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Deep learning neural network is often associated with high complexity classification
problems by stacking multiple hidden layers between input and output. The measured error
is backpropagated layer-by-layer in a network with gradual vanishing gradient value due to
the differentiation of activation function. In this paper, Stochastic Diagonal Approximate
Greatest Descent (SDAGD) is proposed to tackle the issue of vanishing gradient in the deep
learning neural network using the adaptive step length derived based on the second-order
derivatives information. The proposed SDAGD optimizer trajectory is demonstrated using
three-dimensional error surfaces, i.e. (a) a hilly error surface with two local minima and one
global minimum; (b) a deep Gaussian trench to simulate drastic gradient changes experi-
enced with ravine topography and (c) small initial gradient to simulate a plateau terrain. As
a result, SDAGD is able to converge at the fastest rate to the global minimum without the
interference of vanishing gradient issue as compared to other benchmark optimizers such
as Gradient Descent (GD), AdaGrad and AdaDelta. Experiments are tested on saturated
and unsaturated activation functions using sequential added hidden layers to evaluate the
vanishing gradient mitigation with the proposed optimizer. The experimental results show
that SDAGD is able to obtain good performance in the tested deep feedforward networks
while stochastic GD obtain worse misclassification error when the network has more than
three hidden layers due to the vanishing gradient issue. SDAGD can mitigate the vanish-
ing gradient by adaptively control the step length element in layers using the second-order
information. At the constant training iteration setup, SDAGD with ReLU can achieve the
lowest misclassification rate of 1.77% as compared to other optimization methods.

Keywords: Stochastic diagonal approximate greatest descent, vanishing gradient, learning
rate tuning, activation function, adaptive step-length

1. INTRODUCTION

Deep learning neural networks are recently used to perform high complexity com-
puting tasks, for e.g. synthesis/generation or recognition/classification [1]. Deep learning
neural networks containing multiple hidden layers are trained using error backpropaga-
tion manner as shown in Fig. 1 to achieve weight parameter learning. The conventional
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Fig. 1. Block diagram of deep learning neural networks with the proposed optimization method –
Stochastic Diagonal Approximate Greatest Descent.

backpropagation method fails to train the deep neural networks effectively due to the per-
vasive presence of local optima in the non-convex objective function [2]. The difficulty of
training mechanism is escalated exponentially when the network architecture are getting
deeper using ineffective the learning techniques. The networks often experience vanishing
and exploding gradient issue in training mechanism due to the poorly selected activation
functions, improper training strategy and ineffective optimization algorithms [1, 2].

The choice of activation functions in the network is critical in dealing with the issue
of vanishing or exploding gradient. Activation function can be categorized into saturated
and unsaturated activation functions. Saturated activation functions are often used for de-
cision boundary in the early years of neural network development. Sigmoid function [3]
is commonly used due to the differentiable property in neural networks. However, the
saturation characteristic of Sigmoid function has small derivatives as an output. Multi-
plying multiple small derivatives number of times equivalent to the depth of the network
causes the derivative to decrease exponentially. On the other hand, rectified linear unit
(ReLU) [4] is designed to overcome the saturation problem in saturated activation func-
tions. ReLU is one of the common used unsaturated activation functions. ReLU excludes
the use of exponential term for non-linearity in the activation, therefore ReLU is free from
vanishing gradient issue. However, ReLU suffers at the weight initialization due to the
exploding gradient.

The variant of implementing different training strategy on the network architecture
such as residual network (ResNet) [5] can resolve the vanishing gradient problem in deep
learning neural network. ResNet is made up of multiple residual blocks. Each resid-
ual block consists of convolutional-ReLU-convolutional series. Apart from conventional
forward pass, the output of the residual block is added with the input without activation
function. This network operation computes the delta or small change to the original input
signal hence having larger derivative for backpropagation. On the other hand, imple-
menting appropriate training strategy such as batch normalization to shrink the input data
bounded by a set of boundaries. Since the input data is normalized, the derivative can
be confined by the upper and lower boundaries of the Sigmoid activation function. How-
ever, these methods introduce more network hyperparameters to the deep learning which
requires more time in fine-tuning.

Adaptive optimization approaches are introduced as an alternative to overcome van-
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ishing gradient problem. Adaptive gradient algorithm (AdaGrad) [6] replaces the needs
of extensive hyperparameter fine-tuning with adaptive learning rate. AdaGrad computes
an informative gradient-based learning from the geometrical data of the past iterations.
The nature of this method provides larger updates to infrequent training input and smaller
updates for frequent training input. Nevertheless, AdaGrad suffers from decaying learn-
ing rate and causes the optimization to halt as the training iteration grows. AdaDelta [7]
is a per-dimension learning rate method designed to overcome the limitations of Ada-
Grad. AdaDelta uses cumulative gradient scaling in a decaying manner with less previ-
ous gradients involved in iteration. AdaDelta applies momentum to regulate the learning
rate during training phase. On the other hand, adaptive moment estimation (ADAM) [8]
is a combination of adaptive learning rate and per-parameter momentum adaptation. It
stores the exponential decaying average of past error delta with the similar function of
per-parameter momentum acceleration. ADAM is the current state-of-the-art adaptive
optimization technique due to faster convergence rate. The adaptive elements helps deter-
mining suitable learning rate based on the phase of training to avoid the vanishing gradient
issue.

In this paper, Stochastic Diagonal Approximate Greatest Descent (SDAGD) [9] is
proposed to tackle the vanishing gradient issue. SDAGD adopts the concept of long-term
optimal trajectory approach from dynamical control theories into deep learning optimiza-
tion. SDAGD utilizes the concept of relative step length to modify the original step length
alongside the training iteration derived based on the second order derivative information.
In addition, the utilization of SDAGD is applied to deep neural network with saturated
and unsaturated activation functions to investigate on the vanishing gradient issue. This
paper is outlined as follows: Section 2 reviews on the theory of saturated and unsatu-
rated activation function. Section 3 covers the theory of the proposed SDAGD algorithm.
Experimental setup, results and discussion are enclosed in Section 4. Finally, Section 5
concludes the findings of this paper.

2. ACTIVATION FUNCTIONS

Deep learning neural networks consist of multiple hidden layers stacked up in a
hierarchical manner to compute inference. Each layer is made up of multiple artificial
perceptrons or nodes as shown in Fig. 2. Upon summing up all the product of input and
weight parameters, an activation function is applied to determine the firing of each neuron
as follows,

Fig. 2. Basic operation in a perceptron.
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x =
i

∑
n=1

wn× vn +b, (1)

y = f (x), (2)

where i represents the total number of nodes, wn refers to the weight parameters, vn is the
inputs, b is the bias parameters and f (·) is the activation function. The activation function
provides non-linearity to the sets of input and limits the boundary of the firing to a finite
value [10]. The fired neurons are activated in each layer, therefore the network is able to
provide the correct inference after a series of training iterations. There are two types of
activation function in general, i.e. saturated and unsaturated activation functions.

Logistic function is the classical saturated activation function used in the field of
neural networks due to close resembling of biological activation rate [3]. There are two
types of logistic function, i.e. Sigmoid and hyperbolic tangent (tanh) function. Sigmoid
activation function is more commonly used in early neural networks era. The logistic
activation function exhibits an ‘S’ shape response with the balance between linear and
non-linear responses. Sigmoid activation is computed using Eq. (3)

f1(x) =
1

1+ e−x . (3)

In consequence, the firing of each neuron is bounded between 0 and 1 for Sigmoid acti-
vation function. The switching between the two upper and lower boundaries are theoret-
ically identical to switching on/off of a neuron. However, the gradient for the data fallen
close to either the lowest or highest boundaries are almost zero. Passing saturated zero
gradients through backpropagation into the networks causes loss of information. Hence,
the gradient of each layer vanished across iterations with saturated activation function. In
consequence, the training iteration makes insignificant progress due to the loss of error
signal for optimization.

Rectified linear unit (ReLU) [4] is an example of unsaturated activation functions
used to overcome the vanishing gradient problem. Since most state-of-the-art network ar-
chitectures are often deep and wide, ReLU is the most commonly used activation function
nowadays. ReLU returns 0 if it receives negatives values while returning the input values
for any positive values, or more conveniently written as,

f2(x) =

{
x, x > 0
0, x≤ 0.

(4)

ReLU is also known as the ramp function since the output is either 0 or some positive
values. As the consequence, ReLU is prone to exploding gradient problems since the
output is not regulated for any positive values [11]. Hence, the implementation of ReLU
activation function is usually incorporated with proper weight parameters initialization
and/or the pre-training algorithms. Moreover, providing zero as output during negative
input will have zero gradient passing through the backpropagation algorithm. This causes
the neuron to die (prevent further firing from the particular neurons) and will never be
reactivated again.
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3. STOCHASTIC DIAGONAL APPROXIMATE
GREATEST DESCENT

Weight parameter in the network is updated using optimization algorithms in the
back propagation manner. Adaptive optimization approaches recently gain popular atten-
tion due to its better learning performance whilst having the ability to solve vanishing
gradient problem [9]. To solve for the optimum solution W ∗, an objective function Ep is
constructed as follows,

Ep =
1
2
(Dp−Yp)

2, (5)

where Dp is the targeted output and Yp is the generated output. Subsequently, the error
signal is computed via the gradient of the objective function and backpropagated through
the networks from layer L to layer l = 1. Learning rate is added to damp the update
process and thus written as,

Wk+1 =Wk +η g(Wk), (6)

where k is the training iteration and η is the learning rate. This is the conventional
stochastic gradient descent (SGD) algorithm. SGD utilizes only the gradient information
for parameter updates and requires fine-tuning for optimal learning rate. Nevertheless,
standard SGD with deep learning often encountered problems with vanishing gradient.
Hence, adaptive optimization approaches are proposed to provide better performances
while solving the vanishing gradient problem.

Approximate Greatest Descent (AGD) [12] emerges as a new means of numerical
optimization technique. AGD is inspired by dynamical control system with the concept
of long-term and short-term optimal trajectories. AGD iteration generates a sequence of
spherical local search regions to hover through the error surfaces based on different phases
of training. Subsequently, the modified version of Stochastic Diagonal AGD (SDAGD)
adopts two Hessian approximations, i.e. (a) drop off-diagonal terms of Hessian with re-
spect to weights and, (b) apply truncated Hessian approximation by ignoring higher-order
differential terms. The weight update rule for SDAGD algorithm is written as,

Wk+1 = Wk + [µkJ +H(Wk)]
−1g(Wk) (7)

where µk =
‖g(Wk)‖

Rk
is the relative step length, J is all-ones matrix, H(Wk) is the truncated

Hessian matrix and Rk is the radius constant.

4. RESULT AND DISCUSSIONS

4.1 Optimization Visualization

In order to visualize the working mechanism of each optimizer, three optimization
problems are setup by utilizing bivariate normal distribution [13]. There are three setups
designed to simulate how each optimizer seeking for an optimal solution: (a) a hilly error
surface with two local minimums and one global minimum; (b) a deep Gaussian trench
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Fig. 3. A hilly error surface with two local minimums and one global minimum.

to simulate drastic gradient changes experienced with ravine topography; and (c) small
initial gradient to simulate a plateau terrain. The hilly topography for problem (a) and (b)
is constructed using Eq. (12) as follows,

T (x,y) =−sinx2 cos3y2e−(xy)2
− e−(x+y)2

. (8)

In addition, the Gaussian trench is superimposed with T (x,y) as follows,

G(x,y) =−e
(x−a)2

2c2 +
(y−b)2

2c2 (9)

where x and y are the input, a and b determine the location of the trench on the error
surface and c sets the width of the Gaussian trench. In problem (a), the value c is set as
0.35 while in problem (b) and (c), the value c is set to 0.2. For comparison, each setup is
tested with gradient descent (GD), momentum GD, AdaGrad, AdaDelta, ADAM and the
proposed algorithm.

Fig. 3 depicts the behavior of how each optimizer responded differently even though
given the same starting gradient. AdaGrad and AdaDelta descents faster than GD algo-
rithm due to cumulative gradients and per-paramter adaptation respectively. However,
GD, AdaGrad and AdaDelta are having trouble converging to the global minimum and
being trapped at the local minimums. In contrast, SDAGD, ADAM and Momentum GD
make it to the global minimum. Momentum GD exhibits overshooting behaviour due to
accumulated momentum but still able to converge with more iterations. Besides, the tra-
jectory of how ADAM converges is similar to momentum GD but in a more controlled
manner due to the adaptation of second moment estimation. Second moment estimation
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Fig. 4. A deep Gaussian trench to simulate drastic gradient changes.

helps incorporate curvature information into the algorithm and thus damping the mo-
mentum effects. However, SDAGD converges with the least iteration. The trajectory of
SDAGD algorithm also demonstrates the intended behavior of multiple spherical search
regions that jumps from one search region to another.

Fig. 4 is intended to show how optimizer reacting to deep ravines topography. Based
on the trajectory of momentum GD, multiple large gradients are added together and even-
tually causing the trajectory to roll away from the minimum point. This example exhibits
a good demonstration of how certain optimizer roll over deep ravines and will never con-
verges to the minimum point within the ravine. In contrast, both SDAGD and ADAM
possess controlled trajectory descending due to the curvature information from second-
order derivatives. Another common error surfaces is shown in Fig. 5, it is designed to sim-
ulate plateau where the gradients are close to zero. The plateau topography caused other
optimizers to stay at the initial point and only ADAM and SDAGD reaches the minimum
point. The results showcase the importance of the second-order derivatives that promotes
propagation despite having minuscule gradients. Nevertheless, SDAGD still converges to
the minimum point in lesser iteration than ADAM in all the experiments vastly due to the
effect of relative step length. The relative step length in SDAGD provides a two-phase ap-
proach with larger steps at the starts of training and decays monotonically as the iteration
grows.

The behavior of SDAGD algorithm is demonstrated using three simulated error sur-
faces. Despite all the challenges, SDAGD converges to the minimum point faster than
other optimizers. For instance, the second-order derivatives element in SDAGD algo-
rithm imparts curvature information into optimization helps prevent trapping in plateau
and overrunning ravines. Besides, the spherical search regions constructed by the relative
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Fig. 5. Small initial gradient to simulate a plateau terrain.

step length helps keeping the trajectory rolling, thus mitigating the vanishing gradient
problem seen in ordinary gradient descent. As a result, the robust trajectory constructed
by SDAGD algorithm towards the minimum point across plethora of error surfaces is not
confined by vanishing gradient problem.

4.2 Comparison of Saturated and Unsaturated Activation Functions

Five types of deep layer neural networks are setup as shown in Fig. 6 with 784
input nodes, 700 hidden nodes and 10 output nodes to simulate deep learning [9]. The
type of neural network utilizes the same hidden layer configuration, i.e. hl-1, hl-2, hl-3,
hl-4 and hl-5 with n = 1,2, ...,5 hidden layers respectively. Both Sigmoid and ReLU
activation functions are used to compare saturated and unsaturated activation functions.
For benchmark purposes, MNIST dataset [14] comprises of handwritten digits from 0
to 9 with 60,000 training images and 10,000 testing images in a dimension of 28× 28
bounding boxes is chosen. MNIST dataset is suitable for prototyping new algorithms or
network architectures due to sufficiently large, less complex and involves only gray-scale
image, properly normalized and centered for convenient adaptation. The constructed
network is then trained with SGD and SDAGD with mini-batch size of 100 inputs per
batch for performance comparison. All reported results are based on the fine-tuned
parameters setting with an average result of three runs using Xavier weights initialization
[2].

Fig. 7 depicts the training curve of SGD, ADAM and SDAGD with Sigmoid activa-
tion. As shown in Fig. 7 (a), SGD faces difficulties in training starting with hl-2 to hl-3
and fails training in hl-4 to hl-5. SGD with Sigmoid activation function is prone to have
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Fig. 6. Sequentially adding hidden layers to the deep feedforward neural network is set up to eva-
luate the optimizers performance for vanishing gradient analysis.

Table 1. Testing MCR for SGD, ADAM & SDAGD using saturated and unsaturated
activation functions.

MCR
SGD ADAM SDAGD

Sigmoid ReLU Sigmoid ReLU Sigmoid ReLU
hl-1 10.73 10.95 1.84 1.91 3.34 1.77
hl-2 12.98 10.07 1.65 1.86 3.66 1.96
hl-3 33.71 9.32 1.87 1.95 4.00 2.09
hl-4 88.65 9.24 2.04 1.96 4.11 2.09
hl-5 89.91 9.22 2.11 2.33 5.07 2.34

saturation problem and is used to simulate vanishing gradient for this experiment. Con-
versely, the proposed SDAGD is able to train throughout all types of networks as shown
in Fig. 7 (b). This is due to the long term optimal trajectory in controlling the step length
adaptively during training phases. SDAGD has faster roll-off rate as compared to SGD. In
Fig. 8, it is clear that SGD, ADAM and SDAGD algorithms are able to train with ReLU
activation function with no vanishing gradient issue. However, Fig. 8 (a) shows that SGD
struggles from slow training rate due to fixed learning rate. On the other hand, SDAGD
has iteration steps adaptively tuned based on the local search regions as shown in Fig.
8 (b). Hence, the long-term relative step length adaptation is able to provide a smoother
training curves. SDAGD with ReLU outperformed SGD algorithm while not showing any
sign of vanishing gradient throughout the experiment.

Table 1 tabulates the misclassification rate of SGD, ADAM and SDAGD algorithms.
SDAGD with ReLU activation function outperformed SGD and ADAM algorithms with
the best misclassification rate at 1.77% on hl-1 configuration. Conversely, SGD, ADAM
and SDAGD algorithms observed monotonic increase of misclassification rate in response
to the increasing number of hidden layers. This phenomena implies that requires longer
epochs to train higher level of abstraction. However, SGD with Sigmoid activation func-
tion encountered training problem as the number of hidden layers increases. The entire
training process is halted with hl-4 and hl-5 configurations shows sign of vanishing gra-
dient. In comparison, SGD is able to train in ReLU configuration without vanishing gra-
dient problem in deep neural networks. SDAGD works consistently in both Sigmoid and
ReLU activation functions, demonstrating that SDAGD algorithm is free from vanishing
gradient problem.
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Fig. 7. Training error from hl-1 to hl-5 with Sigmoid activation function.

5. CONCLUDING REMARKS

The issue of vanishing gradient is often encountered in deep learning neural
networks due to poorly selected activation functions, weak training strategy and in-
effective optimization algorithms. In this paper, a new effective optimization, named
as the Stochastic Diagonal Approximate Greatest Descent (SDAGD) is proposed to
compute the relative step-length based on the second-order derivative element. To evalu-
ate the performance of SDAGD, three set of benchmark error surfaces, i.e. (a) a hilly error
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Fig. 8. Training error from hl-1 to hl-5 with ReLU activation function.

surface with two local minima and one global minimum; (b) a deep Gaussian trench to
simulate drastic gradient changes experienced with ravine topography and (c) small ini-
tial gradient to simulate a plateau terrain is used to seek for global minimum. As a result,
SDAGD demonstrated better converging trajectory in all the three simulated problems
when compared to SGD, AdaGrad and AdaDelta. SDAGD algorithm could avoid trap-
ping in plateau and overrunning ravine. Current practice to overcome vanishing gradient
issue is to increase the variants of neural network architecture by replacing the saturated
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activation function such as sigmoid function with the unsaturated activation function such
as Rectified Linear Unit (ReLU). However, unsaturated activation function may lead to
exploding gradient issue if the hyperparameters are not properly tuned. In the exper-
iments, MLP structure sequentially adding layer by layer is tested with the proposed
SDAGD to study the effects of vanishing gradient using saturated and unsaturated ac-
tivation functions. The experiments showed that SDAGD can overcome the saturated
activation function’s vanishing gradient issue as compared to SGD. It can further reduce
the MCR to 1.77% by using unsaturated activation function without exploding gradient
issue. This result concludes that SDAGD can mitigate the vanishing gradient by avoiding
error backpropagation in smaller gradient due to the adaptive step length element.
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