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We present a novel speech enhancement method based on locally linear embedding 

(LLE). The proposed method works as a post-filter to further suppress the residual noises 
in the enhanced speech signals obtained by a speech enhancement system to attain im-
proved speech quality and intelligibility. We design two types of LLE-based post-filters: 
the direct LLE-based post-filter (called the DL post-filter) and the LLE-based difference 
compensation post-filter (called the LDC post-filter). The key technique of the proposed 
post-filters is to apply the LLE-based feature prediction method, which integrates the 
LLE algorithm, a classical manifold learning method, with the exemplar-based feature 
prediction method, to predict either the spectral features of the clean speech from those 
of the enhanced speech (for DL) or the spectral difference of {clean speech; noisy speech} 
from that of {enhanced speech; noisy speech} (for LDC). As a result, for DL, the pre-
dicted clean speech signals can be directly reconstructed from the predicted clean spec-
tral features. On the other hand, for LDC, the predicted clean spectral features are ob-
tained by compensating the spectral features of the noisy speech with the predicted 
clean-noisy spectral difference, and then the predicted clean speech signals can be recon-
structed accordingly. Experimental results demonstrate the effectiveness of the proposed 
post-filters for two representative speech enhancement methods, namely the deep de-
noising autoencoder (DDAE) and the minimum mean-square-error (MMSE) spectral es-
timation methods. 

 
Keywords: speech enhancement, locally linear embedding, post-filter/postfilter, exem-
plar-based, manifold learning 

 
 

1. INTRODUCTION 
 
Speech enhancement has been used as a fundamental unit in a wide range of voice- 

based applications, such as assistive hearing devices [1, 2], hands-free communication [3, 
4], automatic speech recognition [5-7], and speaker recognition [8, 9]. Traditionally, 
speech enhancement algorithms were derived based on the statistical characteristics of 
speech and noise signals. A class of approaches design a filter to suppress the noise 
components in the input noisy speech. Well-known examples include spectral subtraction 
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[10], Wiener filter [11], Kalman filtering [12], and minimum mean-square-error (MMSE) 
spectral estimation [13]. Another successful class is the subspace-based approaches, 
which split a noisy speech signal into two subspaces, one for the clean speech signal and 
the other for the noise comments, and then suppress the noise parts to reconstruct the 
clean speech signal. Notable subspace techniques include singular value decomposition 
(SVD) [14] and principal component analysis (PCA) [15, 16]. The class of speech mod-
el-based techniques is derived by considering both human speech production models and 
speech reduction functions to perform noise reduction. Successful examples include the 
harmonic model [17, 18], the linear prediction (LP) model [19, 20], and the hidden Mar-
kov model (HMM) [21, 22]. 

More recently, machine-learning based speech enhancement approaches, such as 
sparse coding [23], nonnegative matrix factorization (NMF) [24, 25], and artificial neural 
networks based approaches, such as deep neural network (DNN) [7, 26], deep denoising 
auto-encoder (DDAE) [27-29], recurrent neural network [30, 31], and convolutional 
neural network (CNN) [32], have attracted great attention. Although these previously 
developed speech enhancement algorithms already yield good performances in many 
conditions, two issues are still not perfectly addressed, i.e., residual noise and speech 
distortions are still noticeable in enhanced speech signals. To address these two issues, 
we propose a novel locally linear embedding (LLE)-based post-filter for speech enhance- 
ment. 

Our proposed method is inspired by the success of our previous work that integrated 
the LLE algorithm [33], a manifold learning algorithm that characterizes the intrinsic 
geometric structure of high dimensional data, with the exemplar-based spectral conver-
sion method (called the LLE-based feature prediction method hereafter) for speaker 
voice conversion [34]. In this study, we employ the LLE-based feature prediction method 
in speech enhancement. The intuitive way is to employ LLE-based feature prediction 
directly to predict the spectral features of clean speech (called the clean spectral features 
hereafter) from the spectral features of noisy speech (called the noisy spectral features 
hereafter). Due to its natural limitation, however, LLE-based feature prediction could not 
achieve satisfactory performance in speech enhancement when working alone in our pre-
liminary experiments, especially under low signal-to-noise ratio (SNR) noisy conditions. 
Therefore, we adopt it as a post-filter for speech enhancement processed speech to fur-
ther remove the residual noise components.  

Specifically, two types of post-filters based on the LLE-based feature prediction 
method are presented in this paper: the direct LLE-based (DL) post-filter [35] and the 
LLE-based difference compensation (LDC) post-filter. The proposed post-filters can be 
divided into offline and online stages. In the DL post-filter, the offline stage involves 
preparing the paired enhanced spectral features (obtained by a speech enhancement sys-
tem) and clean spectral features (also called exemplars) for dictionary construction while 
the online stage involves performing the LLE-based feature prediction method to predict 
the clean spectral features from the enhanced spectral features. To overcome the discon-
tinuity problem existing in the predicted clean spectral features, the maximum likelihood 
parameter generation algorithm [36] is applied after the LLE-based feature prediction 
method. On the other hand, in the LDC post-filter, the offline stage involves preparing 
the paired differences: the spectral difference of {enhanced speech; noisy speech} and 
the spectral difference of {clean speech; noisy speech}, while the online stage involves 
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performing the LLE-based feature prediction method (followed by the maximum likeli-
hood parameter generation (MLPG) algorithm) to predict the clean-noisy spectral differ-
ence from the enhanced-noisy spectral difference and compensating the noisy spectral 
features with the predicted clean-noisy spectral difference. In this study, we evaluate the 
effectiveness of the proposed post-filters on a supervised speech enhancement system, 
i.e., the DDAE-based speech enhancement system [29], and an unsupervised speech en-
hancement system, i.e., the minimum mean-square-error (MMSE) spectral estimation- 
based speech enhancement system [13]. 

The remainder of this paper is organized as follows. The proposed LLE-based post- 
filters for speech enhancement are described in detail in Section 2. Experimental setup 
and results are presented in Section 3. Finally, Section 4 gives the conclusions. 

2. THE PROPOSED LLE-BASED POST-FILTERS FOR SPEECH 
ENHANCEMENT 

In this section, we first describe the LLE-based feature prediction method in Section 
2.1, which is the core technique adopted in the proposed post-filters, and then present the 
direct LLE-based (DL) post-filter and the LLE-based difference compensation (LDC) 
post-filter in Sections 2.2 and 2.3, respectively. Finally, a comparison between the DL 
and LDC post-filters is given in Section 2.4. 

2.1 The LLE-Based Feature Prediction Method 

As mentioned previously, the LLE-based feature prediction method integrates the 
LLE algorithm with the exemplar-based feature prediction method. Before we start to 
describe the LLE-based feature prediction method, we first briefly review the LLE algo-
rithm [33]. 

The LLE algorithm addresses the problem of nonlinear dimensionality reduction by 
computing the low-dimensional neighborhood preserving embeddings of high-dimen- 
sional data. Let each high-dimensional input data point be sampled from an underlying 
low-dimensional manifold, and a sufficient number of data be provided, LLE assumes 
that the manifold is locally linear, and each data point and its neighbors lie on or close to 
a locally linear patch of the manifold. A manifold can be visualized as a collection of 
overlapping locally linear patches if the neighborhood size is small and the manifold is 
sufficiently smooth. Under this condition, the local geometry of a patch (i.e., the local 
geometry in the neighborhood of each data point) can be characterized by the reconstruc-
tion weights that reconstruct each data point from its neighbors. Then, the same recon-
struction weights are used for computing the low-dimensional embedding such that the 
local geometry of the patch is preserved in the low-dimensional embedding space. The 
LLE algorithm for dimensionality reduction has three steps: 
 
(a) Finding K nearest neighbors for each data point. 
(b) Computing the reconstruction weights that best (linearly) reconstruct each data point 

from its K nearest neighbors found in step (a). 
(c) Estimating the low-dimensional embedding for each data point by applying the re-

construction weights obtained in step (b). 
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involves estimating the target features by preserving the local geometry of the source 
features, as opposed to estimating the low-dimensional embedding in step (c) of the LLE 
algorithm for dimensionality reduction.  

We implement steps (b) and (c) of the LLE-based feature prediction method as fol-
lows. In step (b), the reconstruction weight vector is computed by minimizing the recon-
struction error i subject to the constraint 1Twi = 1 (for the purpose of translational invar-
iance) as: 

i = ||ui  Aiwi||
2, s.t. 1Twi = 1, (1) 

where AiFK is a matrix (a subset of the source dictionary) composed of K nearest 
neighbors of ui, i.e., Ai = [ai,1, …, ai,k, …, ai,K], where ai,kF1 is the kth nearest neigh-
bor of ui; wiK1 is the reconstruction weight vector for ui; 1K1 is a vector whose 
elements are all ones; and the superscript T denotes transposition of the vector. Note that 
Ai can be obtained in step (a). Solving wi by minimizing i subject to the constraint is a 
constrained least square problem, and the closed-form solution can be found in [37]. A 
more efficient way to obtain wi is to solve the linear system of equations in advance:  

Giwi = 1, (2) 

where GiKK is the local Gram matrix for ui: 

Gi = (Ai  ui1
T)T(Ai  ui1

T). (3) 

Then, the reconstruction weight vector is rescaled to satisfy the constraint 1Twi =1. The 
detailed derivations of the solution can be found in [37]. 

In step (c), with the assumption that the source and target feature vectors share a 
similar local geometry in their respective feature spaces (manifolds) the predicted feature 
vector v̂i can be obtained by 

v̂i = Biwi, (4) 

where the reconstruction weight vector wi is obtained in step (b); Bi
FK is a matrix (a 

subset of the target dictionary) corresponding to Ai, and is composed of K target exem-
plars, i.e., Bi = [bi,1, …, bi,k, …, bi,K], where bi,k

F1 is the kth target exemplar in Bi cor-
responding to (paired with) ai,k.  

Once the sample-by-sample prediction process is finished, a sequence of predicted 
feature vectors { v̂i}

I
i=1 can be obtained. 

2.2 The Direct LLE-Based Post-Filter 

Fig. 2 gives an overview of the DL post-filter. The natural idea is to directly apply 
the LLE-based feature prediction method to perform post-filtering for speech enhance-
ment, i.e., predicting the clean spectral features from the enhanced spectral features. 
There are two stages in DL post-filtering: the offline and online stages. The offline stage 
mainly involves the construction of the paired dictionaries while the online stage per-
forms post-filtering for speech enhancement. In the following, we describe the DL post- 
filter in detail. 
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delta (1)ŝ n  L1, and delta-delta (2)ŝ n  L1 features as (1) (2)ˆ ˆ ˆ ˆ, ,
T

T T T
n n n n

    S s s s  
(for n = 1~N). Likewise, 

3 1L
n

S   is the nth clean exemplar in the clean dictionary, and  

is composed of the L-dimensional staticsn  L1, delta (1)ŝ n  L1, and delta-delta   

(2)ŝ n  L1 features as 

(1) (2), ,
TT T T

n n n n    S s s s (for n=1~N). 
 
(B) The Online Stage 

In Fig. 2, a well-established speech enhancement system is applied to an input noisy 
speech to obtain the enhanced speech in advance. Then, spectral feature extraction is 
performed to obtain the sequence of enhanced spectral feature vectors {Ŝt  3L1}T

t=1, 
where T is the number of speech frames of the enhanced speech, and Ŝt is the enhanced 
spectral feature vector at frame t, which is composed of the L-dimensional static ŝt  L1, 
delta (1)ŝt  L1, and delta-delta (2)ŝt  L1 features, i.e., Ŝt = [ŝT

t, 
(1)ŝT

t, 
(2)ŝT

t]
T. Then, 

the LLE-based feature prediction method is applied to predict the clean spectral feature 
vectors {Ŝt  3L1}T

t=1 from the enhanced spectral feature vectors {Ŝt}
T
t=1 independently 

in a frame-by-frame manner, where Ŝt is the predicted clean spectral feature vector at 
frame t. Note that the paired enhanced and clean dictionaries are used in the LLE-based 
feature prediction method. 

To overcome the discontinuity problem existing in the predicted clean spectral fea-
tures given by the LLE-based feature prediction method, the MLPG algorithm is applied 
to the predicted clean spectral feature vectors {Ŝt}

T
t=1 to generate a sequence of final pre- 

dicted static clean spectral feature vectors {st  L1}T
t=1, where st is the final predicted 

static clean spectral feature vector at frame t. Next, we describe the MLPG algorithm in 
detail. 
 
(C) The MLPG Algorithm 

Since the LLE-based feature prediction method is performed in a frame-by-frame 
manner, the discontinuity problem exists. As suggested in our previous work [34, 35], the 
MLPG algorithm can effectively handle the discontinuity problem. 

The MLPG algorithm [36] applied to the LLE-based feature prediction method is 
given as 

s = (MTM)-1MTŜ, (5) 

where s = [(s1)
T, …, (st)

T, …, (sT)T]T  LT1 is a sequence of final predicted static clean 
spectral feature vectors; M  3LTLT is a weighting matrix used for appending the dy-
namic features to the static ones [36]; Ŝ = [(Ŝ1)

T, …, (Ŝt)
T, …, (ŜT)T]T  3LT1 is a se-

quence of predicted clean spectral feature vectors obtained by the LLE-based feature 
prediction method;  = diag[1, …, t, …, T]  3LT3LT is the global precision matrix, 
where t  3L3L is the precision matrix at frame t, which is assumed to be diagonal and 
is estimated from the clean speech corpus (clean spectral feature vectors). Note that 1 
= … = t = … = T. 

2.3 The LLE-Based Difference Compensation Post-Filter 

Because the DL post-filter directly predicts the clean spectral features from the en-
hanced spectral features without utilizing the spectral information of the noisy speech, 
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(c) Computing the spectral difference of {enhanced speech; noisy speech} (called the 
DEN features hereafter) and that of {clean speech; noisy speech} (called the DCN 
features hereafter). 

(d) Constructing the paired DEN and DCN dictionaries from the paired DEN and DCN 
features. 
 
Note that before conducting step (b), it is essential to normalize the energy of each 

enhanced speech utterance to match that of the corresponding clean speech utterance 
beforehand. In other words, we make the energy of each enhanced speech utterance 
match the energy of the clean speech component of the corresponding noisy speech ut-
terance. Then, we perform steps (b)-(d). In this way, we avoid the mismatch between the 
DEN and DCN features caused by the energy mismatch between the enhanced speech 
and the clean speech component of the noisy speech. The necessity of this strategy has 
been confirmed in our preliminary results. 

Additionally, after conducting step (c), we also calculate the statistics (i.e., the pre-
cision matrix) of the DCN features to be used by the MLPG algorithm in the online 
stage. 

Let 
3L ND  and 

3ˆ L ND  be the DCN and DEN dictionaries, and be composed 

of the DCN and DEN feature vectors (or called exemplars) as 1[ ,..., ,..., ]n ND D D D   

and  1
ˆ ˆ ˆ ˆ[ , , , , ]n ND D D D  , respectively, where the numbers of exemplars in both dic-

tionaries are N; 
3 1L

n
D  is the nth DCN exemplar in the DCN dictionary, and is cal-

culated as n nS Y , where nS  is the nth clean spectral feature vector as described previ-

ously, and nY  is the nth noisy spectral feature vector, and is composed of the L-dimen- 

sional static 
1L

n
y  , delta 

(1) 1L
n

 y  , and delta-delta 

(2) 1L
n

 y   features as 
(1) (2), ,n n n n

      Y y y y (for n=1~N). Likewise, 

3 1ˆ L
n

D   is the nth DEN exemplar in 

the DEN dictionary, and is calculated as 

ˆ
n nS Y , where 

ˆ
nS  is the nth enhanced spectral 

feature vector as defined previously (for n=1~N).   
 
(B) The Online Stage 

In Fig. 3, a well-established speech enhancement system is applied to the noisy 
speech to obtain the enhanced speech in advance. Then, spectral feature extraction is per- 
formed to obtain the sequence of enhanced spectral feature vectors {Ŝt}

T
t=1. Meanwhile,  

we also extract the sequence of noisy spectral feature vectors {Yt  L1}T
t=1, where Yt is 

the noisy spectral feature vector at frame t, and is composed of the L-dimensional static  
yt  L1, delta (1)yt  L1, and delta-delta (2)yt  L1 features as Yt = [yT

t, 
(1)yT

t, 
(2)yT

t]
T (for t=1~T). Note that before extracting the noisy spectral feature vectors, we 

should make the energy of the enhanced speech utterance match the energy of the clean 
speech component of the corresponding noisy speech utterance for the same reason de-
scribed early in the offline stage. Since the clean speech is not available during the online 
stage, we cannot apply the same procedure adopted in the offline stage. Alternatively, we 
first apply voice activity detection (VAD) to the enhanced speech to determine the time 
slots of noise and speech, which are then used to predict the SNR level of the given noisy 
speech. With the predicted SNR, we normalize the energy of the input noisy speech such 
that the energy of the clean speech component of the noisy speech matches the energy of 
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the enhanced speech. The necessity of this strategy has been confirmed in our prelimi-
nary results. 

Next, we obtain the DEN feature vectors by calculating the spectral difference of 
{enhanced speech; noisy speech} as {Dt = Ŝt  Yt}

T
t=1, where Dt is the DEN feature vector 

at frame t. Then, the LLE-based feature prediction method is applied to predict the DCN 
feature vectors {D̂t  3L1}T

t=1, from the DEN feature vectors {Dt}
T
t=1 independently in a 

frame-by-frame manner, where D̂t is the predicted DCN feature vector at frame t. Note 
that the paired DEN and DCN dictionaries are used in the LLE-based feature prediction 
method.  

To overcome the discontinuity problem, the MLPG algorithm is applied to {D̂t}
T

t=1 
in the same way as it is applied in the DL post-filter. As a result, a sequence of predicted 

static DCN feature vectors {d̂t  L1}T
t=1 can be obtained, where d̂t is the predicted static 

DCN feature vector at frame t.  
Finally, we obtain a sequence of final predicted static clean spectral feature vectors 

{st}
T
t=1 by compensating the noisy “static” spectral feature vectors {yt}

T
t=1 with the pre-

dicted static DCN feature vectors {d̂t}
T
t=1 as {st = d̂t + yt}

T
t=1. 

2.4 Comparison between DL and LDC 

The main difference between the DL and LDC post-filters in the offline stage is the 
construction of the dictionaries. Specifically, since the enhanced speech under different 
noise types, SNR levels and distortions link to the same ground-truth clean speech, the 
many-to-one issue may occur in DL. Nevertheless, after we introduce the noisy speech 
information to get the DEN and DCN features, the DEN-DCN paired exemplars become 
a one-to-one case. Therefore, the paired DEN and DCN dictionaries in LDC can reduce 
the uncertainty of the paired enhanced and clean dictionaries in DL. In the online stage, 
DL directly predicts the clean spectral features from the enhanced ones while LDC pre-
dicts the clean-noisy spectral difference and compensates the input noisy spectral fea-
tures with the predicted clean-noisy difference to generate the final predicted clean spec-
tral features. As a result, LDC-processed speech may retain more speech details from the 
noisy speech. 

3. EXPERIMENTS 

We conducted two sets of experiments to evaluate the effectiveness of the proposed 
LLE-based post-filters. In this section, we first describe the experimental setup in Section 
3.1. Then, in Section 3.2, we present the evaluation results of applying the LLE-based 
post-filters to a DDAE-based speech enhancement system [29], which is a representative 
supervised speech enhancement system. Finally, in Section 3.3, we present the evaluation 
results of applying the LLE-based post-filters to a MMSE spectral estimation-based 
speech enhancement system [13], which is a representative unsupervised speech en-
hancement system. 

3.1 Experimental Setup 

Our experiments were conducted on the Mandarin hearing in noise test (MHINT)  
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sentences [38], which contained 300 utterances pronounced by a male native Mandarin 
speaker recorded in a clean condition room. The maximum, minimum, and average dura-
tions of the utterances were around 4.4, 1.9, and 3 seconds, respectively. Speech signals were 
recorded in a 16 kHz/16 bit format.  

In Section 3.2, we compared the following three systems:  
 

 DDAE: The baseline DDAE-based speech enhancement system integrated with the 
MLPG algorithm [29]. 

 DDAE-DL: The system that applies the DL post-filter to DDAE for further suppress-
ing residual noises in enhanced speech signals obtained by DDAE. 

 DDAE-LDC: The system that applies the LDC post-filter to DDAE for further sup-
pressing residual noises in enhanced speech signals obtained by DDAE. 

 
Specifically, for the DDAE system, the first 250 utterances of the MHINT dataset 

were used for training the DDAE model, and the remaining 50 utterances were used for 
testing. The noisy speech data were obtained by artificially adding noises (car and 
two-talker noises recorded in a real environment) to the clean speech utterances. The 
SNRs ranged from 10 to 20 dB with a 5 dB interval. As a result, for each noise type, 
1750 noisy speech utterances paired with the corresponding clean speech utterances were 
generated as the training set. The DDAE model consisted of seven hidden layers with 
1200, 300, 300, 514, 300, 300, and 1200 hidden nodes, respectively. Two DDAEs, one 
for the car noise and the other for the two-talker noise, were obtained by the training data. 
For signal analysis, the frame length and the frame shift were 32 and 16 milliseconds, 
respectively. The Hamming window was used in the framing process. Each frame of 
speech was converted to a “static” feature vector with 257-dimensional log-power spec-
tral features, based on a 512-point discrete short-time Fourier transform analysis. The 
immediately preceding and following contextual feature vectors were then appended to 
the current one to form the final spectral feature vector, whose dimension was 771 (257  
3). During spectral feature generation, the MLPG algorithm was adopted to overcome the 
discontinuity issue as described in [29]. 

A five-fold cross validation was performed to evaluate DDAE-DL based on the 50 
utterances in the test set. In each run, we constructed the paired enhanced and clean dic-
tionaries using 40 utterances and tested performance using the remaining 10 utterances. 
The rationale behind this setup is that the proposed post-filters are supposed to support 
all existing speech enhancement systems. In other words, the training data for these 
speech enhancement systems should not be assumed available, and the post-filters should 
be developed independently. The dictionaries were built using the data at -10, 0, and 10 
dB SNRs. Thus, for each noise type, there were 120 clean and the corresponding en-
hanced utterances (obtained by DDAE) to build the paired dictionaries. The dictionaries 
contained about 24,000 exemplars for each run. The signal analysis part was the same as 
that used in DDAE, except that the power spectra of each frame were normalized to 
unit-sum, and the normalizing factor was saved to be used in the reconstruction step. 
Then, logarithms were applied to the normalized power spectra. The static, delta, and 
delta-delta features were used, and thus the dimensionality of a final vector was 771 (257 
 3). After performing DDAE-DL, the predicted log normalized power spectra were re-
verted back to the (linear) normalized power spectra, which were then compensated back 
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to the power spectra by the normalizing factor. The number of nearest neighbors, namely 
K in (1)-(4), for the LLE-based feature prediction method applied in DL was set to 1024 
empirically. For a fair comparison, the DDAE-LDC system adopted the same setup as 
DDAE-DL. 

In Section 3.3, we compared the following three systems:  
 

 MMSE: The conventional MMSE spectral estimation-based speech enhancement sys-
tem [13]. 

 MMSE-DL: The system that applies the DL post-filter to MMSE for further suppress-
ing residual noises in enhanced speech signals obtained by MMSE. 

 MMSE-LDC: The system that applies the LDC post-filter to MMSE for further sup-
pressing residual noises in enhanced speech signals obtained by MMSE. 

 
Specifically, for the MMSE system, the “decision-directed” method is used for trac- 

king of a priori SNR tracking. The signal analysis process was the same as that used in 
DDAE. For the MMSE-DL and MMSE-LDC systems, the setup is the same as that in 
DDAE-DL and DDAE-LDC, except that the enhanced dictionary and the enhanced-noisy 
dictionary were constructed by the enhanced speech utterances obtained by MMSE ra-
ther than DDAE.  

For all the systems mentioned above, we used an overlap-add method to synthesize 
the waveform from the final estimated/enhanced spectral features with the phase infor-
mation of the original noisy speech.  

3.2 Evaluation of the LLE-Based Post-Filters for DDAE 

(A) Objective Evaluations 
We used the following three metrics for objective evaluation: the perceptual evalua-

tion of speech quality (PESQ) [39], the short-time objective intelligibility measure (STOI) 
[40], and the segmental signal-to-noise ratio improvement (SSNRI, in dB) [41]. The 
ranges of PESQ and STOI scores are {0.5 to 4.5} and {0 to 1}, where higher scores 
indicate better speech quality and better intelligibility, respectively. On the other hand, 
SSNRI represents the difference in the segmental SNR between the enhanced speech and 
the noisy speech for measuring the degree of noise reduction. Therefore, the SSNRI 
score of the noisy speech is 0 dB, and a higher SSNRI score of the enhanced speech in-
dicates that the noise in the noisy speech has been removed effectively. Tables 1 and 2, 
respectively, show the objective evaluation scores obtained by DDAE, DDAE-DL, and 
DDAE-LDC in the two-talker and car noises at different SNRs. The scores of the unpro-
cessed noisy speech are provided for reference. 

We first compared the scores achieved by DDAE, DDAE-DL, and DDAE-LDC 
with the scores of the noisy speech. From Table 1, we observe that generally all speech 
enhancement systems could effectively handle the non-stationary noise (i.e., the two- 
talker noise) with yielding higher PESQ and SSNRI scores over the noisy speech. With a 
further analysis, we note that DDAE-LDC improved the STOI score over the noisy 
speech at all SNRs except 10dB, while DDAE and DDAE-DL only improved the STOI 
score at low SNRs. From Table 2, it is noted that all speech enhancement systems could 
improve the SSNRI score when dealing with the stationary noise (i.e., the car noise). 
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Meanwhile, DDAE-LDC could yield higher PESQ scores over the noisy speech at all 
SNRs. However, it degraded the STOI score at high SNRs. On the other hand, DDAE 
and DDAE-DL degraded PESQ and STOI scores at high SNRs. In summary, the results 
from Tables 1 and 2 reveal that all speech enhancement systems can effectively handle 
the two-talker and car noises except that DDAE and DDAE-DL tends to degrade the 
speech quality and intelligibility in the car noise, particularly at high SNRs. However, the 
improvements at low SNRs could be more valuable in many applications. 

 

Table 1. PESQ, STOI, and SSNRI of DDAE, DDAE-DL, and DDAE-LDC evaluated on 
the test set at different SNRs of the two-talker noise.  

 

Noisy Speech DDAE DDAE-DL DDAE-LDC 
PESQ STOI PESQ STOI SSNRI PESQ STOI SSNRI PESQ STOI SSNRI 

SNR10 2.11 0.91 2.21 0.88 2.48 2.22 0.83 2.73 2.74 0.90 3.99 
SNR6 1.81 0.86 2.05 0.86 5.76 2.11 0.82 6.08 2.44 0.88 7.04 
SNR2 1.60 0.79 1.93 0.84 8.47 1.97 0.80 8.88 2.22 0.86 9.51 
SNR0 1.55 0.75 1.83 0.83 9.66 1.86 0.79 10.12 2.08 0.84 10.57 
SNR-2 1.43 0.70 1.75 0.81 10.46 1.78 0.78 11.03 1.95 0.82 11.29 
SNR-6 1.32 0.60 1.61 0.78 11.38 1.59 0.75 12.13 1.74 0.78 11.39 
SNR-10 1.28 0.51 1.47 0.72 11.51 1.42 0.69 12.53 1.56 0.73 11.12 

Ave. 1.59 0.73 1.83 0.82 8.53 1.85 0.78 9.07 2.10 0.83 9.27 

 

Table 2. PESQ, STOI, and SSNRI of DDAE, DDAE-DL, and DDAE-LDC evaluated on 
the test set at different SNRs of the car noise. 

 

Noisy Speech DDAE DDAE-DL DDAE-LDC 
PESQ STOI PESQ STOI SSNRI PESQ STOI SSNRI PESQ STOI SSNRI 

SNR10 2.61 0.95 1.96 0.85 5.04 2.03 0.80 5.73 3.10 0.90 7.59 
SNR6 2.27 0.92 1.93 0.84 8.17 1.99 0.79 8.91 2.88 0.88 10.59 
SNR2 1.96 0.87 1.89 0.83 10.40 1.92 0.78 11.37 2.59 0.86 12.63 
SNR0 1.84 0.85 1.85 0.82 11.40 1.86 0.78 12.34 2.43 0.85 13.40 
SNR-2 1.71 0.82 1.81 0.81 12.00 1.82 0.77 13.05 2.28 0.83 13.85 
SNR-6 1.53 0.76 1.75 0.79 12.34 1.71 0.75 13.74 2.02 0.80 13.97 
SNR-10 1.43 0.71 1.67 0.76 12.22 1.60 0.72 13.90 1.82 0.75 13.45 

Ave. 1.91 0.84 1.84 0.81 10.23 1.85 0.77 11.29 2.44 0.84 12.21 

 

Next, we evaluated the effectiveness of the proposed DL and LDC post-filters by 
comparing DDAE-DL and DDAE-LDC with DDAE. From the results in Tables 1 and 2, 
we first observe that both DDAE-DL and DDAE-LDC achieved better SSNRI scores 
than DDAE in both noise types at all SNRs, showing that the residual noises in the 
DDAE enhanced speech can be further removed by the DL and LDC post-filters. Com-
paring DDAE-DL with DDAE, we observe that DDAE-DL obtained slightly higher 
PESQ scores than DDAE in both noise types at high SNRs (i.e., 10 ~ 2 dB SNRs), sug-
gesting that the DL post-filter can provide additional speech quality improvements in 
higher SNR conditions. However, we also observe that DDAE-DL was inferior to DDAE 
in terms of STOI under all SNRs and noise types, suggesting that although the DL 
post-filter can notably improve SSNRI and speech quality, it tends to deteriorate speech 
intelligibility. On the contrary, comparing DDAE-LDC with DDAE, we note that 
DDAE-LDC improved the PESQ and STOI scores over DDAE across different SNR 
levels and noisy types. Consider that DDAE-DL cannot effectively improve the DDAE 
enhanced speech under low SNR conditions, the results suggest that DDAE-LDC pos-
sesses a better ability to avoid distortions than DDAE-DL. With a further comparison, 
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among MMSE, MMSE-LDC, and the noisy speech at low SNRs. However, MMSE-DL 
yielded lower PESQ scores than the noisy speech across all SNRs. Finally, all the three 
speech enhancement systems tended to degrade the speech intelligibility with yielding 
lower STOI scores than the noisy speech. In summary, the results from Table 3 reveal 
that although all speech enhancement systems show their capability to improve SNR in 
the non-stationary noise (i.e., the two-talker noise), they cannot effectively improve or 
even may degrade the speech quality and speech intelligibility over the noisy speech. 

 

Table 3. PESQ, STOI, and SSNRI of MMSE, MMSE-DL, and MMSE-LDC evaluated on 
the test set at different SNRs of the two-talker noise. 

 
Noise Speech MMSE MMSE-DL MMSE-LDC 
PESQ STOI PESQ STOI SSNRI PESQ STOI SSNRI PESQ STOI SSNRI 

SNR10 2.11 0.91 2.20 0.88 0.26 1.85 0.78 0.29 2.17 0.88 1.51 
SNR6 1.81 0.86 1.88 0.83 0.67 1.66 0.74 2.40 1.83 0.83 0.55 
SNR2 1.60 0.79 1.61 0.72 0.91 1.49 0.68 3.84 1.60 0.75 0.40 
SNR0 1.55 0.75 1.55 0.69 0.92 1.39 0.65 4.25 1.53 0.72 0.67 
SNR-2 1.43 0.70 1.44 0.62 0.96 1.32 0.60 4.69 1.42 0.67 0.74 
SNR-6 1.32 0.60 1.27 0.51 0.97 1.25 0.55 4.64 1.32 0.58 0.77 

SNR-10 1.28 0.51 1.27 0.43 1.08 1.17 0.46 4.20 1.25 0.50 0.91 
Ave. 1.59 0.73 1.60 0.67 0.82 1.45 0.64 3.47 1.59 0.71 0.21 

 

Table 4. PESQ, STOI, and SSNRI of MMSE, MMSE-DL, and MMSE-LDC evaluated on 
the test set at different SNRs of the car noise. 

 
Noise Speech MMSE MMSE-DL MMSE-LDC 
PESQ STOI PESQ STOI SSNRI PESQ STOI SSNRI PESQ STOI SSNRI 

SNR10 2.61 0.95 3.06 0.92 4.83 2.15 0.82 4.85 3.25 0.93 5.23 
SNR6 2.27 0.92 2.70 0.89 6.01 2.02 0.80 7.43 2.95 0.90 6.98 
SNR2 1.96 0.87 2.36 0.84 5.74 1.89 0.77 8.53 2.53 0.86 7.47 
SNR0 1.84 0.85 2.21 0.81 5.55 1.82 0.76 8.88 2.38 0.83 7.65 
SNR-2 1.71 0.82 2.05 0.79 5.38 1.75 0.74 9.21 2.15 0.81 7.46 
SNR-6 1.53 0.76 1.79 0.73 3.72 1.55 0.69 8.33 1.84 0.76 6.17 
SNR-10 1.43 0.71 1.59 0.66 2.95 1.41 0.64 7.58 1.61 0.70 5.05 

Ave. 1.91 0.84 2.25 0.81 4.88 1.80 0.74 7.83 2.39 0.83 6.57 

 

Next, we evaluated the effectiveness of the proposed DL and LDC post-filters by 
comparing MMSE-DL and MMSE-LDC with MMSE in the two-talker noise. From Ta-
ble 3, we first observe that MMSE-DL outperformed MMSE in terms of SSNRI across 
all SNR levels, indicating that the DL post-filter can effectively remove the residual 
noises in the MMSE enhanced speech (consistent with the result in Table 1). On the con-
trary, MMSE-LDC gave lower SSNRI scores than MMSE, suggesting that the LDC 
post-filter tends to introduce additional noise components to the MMSE enhanced speech 
(different from the result in Table 1). We also observe that MMSE-DL generally yielded 
lower STOI scores than MMSE, indicating that the DL post-filter tends to degrade the 
speech intelligibility, and MMSE-LDC gave higher STOI scores than MMSE at most 
SNR levels, indicating that the LDC post-filter can further improve the intelligibility of 
the MMSE enhanced speech (consistent with the result in Table 1). On the other hand, 
we observe that MMSE obtained the highest PESQ scores at most SNR levels, showing 
that both LLE-based post-filters may degrade the speech quality (different from the result 
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in Table 1). In summary, the results above reveal that the integration of the proposed 
post-filters with MMSE is not as effective as the integration with DDAE in the two talker 
noise (a non-stationary noise). The reason could be that the results of the post-filters 
heavily depend on the performance (in terms of PESQ, STOI, and SSNRI) of the pre-
ceding speech enhancement system. Since MMSE could not handle the non-stationary 
noise well, the post-filters could not provide further improvements. This can be verified 
by comparing the objective results of DDAE in Table 1 with those of MMSE in Table 3. 
Actually the results are expectable since our preliminary results also revealed that apply-
ing the proposed post-filters directly to the noisy speech (without enhancement) could 
not achieve satisfactory speech enhancement performance. 

Next, we evaluated the effectiveness of the proposed DL and LDC post-filters in the 
car noise, which is relatively more stationary than the two-talker noise. From Table 4, we 
first observe that both MMSE-DL and MMSE-LDC outperformed MMSE in terms of 
SSNRI, suggesting that the proposed post-filters can effectively remove the residual 
noises in the MMSE enhanced speech (consistent with the result in Table 2). Next, we 
observe that MMSE-DL gave lower STOI scores than MMSE across all SNR levels, 
indicating that the DL post-filter tends to degrade the speech intelligibility (consistent 
with the result in Table 2). On the other hand, MMSE-LDC gave higher STOI scores 
than MMSE, indicating that the LDC post-filter can further improve the speech intelligi-
bility (consistent with the result in Table 2). We also observe that MMSE-DL obtained 
lower PESQ scores than MMSE across all SNR levels, showing that the DL post-filter 
tends to degrade the speech quality (different from the result in Table 2). Meanwhile, 
MMSE-LDC obtained higher PESQ scores than MMSE across all SNR levels, indicating 
that the LDC post-filter can further improve the speech quality (consistent with the result 
in Table 2). In summary, the results from Tables 3 and 4 reveal that applying the LDC 
post-filter for MMSE is effective under the stationary noise condition. The result again 
confirms that if the preceding speech enhancement system can handle the noisy speech 
well, the LDC post-filter can further improve the speech enhancement performance. On 
the other hand, although the DL post-filter can effectively remove the residual noises, it 
tends to degrade the speech quality and intelligibility under both stationary and non-sta- 
tionary noise types.  

4. CONCLUSIONS 

In this paper, we have proposed a novel LLE-based post-filtering approach with the 
aim to further suppress the residual noises in the enhanced speech signals obtained by a 
speech enhancement system. Two types of LLE-based post-filters have been presented: 
the DL post-filter and the LDC post-filter. The DL post-filter improves the enhanced 
speech (obtained by a speech enhancement system) by directly predicting the clean spec-
tral features from the enhanced spectral features while the LDC post-filter improves the 
enhanced speech by predicting the spectral difference of {clean speech; noisy speech} 

from that of {enhanced speech; noisy speech} and then compensating the noisy spectral 
features with the predicted spectral difference. Our major findings are: 

 Both of the proposed post-filters can further improve the supervised DDAE-based 
speech enhancement system under different noise types and SNR levels. Particularly, 



LOCALLY LINEAR EMBEDDING FOR POST-FILTERING IN SPEECH ENHANCEMENT 1487

the LDC post-filter achieve notable improvements over the DL post-filter due to the 
fact that the LDC post-filter introduces the noisy speech information in the difference 
prediction and compensation stages. As a result, the paired DEN and DCN dictionaries 
in LDC can reduce the uncertainty of the paired enhanced and clean dictionaries in DL, 
and the LDC-processed speech may retain more spectral details from noisy speech. 

 The LDC post-filter can also improve the unsupervised MMSE spectral estimation- 
based speech enhancement system, under the stationary noise type, e.g., the car noise, 
with different SNR levels. However, it fails to improve the MMSE-based speech en-
hancement system under the non-stationary noise type, e.g., the two talker noise. On 
the other hand, the DL post-filter can effectively remove the residual noises in the en-
hanced speech obtained by the MMSE-based speech enhancement system in different 
noise types and SNR levels. However, it may notably degrade the speech quality and 
speech intelligibility. 

 Whether the proposed post-filters can further suppress the residual noises in the en-
hanced speech signals seems to depend on the capability/performance of the preceding 
speech enhancement system. 

 
For future work, we will evaluate the proposed LLE-based post-filters on more 

speech enhancement systems and noise types. In the meanwhile, we will derive algo-
rithms to speed up the online nearest-neighbor searching for the LLE algorithm. Finally, 
we plan to extend the current scenario (with specified target speaker) to a speaker inde-
pendent one. 
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