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Anticipatory Multi-Unmanned Aerial Vehicles (UAVs) Network is the key to the re-

alization of high-bandwidth and demanding multi-UAV applications in the future. An ac-

curate and robust Channel Quality Prediction (CQP) model is essential in such anticipatory 

networks to facilitate the eventual optimization step. However, the models that are pro-

posed in the literature are typically designed for static cellular networks and do not con-

sider robustness or the cross-domain CQP accuracy as a key performance indicator. In this 

paper, we investigate the efficacy of three different Machine Learning (ML) models in 

CQP for multi-UAV networks by training them with univariate and multivariate network 

metrics data curated through OMNeT++ simulations. The models are then evaluated in 

two-folds via in-domain and cross-domain evaluations to test their accuracies and robust-

ness, respectively. The results from the in-domain evaluations show that multivariate data 

is key to improving the in-domain performance of the ML models for multi-UAV network 

throughput prediction, whereas the cross-domain evaluations reveal that more complex 

models like the Seq2seq are necessary for achieving good robustness against multi-UAV 

network environments that have different operating conditions, with a maximum improve-

ment in cross-domain CQP performance of 200% over the other implemented ML models. 

   

Keywords: multi-UAV network, channel quality prediction, machine learning, deep learn-

ing, time-series forecasting  

 

 

1. INTRODUCTION 
 

Unmanned Aerial Vehicles (UAVs) are becoming more pervasive and ubiquitous re-

cently with many applications that leverage multi-UAV setups emerging. This phenome-

non results in the need for the design of effective and efficient multi-UAV networks. An-

ticipatory Mobile Networking (AMN) is a promising technique that can be used to realize 

such multi-UAV network designs. This technique leverages accurate prediction of the fu-

ture evolution of channel qualities in a network to effectively optimize the network 
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resource usage and utilization and improve the network performance and capabilities [1]. 

AMNs have shown great successes in many network optimization use-cases, especially 

cellular networks, such as handover [2] and Random-Access Control (RACH) optimiza-

tions [3]. However, anticipatory networking remains largely unexplored for multi-UAV 

networks due to the challenging operating conditions with highly dynamic nodes and in-

termittent links. Most network optimization methods for a multi-UAV network are reactive, 

rather than proactive, which significantly hinders their adaptability because the channel 

quality variations are rapid and have short temporal coherences [4].  

Existing Channel Quality Prediction (CQP) models that can be found in the literature 

are mostly designed for cellular networks [2, 3, 5-7] which exhibit significantly distinct 

network characteristics when compared to a highly dynamic multi-UAV network, where 

the latter often exhibit sporadic and intermittent links [4]. More importantly, these models 

often overlook the robustness of the model in terms of cross-domain CQP accuracy and 

focus only on the in-domain accuracy [2, 3, 5-10]. This presents a major limitation that 

prohibits widespread use of CQP models in actual anticipatory networks which is the mod-

els’ inability to adapt to varying network operating conditions without retraining. This is-

sue is exacerbated in a multi-UAV network due to the time-varying characteristics of the 

network conditions owing to the node mobilities [4]. Therefore, it is unclear whether the 

existing models can perform high-accuracy in-domain and cross-domain CQP when de-

ployed in a multi-UAV network.  

In our previous work, we have investigated the efficacies of three univariate ML 

methods with increasing levels of complexity in CQP for multi-UAV networks [11]. This 

paper presents an extension to our original work, whereby we study and assess the multi-

variate versions of these models and compare them with the univariate models. The main 

contributions of the paper are as follows: 

• Univariate and multivariate versions of three different ML models with increasing com-

plexity – Random Forest, Long Short Term Memory (LSTM) and Sequence-to-sequence 

(Seq2seq), and longer prediction horizons are implemented and tested through in-domain 

evaluations.  

• The throughput prediction accuracies of the multivariate ML models in network environ-

ments with varying link capacities, relative contention levels and traffic loads are tested 

through cross-domain evaluations to study their robustness.  

2. LITERATURE REVIEW 

Data-driven methods utilizing various ML methods are generally more popular com-

pared to analytical methods for CQP in wireless networks due to their black-box design. 

Table 1 presents an overview of the recent work in CQP that utilizes ML methods.  

Table 1 shows that most CQP models proposed in the literature are designed for cel-

lular [2, 3, 5-7] or terrestrial-based Wi-Fi networks [9] where the nodes have low mobilities. 

This is in contrast with a multi-UAV network where high mobility nodes are prevalent 

which results in time-varying channel qualities that have shorter temporal coherences. 

Therefore, a model that is trained using data from cellular or terrestrial networks is not 

readily transferable to a multi-UAV network. One work [8] has designed a CQP model for 

next generation 6G vehicular networks which comprises nodes with higher mobilities, but 
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they are still confined to 2-Dimensional mobility models, unlike UAVs in multi-UAV net-

works. To the best of our knowledge, only one work done in [10] has devised an RNN-

based online throughput prediction framework for UAV-to-Ground Control Station (GCS) 

communications. However, the authors considered only a single-UAV setup, rather than a 

multi-UAV setup where channel access contention and co-channel interferences are prom-

inent features. 

 

Table 1. Overview of recent work on data driven CQP models (Multi-multivariate, Uni-

Univariate). 

Network Ref 

Input 

Data 

Type 

Output Model 
Prediction 

Horizon 

Cross-do-

main per-

formance? 

Vehicu-

lar 
[8] Multi Data rate 

ANN, Random 

Forest (RF), 

Support Vector 

Machines 

1s N/A 

Cellular 

[2] Multi Bandwidth TPA-LSTM 1-3s N/A 

[3] Uni Network traffic LSTM 1 slot N/A 

[5] Multi Link bandwidth RF 1s N/A 

[6] Multi Future throughput LSTM 1s N/A 

[7] Multi Network traffic LA-ResNet 1s N/A 

Many [9] Uni 

Received Signal 

Strength Indicator 

(RSSI) 

DeepChannel 

(Seq2seq) 
10s N/A 

UAV 

network 
[10] Uni Throughput RNN 1s N/A 

 

Furthermore, the overview also shows that many different ML methods, from classi-

cal models to more sophisticated recurrent-based models, have been employed for design-

ing CQP models in recent works. However, these models are often designed with short 

prediction horizons (1-3s), except for DeepChannel [9], which makes them less ideal for 

predictive optimizations in an anticipatory network. This is because inferencing and opti-

mization loops with short intervals can introduce large network operations overhead that 

impacts the overall network performance. Thus, a major gap in the practical deployment 

of these models regarding the length of the prediction horizon exists as it is desirable to 

achieve high-accuracy CQP for longer term prediction horizons in anticipatory networks.  

Furthermore, all the recent works have focused solely on the in-domain accuracies of 

the proposed CQP models and overlook cross-domain accuracy, or robustness, of their 

models. This represents another major gap that exists in the practical deployments of these 

CQP models in actual networks because it is undesirable to retrain a CQP model with data 

from the deployment environment as it is computationally expensive and inefficient. This 

issue is also exacerbated by the highly dynamic network conditions and shorter network 

lifetime of a multi-UAV network. Therefore, it is important that a CQP model designed 

for dynamic wireless networks like multi-UAV networks is both accurate for the network 

environment that it is trained in and robust towards new and unseen network environments. 

A key focus of this paper is to assess the in-domain and cross-domain accuracies of the 

models with a moderately long prediction horizon that is beyond one time slot, through the 
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evaluations of three ML methods with univariate and multivariate configurations, so that 

a proper method can be recommended for future work in CQP for multi-UAV networks.  

3. DATASET GENERATION AND ANALYSIS 

This section discusses the methodology used to generate and curate the multi-UAV 

network metrics dataset that is used to train and evaluate the implemented ML models. 

Aside from that, we also study the correlation between the collected channel quality met-

rics and the throughput which is the target metric for the CQP models.  

3.1 Dataset Generation 

OMNeT++ simulator is utilized to generate and curate a comprehensive channel qual-

ities dataset for multi-UAV networks under varying operating conditions [12]. The simu-

lated network consists of ten freely moving member UAVs that are connected and com-

municating with a dedicated and stationary UAV-Base Station (UAV-BS) via IEEE802. 

11g wireless links which mimics actual use-cases where continuous transfer of video feeds 

or images are required such as in Search and Rescue (SAR) missions [13].  
 

Table 2. Simulation and network parameters.  

 

Each actively transmitting UAV communicates CBR traffic data to a UAV-BS, which 

generates interference and contention among all transmitting UAVs. From the simulations, 

a dataset consisting of five network metrics recorded in one second interval over the sim-

ulation period is generated. These metrics include the observed throughput, Signal-to-In-

terference Plus Noise Ratio (SINR), RSSI, delay, and distance.  

Another major consideration for the simulations is to simulate and collect data from 

different instances of the multi-UAV network with varying network operating conditions 

and parameters. As such, three different parameters are varied across the simulations, in-

cluding the number of actively transmitting UAVs (N) which determine the relative net-

work contention level, the traffic load (A), and the data carrying capacities (B) of the IEEE 

802.11g links. These three parameters are varied because they are commonly affected by 

Parameter Value Parameter Value 

Transmit Power 100mW Background 

Noise Power 

−86 dBm 

IEEE 802.11g Channel 1 Antenna Gains 

(Transmitter and 

Receiver) 

0 dB 

Path Loss Exponent 2 Nakagami-m 

shape parameter 

4 

Mobility Model Random Waypoint 

Mobility Model 

(RWPM) 

Max Speed 5 m/s 

Contention Level, N Low – 1 UAV 

Medium – 5 UAVs 

High – 10 UAVs 

Traffic Load, A 5Mbps, 10Mbps 

802.11g bitrate, B   18Mbps, 54Mbps Traffic Pattern  Constant Bit Rate (CBR) 
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the mobilities of the nodes as they move in and out of the communication range of the 

UAV-BS. At the Physical Layer, the links are subjected to Friss Path Loss [14] and Nak-

agami-m Fast Fading [15]. Furthermore, we assume that the UAV-to-UAV links are in 

Line-of-Sight (LoS) to simplify the network simulations. All other simulation and network 

parameters are kept the same throughout all instances of the simulated networks and are 

tabulated in Table 2.  

By varying the three parameters, N, A, and B, a collection of twelve datasets, denoted 

as i, i{0, 1, …, 11}, is curated. Out of these twelve datasets, one dataset is dedicated as 

the main training dataset which is denoted by 0, and has the following parameters: N=Me-

dium, A=10Mbps and B=18Mbps. Each multi-UAV network instance is simulated for 10 

minutes, except for 0 which is simulated for 30 minutes as more network metrics data is 

needed for training and testing the ML models compared to the other instances which are 

used for evaluation purposes only.  

3.2 Data Analysis 

After the data collection process, we first study the correlation of the network metrics 

for the main training dataset, 0, with the future throughput, which is the prediction target 

for the CQP models. This study allows us to determine if the multivariate network metrics 

are significantly correlated with the prediction target as a justification for the selection of 

the network metrics for training the CQP models. The Pearson correlation scores between 

each individual metric and the next second of observed throughput are also calculated to 

quantify the correlation using the following formula, 

2 2

( )( )

( ) ( )

i i

i i

x x y y
r

x x y y

− −
=

− −



 

 (1) 

where xi and yi are two time-series variables that are under investigation whereasx andy 

represent the mean of the time-series variables. Furthermore, we also visualize the corre-

lation of the data by plotting a scatter plot of each individual network metric against the 

next second of observed throughput in Fig. 1 with the Pearson correlation scores shown on 

top of each scatter plot.  

 

  
Fig. 1. Scatter plots of the network metrics and the next throughput. 
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It is observable from Fig. 1 that the current observed throughput has strong positive 

correlation with the future throughput as the throughput is unlikely to change rapidly from 

one second to the next. Aside from that, the SINR and RSSI have moderately strong posi-

tive correlation with the future throughput. This observation implies that these Physical 

Layer metrics, which indicate the level of impairments of the wireless links, can also be 

used to infer the evolution of future throughput. On the other hand, the delay and distance 

exhibit negative correlation with the future throughput. This observation implies that when 

the delay experienced by a flow is high or the distance between the nodes is long, it is 

highly likely that the throughput in the next second will be lower as well. 

In summary, we observe that all five of the collected network metrics exhibit moder-

ate to strong positive or negative correlations with the future throughput which reinforces 

our choice of network metrics to act as input to the CQP models. These observations also 

give strong merits to only train the models using a simpler univariate dataset due to its 

already strong positive temporal correlation. However, we argue that the other metrics can 

also provide useful information to the CQP models through their moderately strong corre-

lations.   

3.3 Data Preprocessing 

As a first step, windowing is performed on the data to transform them into a dataset 

of subsets of the five collected network metrics, consisting of w = 10 time steps of historical 

observations and v = 5 time steps of prediction targets. The SINR, RSSI, delay, and dis-

tance metrics are scaled with min-max scaling to transform the values into the range 0-1. 

These transformations allow the CQP models to process and learn from data which have 

similar scales and ranges, as it is beneficial to their training process. Finally, the main 

dataset, 0, is split into the training, validation, and test sets via a 7:1.5:1.5 split.   

4. MACHINE LEARNING METHODS 

This section introduces and details the three ML methods that are implemented in this 

paper for multi-UAV network throughput prediction. These three models are selected 

based on their prevalence in recent works [2, 3, 5, 6, 8, 9] and the varying levels of model 

complexities, which allows us to investigate the level of complexity required to design an 

accurate and robust CQP model for multi-UAV networks.     

4.1 Random Forest (RF) 

RF is an ensemble learning-based model [16], comprising a combination of decision 

trees that are trained using random subsets of the training data that are sampled inde-

pendently. The forest is then trained through bootstrap aggregating which is an ensemble 

meta-algorithm that helps to reduce variance and prevent overfitting. In regression tasks, 

the final prediction from the forest is obtained by averaging the outputs of each constructed 

tree in the forest. 

4.2 LSTM 

The main strength of a LSTM network [17] compared to a normal RNN architecture  
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lies in its ability to deal with the vanishing gradient problem that exists for a vanilla RNN 

where the model fails to capture long time dependencies when the predictions are made. 

LSTM networks can retain long time dependencies due to the inclusion of multiple logical 

gates in each of its cells that control the flow of information. In this paper, the LSTM 

architecture is designed to perform many-to-many predictions because the problem in-

volves multi-step forecasting. The Fully Connected layer has v units, one for each of the 

prediction time step and have nonlinear activation functions of Rectified Linear Unit 

(ReLU).  
 

4.3 Seq2seq 

Seq2seq model is a Deep Learning (DL) RNN architecture comprising two main com-

ponents – an encoder and a decoder. In this problem, the encoder receives the historical 

network metrics, X, as the inputs and produces a context vector, C, which represents a 

summary of the input sequence in the latent space. This context vector is then used to 

initialize the states of the decoder for predictions. The encoder and decoder are two sepa-

rate RNNs with LSTM cells as the underlying recurrent units, following the DeepChannel 

implementation [9]. At the jth input time step, the input from the sequence, xi
j
, is fed into 

the corresponding LSTM cell which produces an output vector and an internal states vector, 

comprising of the hidden and cell states, based on the internal states propagated from the 

previous time step. At the final time step of the input sequence, the internal states vector 

of the last LSTM cell is treated as C. At the decoder’s side, the input to the first decoder 

LSTM cell is the last observation from the input sequence and its internal state is initialized 

using C to generate the LSTM outputs for the current time step. The outputs from the 

LSTM cells are then propagated through a Fully Connected layer with ReLU activation 

function to get the prediction for the first-time step in the output sequence, ŷi
t+1, where t is 

the end of the history window. Fig. 2 visualizes the Seq2seq architecture used in this work 

unrolled in time to show the inputs and outputs of the model, where w denotes the number 

of historical observations. In this work, we also extend the base architecture of DeepChan-

nel to a multivariate version and study its CQP performance in multi-UAV networks.  

 

 
Fig. 2. Seq2seq model unrolled in time. 

5. RESULTS AND DISCUSSION 

In this section, we describe the setup of the experiments used to evaluate and compare 

the performances of the CQP models and their variations as introduced in Section 4. The 

models are compared in two-fold via in-domain and cross-domain evaluations.  
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5.1 Experimental Setup 

Models and hyper-parameters: As discussed in Section 4, three different ML models are 

implemented, namely RF, LSTM, and Seq2seq models. Specifically, the univariate Seq2 

seq model follows the implementation of DeepChannel [9] whereas the multivariate ver-

sion is an extension to that original model. Grid search is performed for the LSTM and 

Seq2seq models and the best combination of hyperparameters is tabulated in Table 3. The 

same hyperparameter settings are used to implement both the univariate and multivariate 

versions of the two models. On the other hand, the RF model is implemented using the 

default hyperparameters for the Random Forest Regressor model implemented by the 

open-source scikit-learn library [18]. 

 

Table 3. Hyperparameters for the LSTM and Seq2seq models implemented in this work. 

Parameter LSTM Seq2seq 

Batch Size 32 32 

Number of Hidden Layers 3 Encoder: 2, Decoder: 1 

Number of Hidden Node 256 Encoder: 256, Decoder: 256 

Number of epochs 100 

Optimizer Adam 

Loss Function Mean Squared Error 

Initial Learning Rate 0.001 

LR Regularization Patience = 20, Factor = 0.1 

 

Metrics: The performances of the models are measured and compared in terms of the 

Mean Squared Error (MSE) and coefficient of determination, R2, between the actual and 

predicted throughput. MSE and R2 are mathematically expressed as Eqs. (2) and (3), re-

spectively. 

2 2

1

1
ˆ( )

v

i t i t i

i

MSE y y
v

+ +

=

= −  (2) 

2

2 1

2

1

ˆ( )
1

( )

v

t i t ii
i v

t ii

y y
R

y y

+ +=

+=

−
= −

−




 (3) 

In Eq. (3),y represents the average throughput over the v prediction time steps. 

 

Platform: All the models are trained on a commodity PC with an RTX 2060 GPU, 8-cores 

CPU and 16GB RAM. 

5.2 In-Domain Evaluations 

Table 4 presents the in-domain CQP accuracies in terms of the performance metrics 

of both the univariate and multivariate versions of the three ML models for the in-domain 

evaluations. From Table 4, it can be observed that the addition of four extra multivariate 

network metrics in the input, namely SINR, RSSI, delay, and distance helps improve the 

performance of all ML models, as evident by the improved accuracies between the multi-
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variate and univariate versions of all models. This is because the multivariate data provides 

the models with more information regarding the current network state to achieve better 

forecasting performance. In some cases, the improvement is substantial such as the signif-

icant reduction in MSE for the Seq2seq model when compared to the univariate version 

used for Deep Channel [9]. This improvement indicates that the more complex architecture 

of the Seq2seq model bodes well with the more complex multivariate data. Despite its 

impressive CQP accuracy, the Seq2seq model has significantly longer inferencing time 

when compared to the RF model [5, 8] which has a simpler architecture. The results also 

show that the inferencing time of the models increases with both model and training com-

plexities as the use of multivariate training data results in slight increases in inferencing 

times across all models as well. From these results, we conclude that multivariate network 

metrics data is crucial to improving the in-domain prediction accuracy of a CQP model, 

especially for dynamic multi-UAV networks.  

 
Table 4. In-domain evaluation performances. 

Model 
RF [5, 8] LSTM [2, 3, 6] Seq2seq 

Uni Multi Uni Multi Uni [9] Multi 

MSE 0.220 0.210 0.420 0.290 0.955 0.137 

R2 0.800 0.800 −0.574 −0.096 −2.617 0.48 

Inferencing Time (ms) 0.117 0.163 0.568 0.573 1.508 1.537 

5.3 Cross-Domain Evaluations 

Table 5 tabulates the performances of each multivariate ML model in the cross-do-

main evaluations. The remaining datasets from the set collected through the methodology 

outlined in Section 3.1, i, i{0, 1, …, 11}, are used to perform the cross-domain evalu-

ations. Note that the combination of B = 18Mbps, A = 10Mbps and N = Medium is missing 

from Table 5 because it represents the main training dataset, 0. Therefore, the eleven 

other multi-UAV network instances utilized for this evaluation represent unseen network 

operating conditions and environments to the trained CQP models.  

 

Table 5. Cross-domain evaluation performances of the multivariate models in terms of MSE. 

B (Mbps) A (Mbps) N RF [5, 8] LSTM [2, 3, 6] Seq2seq 

18 

5 

Low 7.86 4.51 1.01 

Medium 1.4 0.56 0.16 

High 0.7 0.27 0.14 

10 
Low 8.39 7.05 1.57 

High 0.66 0.3 0.2 

54 

5 

Low 0.98 0.44 0.31 

Medium 2.61 1.34 0.81 

High 0.28 0.09 0.13 

10 

Low 5.03 6.99 3.48 

Medium 2.91 3.28 1.62 

High 2.93 2.11 1.2 

Average 3.07 2.45 0.966 
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It is observable from Table 5 that the multivariate Seq2seq model outperforms the RF 

[5, 8] and LSTM [2, 3, 6] models, which are commonly used for CQP, in terms of cross-

domain CQP accuracies against new network environments in ten out of the eleven tested 

scenarios, with significantly better average performance. This incredible robustness can be 

attributed to its more complex architecture with the encoder-decoder structure being more 

capable of learning deeper temporal representations of the data during the training process. 

Despite its impressive accuracy in the in-domain evaluations, the RF model [5, 8] exhibits 

a significant lack of robustness due to its simpler architecture. We argue that strong ro-

bustness, on top of high forecasting accuracy, is one of the key features that a CQP model 

must possess so that it is able to adapt to the ever-changing network environment in real 

multi-UAV networks. Therefore, a more complex architecture such as the Seq2seq is nec-

essary for designing a robust and accurate CQP model for multi-UAV networks, provided 

that the trade-off between inferencing complexity and performance is well-balanced.  

6. CONCLUSION 

 A reliable and accurate CQP model is the main component for an effective anticipa-

tory multi-UAV network. In this paper, we implemented and assessed three different ML 

models, trained using univariate and multivariate network metrics data, to determine the 

suitable level of model and dataset complexity to achieve high accuracy and robustness. 

From the in-domain and cross-domain evaluations, it is demonstrated that multivariate in-

put data is crucial to achieving high in-domain accuracy with an improvement of 85% for 

the Seq2seq model. Furthermore, multivariate models with more complex architectures, 

like the Seq2seq model, demonstrated impressive robustness by outperforming the other 

models with a maximum improvement of 200% in certain network environments due to its 

stronger learning capabilities. The significant differences in CQP performance for the sim-

pler RF model in the in-domain and cross-domain evaluations have demonstrated the need 

to consider both accuracy and robustness when designing a CQP model for an anticipatory 

multi-UAV network. Despite the impressive accuracy and cross-domain robustness, the 

Seq2seq model still exhibits unacceptably high MSE in certain network environments, 

which can be detrimental in the predictive optimization step that follows. It is proposed 

that future work can focus on exploring the use of transfer learning techniques with the 

multivariate Seq2seq model, to develop a more robust CQP model with better cross-do-

main performance. Furthermore, the results have also shown that the inferencing time of 

the Seq2seq model is significantly longer than a simpler model which can be a concern in 

ensuring the real-time performance of a network. One possible way to mitigate this prob-

lem is to increase the prediction horizon so that the inferencing loop interval can be in-

creased to reduce the overhead in the network operations.  
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