execution history by specifying the point at which
the module crash occurred as the start point. In addition, it confirms the behavior and
flow performed by the user of the execution environment. Finally, the exception infor-
mation collects faulty physical memory start/end addresses, faulty statement addresses,
interval addresses, error codes, and error types (e.g., null pointer references, divide by
zero, etc.). This information identifies what kind of exception occurred in the module.
Through the error code and error name, the developer can intuitively identify what error
occurred. In addition, the location of the error is traced to the statement-level through the
interval between the start/end address of the error module and the physical address where
the error occurred.

Therefore, the crash report proposed in this paper excludes 59 information from the
existing crash report (WinDbg). There are two reasons why the information in the crash
report is excluded. The first reason is the removal of redundant information in the crash
report. In the crash report information output by WinDbg in Table 2, MODULE NAME,
BUCKET ID IMAGE STR, BUCKET ID MODULE STR, FAILURE IMAGE NAME,
IMAGE NAME, and WATSON BKT MODULE all show the same module name infor-
mation (e.g., SKKU_SELAB.exe). It is based on actual data consisting of executable or
dynamic library file. Thus, our crash report only collected MODULE NAME, and we
excluded other redundant data sets like this. The second reason is security-sensitive in-
formation. The five kinds of security-sensitive information are the list of modules not
related to the error, or the information in which the personal information in the execution
environment is exposed in a hash format. As a result, it eliminates redundant data and
security-critical information, and automatically generates a lightweight crash report that
contains 23 information that is essential for the error tracing.

3.2.2 Essential information required for error tracing

Fig. 3 shows that the essential information required for statement-level error tracing
is the RVA and timestamp. The RVA is a relative virtual address representation of the
data or operation information required for program execution based on the module start
address 00, regardless of where it is loaded into memory. With this characteristic, the

A NOVEL DEBUGGING TECHNIQUE BASED ON LCR CONSIDERING SECURITY 505

error point can be found regardless of the execution environment, by taking the identify-
ing difference between the error occurrence address of the physical memory, and the
module start address. For the address difference information to be meaningful, it is nec-
essary to analyze the version based on the same module, and it can be searched using the
time stamp information. After extracting the minimum information required for error
tracing from the dump file using such program operation characteristics, the contents are
included in the crash report, then transmitted to the developer.

3.3 Crash Report Analysis for Error Tracing

The crash report analysis phase analyzes the error based on the information contain-
ed in the crash report received from the execution environment. The developer can use
the timestamp information from various items of information in the crash report to trace
the project path of the software that crashed. In addition, the goal is to extract the state-
ment-level error information using the difference between the start address of the soft-
ware, and the address where the problem occurred.

3.3.1 Exploration of the same module based on the timestamp

To use the address difference information of the proposed crash report meaningfully,
we search for the same module of the execution environment module and the develop-
ment environment with the time stamp information. The exploration method explores the
project paths of released software by using the module name and time stamp included in
the crash report. This method can analyze the header of files with the same extension as
an error module, and trace file-by-file errors by finding the path of the executable file or
dynamic library file having the same timestamp.

3.3.2 Analysis of RVA-line mapping information based on program database

Once the file with the error is found by timestamp, it analyzes the program database
[18] to utilize the address difference information. The program database file can be cre-
ated in the same path as the module through option setting in debugging mode, when
compiling the released module. This file is generated to support debugging during de-
velopment, and includes information, such as the path information of resources required
for operating the module, RVA mapping information per line of source code, and symbol
table. At this time, the RVA mapping information for each line of the file is analyzed,
and the RVA mapping information for each source code line and the address difference
information extracted from the conflict report are transmitted to the error tracing step.

3.4 Statement-Level Error Tracing

In the statement-level error tracing step, our goal is to specify the error location in
line units through the RVA mapping information of the source code line received in the
crash report analysis step and the address difference information in the error module. Fig.
3 shows that basically, when using the same address difference value in the same module,
it is possible to find an exact error point, irrespective of the execution environment.

The RVA mapping information obtained from the analysis of the program database
is composed of a list of functions. Fig. 5 shows that in each list, RVA-line mapping in-

DONGMIN JANG, SUJUNE LEE, YOOWON JANG, HOHYEON JEONG, EUNSEOK LEE

506

Fig. 5. Relative Virtual Address (RVA) and source code line mapping information.

formation is recorded. Among the recorded information, the mapping RVA information
and the source code line information may not be exactly the same, and the accurate
source code line is traced using the mapped RVA and RVA length information. Finally,
if the source code line of the range including the address difference value is found, the
error statement information is derived together with the information included in the crash
report.

4. EXPERIMENTAL RESULTS

This section validates the proposed error tracing technique using WinDbg [14],
which is popular in the Microsoft Windows platform environment, to verify the validity
with the C/C++ language open source projects [20-29] based on the Native Win32 API.
The experimental results are evaluated through the following three research questions:

 RQ1: Is the quality of the proposed crash report improved in comparison to the exist-

ing crash report?
 RQ2: Has the proposed error tracing technique reduced the error tracing cost com-

pared to the previous studies?
 RQ3: How effective is the proposed crash report in terms of security?

The experiment method is to inject errors and library-type suggestion techniques

that cause frequent crashes [5], such as null pointer dereference or divide by zero, in the
open source project on the development environment PC, and distribute them to the ex-
ecution environment PC. When a crash occurs due to an error injected by the released
software, the project collects and analyzes the memory dump file, and checks the validity
of the statement-level error trace through the crash report. All our experiments are based
on Windows OS NT/Server version and 32/64bit architecture. The experimental environ-
ment is equipped with Intel Core i5-7300HQ CPU@2.50GHz and 8GB RAM. The de-
velopment environment server has Intel Core i5-7600 CPU@3.50GHz and 16GB RAM.

4.1 RQ1: Is the proposed crash report high quality?

Basically, the high-quality crash report should contain information to quickly re-
solve software crashes, and the developer should receive a crash report every time an
error occurs. Table 2 shows that the comparison target WinDbg [14] tool can obtain 82

A NOVEL DEBUGGING TECHNIQUE BASED ON LCR CONSIDERING SECURITY 507

error tracing information, and the developer can analyze detailed information through
various item of error information. However, some pieces of information are meaningless
to the actual error tracing, developer readability is degraded, and the error analysis time
increases. On the other hand, the proposed crash report uses only 23 error information,
including time stamps and RVA address values, which are essential for error. Therefore,
we create high-quality crash reports that can trace errors in statement-level by using only
the core information needed for the error tracing, rather than using a low-quality crash
report that contains information that is not structurally existing, or meaningless to error
tracing.

In addition, WinDbg must insert the dump file, symbol file path, and source code
path to get accurate error tracing information. However, when the developer receives a
dump file from the execution environment, it does not immediately know the timestamp
information of the software that caused the crash. Therefore, we first extract the time-
stamp information using the dump file and symbol file path information. Complete error
tracing information can be obtained only by inserting an error source code path using the
extracted timestamp information. In this way, developers need three input files to obtain
accurate crash information using WinDbg. When a developer receives only a dump file,
it needs to perform two operations to ensure accurate error tracing, and cannot analyze
the error if the dump file is not received in the execution environment. On the other hand,
the proposed crash report can always check whether the error has occurred by sending
the crash report to the developer in the execution environment whenever an error occurs
in the released software. Also, the proposed crash report generates a high-quality report
that can be debugged quickly without any additional work of the developer, unlike
WinDbg.

4.2 RQ2: How effective is the proposed technique in error tracing?

Table 2 shows that the existing error tracing tool, WinDbg [14] analyzes the error
results of about 82 memory dump analyses, including system environment information of
the execution environment. In addition, WinDbg should use the source file path, the
symbol file path, and the dump file as input values, in order to obtain accurate analysis
results. If any of this information is excluded, the developer needs further analysis effort.
However, it is difficult for the developer to see the results at once, and error tracing costs
a lot of analysis. On the other hand, the proposed technique can obtain the same error
tracing accuracy with only 23 analysis results, which is about a 72% decrease in the ex-
isting research. Therefore, the size of the crash report has been reduced, and the reada-
bility is also improved, because the developer only reads the core contents necessary for
error tracing.

Table 3 shows the experimental results. The total analysis time showing the error
line position was reduced by about 78%, compared to existing tools. There are two main
reasons why the proposed error tracing technique takes less time to trace errors. First, the
input value type of WinDbg is the input data of the mini dump file itself, so the data to
be analyzed is vast. However, the error tracing method proposed in this paper uses a
lightweight crash report, so the size of the data to be analyzed is small, and the analysis
time can be reduced. The second existing tool is either unable to trace the error line in
the program database file, or it takes a long time to trace down to the statement-level.

DONGMIN JANG, SUJUNE LEE, YOOWON JANG, HOHYEON JEONG, EUNSEOK LEE

508

Table 3. Comparison of error tracing time between WinDbg and the proposed technology.

Program Tool Error tracing time (s)

Process Hacker
Proposed Tech. 3.821

WinDbg 17.545

Navicat keygen
Proposed Tech. 5.219

WinDbg 21.915

idenLib
Proposed Tech. 3.158

WinDbg 14.744

KernelModeMonitor
Proposed Tech. 2.469

WinDbg 10.688

Sandbox Detection
Proposed Tech. 2.691

WinDbg 11.455

TS Security Editor
Proposed Tech. 1.105

WinDbg 8.612

RSVWR
Proposed Tech. 1.691

WinDbg 8.894

File I/O
Proposed Tech. 2.006

WinDbg 9.885

Cdr2pdfviewer
Proposed Tech. 1.592

WinDbg 8.104

Mynote
Proposed Tech. 1.936

WinDbg 9.577
Average efficiency (%) 78.84%

However, in this study, since the trace path is set in advance as the input value, it takes
less time to find the error in the program database file.

4.3 RQ3: Has the proposed crash report improved security?

Existing crash reports can contain sensitive personal information, because they are
sent with a list of all modules running in the execution environment and memory infor-
mation. Therefore, if a development environment PC is hacked by a malicious hacker, a
crash report containing user or execution environment information may be leaked, which
may cause a serious security problem. For example, leaks of a crash report provided by
security-sensitive defense companies and governments could cause serious problems.

However, the crash report proposed in this paper does not use the user personal in-
formation, because it only collects system environment information, associated infor-
mation about the executed module, and exception information. Therefore, as in the ex-
isting research, the developer can ask the user for the dump file containing their personal
information, or not directly analyze the dump file by the developer, and can trace the
error module and statement-level error through the auto generated crash report. As a re-
sult, the security of the user’s personal information is improved, while keeping the accu-
racy of error tracing the same as for the existing research.

5. THREATS TO VALIDITY

An external threat to validity is that our implementation and evaluation were fo-

A NOVEL DEBUGGING TECHNIQUE BASED ON LCR CONSIDERING SECURITY 509

cused on the Windows platform running on 32/64bit architectures. However, our error
tracing design is generally available regardless of operating system. Therefore, we expect
to extend the proposed technology to work with other operating systems and architec-
tures such as Linux.

An internal threat is a validity that our proposed technology is related to security.
Our proposed technology focuses on defense security software or security-related soft-
ware. Their commonalities do not provide information about errors. Therefore, the de-
velopers do not receive useful information for debugging, including dump file. To miti-
gate this threat, we analyze security critical information and information essential for
error tracing from the execution environment. It then provides developers with a light-
weight crash report that can focus on the error.

6. CONCLUSIONS

In this paper, the high-quality lightweight crash report is automatically generated
that provides only information essential for error tracing in the event of an error in re-
leased software. The generated crash report has improved security by excluding private
information of the execution environment and module information other than errors. In
addition, we propose an error tracing automation technique based on the generated crash
report. The proposed technology is inserted and released into the developed software as a
library. When a software crash occurs in the execution environment, it is recognized, and
the lightweight crash report is automatically generated by collecting only the minimum
data required for error tracing. The developer can use the Timestamp information in-
cluded in the lightweight crash report to check the location and version of the module
where the error occurred, and use the RVA information to trace the software’s state-
ment-level error. In order to supplement existing crash reports, which include infor-
mation not related to error tracing (module information not related to errors, user person-
al information), the crash report is automatically generated by collecting only the mini-
mal information (system information, module information, thread information, exception
information) from the error trace. Also, by analyzing the crash report and automating the
error tracing technique at the statement-level, we obtained error tracing results at the
same level as the previous studies. Experiments have reduced the time required for crash
report analysis and error tracing by 78%, compared to traditional error tracing tools, and
increased the security of personal information leakage, by collecting and sending only
the data required for error tracing to developers. Therefore, we confirmed that the pro-
posed method can be used in research institutes and companies that use security-sensitive
software as well as the crash report generation method and error tracing method pro-
posed in this paper. In future research, we will create metrics that can be used to evaluate
the practicality of this study for commercial software rather than open source, and com-
pare it with commercial tools.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful feedback. I thank Sujune Lee,
Yoowon Jang, and Hohyeon Jeong for help and support in implement proposed tech-

DONGMIN JANG, SUJUNE LEE, YOOWON JANG, HOHYEON JEONG, EUNSEOK LEE

510

nique. This research supported in part by the Next-Generation Information Computing
Development Program (2017M3C4A7068179), and the Basic Science Research Program
(2016R1D1A1B03934610, 2019R1A2C2006411) through the National Research Foun-
dation of Korea (NRF) grant funded by the Korean Government (MSIT).

REFERENCES

1. T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen, “Reversible de-
bugging software,” Judge Business School, University of Cambridge, 2013.

2. P. Ohmann and B. Liblit, “CSIclipse: presenting crash analysis data to developers,”
in Proceedings of the on Eclipse Technology eXchange, 2015, pp. 7-12.

3. Undo Software, “Increasing software development productivity with reversible de-
bugging,” Technical Report No. 1, white paper, 2014.

4. I. Alazzam and K. Nahar, “Combined source code approach for test case prioritiza-
tion,” in Proceedings of International Conference on Information Science and Sys-
tem, 2018, pp. 12-15.

5. Juliet Test Suite for C/C++, https://samate.nist.gov/SRD/testsuite.php.
6. M. Beller, N. Spruit, and A. Zaidman, “How developers debug,” PeerJ Preprints,

Vol. 5, 2017, Art. No. e2743v1.
7. Microsoft, “Overview of memory dump file options for Windows,” https://support.

microsoft.com/en-us/help/254649/overview-of-memory-dump-file-options-for-wind
ows.

8. K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan, G. Nichols, D.
Grant, G. Loihle, and G. Hunt, “Debugging in the (very) large: ten years of imple-
mentation and experience,” in Proceedings of ACM SIGOPS 22nd Symposium on
Operating Systems Principles, 2009, pp. 103-116.

9. J. Seo, S. Lee, and T. Shon, “A study on memory dump analysis based on digital fo-
rensic tools,” Peer-to-Peer Networking and Applications, Vol. 8, 2013, pp. 694-703.

10. J. Clause and A. Orso, “A technique for enabling and supporting debugging of field
failures,” in Proceedings of the 29th International Conference on Software Engi-
neering, 2007, pp. 261-270.

11. Apple Crash Reporter, https://developer.apple.com/library/archive/technotes/tn2004/
tn2123.html.

12. Microsoft Windows Error Reporting, https://docs.microsoft.com/en-us/windows/desk
top/wer/about-wer.

13. Mozilla Crash Reports, https://crash-stats.mozilla.com.
14. Microsoft WinDbg, https://docs.microsoft.com/en-us/windows-hardware/drivers/deb

ugger/debugger-download-tools.
15. W. Cui, M. Peinado, S. K. Cha, Y. Fratantonio, and V. P. Kemerlis, “RETracer: tri-

aging crashes by reverse execution from partial memory dumps,” in Proceedings of
the 38th International Conference on Software Engineering, 2016, pp. 820-831.

16. R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “Crashlocator: Locating crashing faults
based on crash stacks,” in Proceedings of International Symposium on Software Test-
ing and Analysis, 2014, pp. 204-214.

A NOVEL DEBUGGING TECHNIQUE BASED ON LCR CONSIDERING SECURITY 511

17. P. Broadwell, M. Harren, and N. Sastry, “Scrash: a system for generating secure
crash information,” in Proceedings of the 12th USENIX Security Symposium, Vol.
12, 2003, pp. 273-284.

18. Programdatabase file, https://docs.microsoft.com/en-us/cpp/build/reference/pdb-use
-program-database?view=vs-2017.

19. A. Ganapathi and D. Patterson, “Crash data collection: a Windows case study,” in
Proceedings of International Conference on Dependable Systems and Networks, 2005,
pp. 280-285.

20. Processhacker, https://github.com/processhacker/processhacker.
21. Navicat-keygen, https://github.com/DoubleLabyrinth/navicat-keygen.
22. idenLib, https://github.com/secrary/idenLib.
23. KernelModeMonitor, https://github.com/alex9191/KernelModeMonitor.
24. Sandbox-Detection, https://github.com/MojtabaTajik/Sandbox-Detection.
25. TS-Security-Editor, https://github.com/aurel26/TS-Security-Editor.
26. ReadStringsFromRegistry, https://github.com/GiovanniDicanio/ReadStringsFromRe

gistry.
27. FileI/O, https://github.com/bokiex/File-I-O.
28. Cdr2pdfviewer, https://github.com/stxh/cdr2pdfviewer.
29. Mynote, https://github.com/richb255/mynote.
30. CrashRpt, https://sourceforge.net/projects/crashrpt.
31. J. Xu, D. Mu, X. Xing, P. Liu, P. Chen, and B. Mao, “POMP: postmortem program

analysis with hardware-enhanced post-crash artifacts,” in Proceedings of the 26th
USENIX Conference on Security Symposium, 2017, pp. 17-32.

32. R. Wu, M. Wen, S. Cheung, and H. Zhang, “ChangeLocator: locate crash-inducing
changes based on crash reports,” Empirical Software Engineering, Vol. 23, 2018, pp.
2866-2900.

33. J. Xu, D. Mu, P. Chen, X. Xing, P. Wang, and P. Liu, “Credal: Towards locating a
memory corruption vulnerability with your core dump,” in Proceedings of ACM
SIGSAC Conference on Computer and Communications Security, 2016, pp. 529-
540.

34. D. Devi and S. Nandi, “PE file features in detection of packed executables,” Interna-
tional Journal of Computer Theory and Engineering, Vol. 4, 2012, pp. 476-478.

35. S. Grekhov, J. Jeong, and M. Levin, “On reducing of core dump file size,” in Pro-
ceedings of IEEE EuroCon, 2009, pp. 1288-1292.

Dongmin Jang (張東珉) received the B.S. degree in Com-
puter Engineering from Seowon University, Korea, in 2018. He is
currently an M.S. candidate in the Department of Electrical and
Computer Engineering at Sungkyunkwan University, Korea. His
research interests include software testing, and test automation.

DONGMIN JANG, SUJUNE LEE, YOOWON JANG, HOHYEON JEONG, EUNSEOK LEE

512

Sujune Lee (李壽峻) received the B.S. degree in Electronic
Engineering from Kyonggi University, Korea, in 2016, M.S. de-
gree in Electrical and Computer Engineering at Sungkyunkwan
University, Korea, in 2019. He is currently a Researcher at Korea
Electronics Technology Institute (KETI), Seongnam, Korea. His
research interests include fault localization and software testing.

Yoowon Jang (張由源) received the B.S. degree in Software
from Sungkyunkwan University, Korea, in 2017, M.S. degree in
Software Platform at Sungkyunkwan University, Korea, in 2019.
He is currently a Researcher at Fasoo, Seoul, Korea. His research
interests include automated program repair and genetic program-
ming.

Hohyeon Jeong (鄭昊鉉) received the B.S. and M.S. degrees
in Electrical and Computer Engineering from Ajou University,
Korea, in 2012 and 2014, respectively. He is currently Ph.D. can-
didate in Electrical and Computer Engineering at Sungkyunkwan
University, Korea. His research interests include self-adaptive soft-
ware systems and test automation.

Eunseok Lee (李殷碩) received his Ph.D. and M.S. degrees

in Information Engineering from Tohoku University, Japan, in
1992 and 1988, respectively, and a B.S. degree in Electronic En-
gineering from Sungkyunkwan University, Korea, in 1985. He was
an Assistant Professor in the Department of Information Engineer-
ing of Tohoku University, Japan. He was a Research Scientist in
the Information and Electronics Laboratory of Mitsubishi Electric
Corporation, Japan, from 1992 to 1994. He is currently a Professor
with the Department of Computer Engineering, Sungkyunkwan

University. His current research topics include automated software testing, debugging,
and automatic program generation and repair.

