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Discrete wavelet transform (DWT) is an efficient tool for multi-resolution decom-

position of images. It has been shown to be very promising due to its high compression 
ratio and self-similar data structure. Conventionally a 2-D DWT is accomplished by per-
forming two 1-D operations: one along the rows and the other along the columns of an 
image. Without executing ordered 1-D transforms, we develop a new algorithm to com-
pute a 2-D Haar DWT, the simplest DWT. Two merits of this algorithm are compactness 
and quickness. The algorithm is implemented with a compact, regular VLSI architecture 
whose system throughput can be conveniently improved by appropriate parallel/pipeline 
methods. 
  
Keywords: segmented-matrix algorithm, Haar discrete wavelet transform, VLSI archi-
tectures, parallel, pipeline 
 
 

1. INTRODUCTION 
 

Discrete wavelet transform (DWT) has been widely used in signal and image proc-
essing, especially in multi-resolution representation [1]. It is suitable for progressive 
transmission on network because it decomposes the image into several sub-bands [2] and 
encodes them according to their importance. Recently, the prevailing JPEG 2000 stan-
dard is also developed based on DWT [3, 4]. Moreover, there are many other vital appli-
cations for DWT such as image coding [5], image compression [6], image segmentation 
[7], and computer graphics [8]. 

Haar discrete wavelet transform (Haar DWT) is the simplest of all wavelets. It has 
been applied in image multi-resolution for many years [9, 10]. The computation process 
is extremely simple for 1-D transform (the filter coefficients are either 1 or − 1). How-
ever, conventionally a 2-D DWT (including Haar DWT) is split into two sequenced 1-D 
operations: one along the rows and the other along the columns of the image pixels. This 
is detrimental to the system design flexibility because the column operations are post-
poned until all row operations are completed. In this paper, exploiting the non-overlap- 
ping characteristic of Haar DWT, we propose “The Segmented-matrix Algorithm” that 
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calculates a 2-D Haar DWT by one matrix multiplication. It significantly enhances the 
system design flexibility by applying some well designed data re-arrangements. 

In recent years, matrix algorithms for Haar wavelet have been proposed in the lit-
erature. Some of them calculate 2-D Haar DWT by the Kronecker product of matrices 
[11, 12]. Some researchers applied matrix-vector multiplications to manipulate 2-D DWT 
analysis. However, the computation process still involves ordered rows and columns op-
erations [13, 14]. Applying the proposed algorithm, we can eliminate the waiting phase 
and design a VLSI architecture with a lot more flexibility. 

DWT is a computationally intensive process. When it is implemented in a general 
purpose computing system, the system performance cannot meet the requirement of some 
real-time applications. It is essential to develop VLSI chips for DWT applied in real-time 
systems [15-17]. In recent years, many researchers make efforts in FPGA (Field Pro-
grammable Gate Array) design for DWT [18-20] because the system prototypes can be 
implemented within a short time. In this paper, we use the Verilog Hardware Description 
Language (HDL) to implement the proposed VLSI architecture on an FPGA chip. Be-
cause of the parallel characteristic of the new algorithm, the system speed can be im-
proved as much as we need at the expense of extra hardware. 

In section 2, we briefly review the conventional approach and describe the proposed 
algorithm step by step. A regular VLSI architecture is developed in section 3. In section 
4, the simulation results of both software and hardware implementation are discussed and 
analyzed. Finally, we conclude in section 5.  

2. CONVENTIONAL APPROACH AND THE PROPOSED METHOD 

2.1 Motivation 

The conventional ordered 1-D DWT method is demonstrated in Fig. 1. Observing 
the final resulted 2-D Haar DWT coefficients in Fig. 1 (c) carefully, we find there are 
only four of them expressed by linear combinations of A, B, E and F. The coefficients for 
these four linear combinations are (1, 1, 1, 1), (1, 1, − 1, − 1), (1, − 1, 1, −1) and (1, − 1, 
− 1, 1) respectively. Base on this observation, we can integrate these coefficients into a 
2-D coefficient matrix and those four wavelet coefficients can be computed by Eq. (1): 

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

[ ].

[ ]

         

A B E F

A B E F A B E F A B E F A B E F

− −
×

− −
− −

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

+ + + − + − + − − − − +

          (1) 

Apply this simple idea to all pixels, we develop a new algorithm named “The Seg-
mented-Matrix Algorithm” for computing 2-D Haar DWT. This name results from the 
fact we need to break the original image into some 2 × 2 matrices (For example, in the 
upper part of Fig. 1 (a), A, B, E and F form such a matrix and so do C, D, G and H.) be-
fore applying the matrix multiplication. The proposed algorithm is described step by step 
in the following sub-section. 
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          (a) The original image.          (b) The row operation results. 
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(c) The final results of a 2-D Haar DWT. 
Fig. 1. Conventional 2-D Haar DWT computation. 

 
2.2 Proposed Method 
 

First of all, let us define some matrices in order to explain the algorithm step by step 
with convenience: 
 
(a)  The original image data N: an m × n matrix which stands for the original image (as-

sume m and n are multiples of 2). 
(b)  The sub-blocks Bij: 2 × 2 matrices, where i ranges from 1 to m/2 and j ranges from 1 

to n/2. In other words, N is divided into mn/4 such sub-blocks. The method to obtain 
these Bij from N will be described in details later. 

(c)  The filter coefficient matrix: 

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

.C − −
=

− −
− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                         (2) 

(d)  The row vectors Aij: mn/4 such matrices of size 1 × 4. They are obtained by applying 
some data re-arrangement to Bij respectively. 

(e)  The intermediate matrix M: an 4 4mn ×  matrix. 
(f)  Matrix M ′: an 4 4mn ×  matrix. 
(g)  Matrix W: an m × n matrix. This is the final result of 2-D Haar DWT coefficients 

matrix. 
 
The Segmented-Matrix Algorithm for Haar FDWT is described step by step as follows: 
 
Step 1: The first procedure for the segmented-matrix algorithm is to form some sub- 
blocks Bij for representing the original image data N. The representation is illustrated as 
in Eq. (3): 

1, 1 1,13 1411 12
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2, 1 2,23 2421 22
               ...       n n
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where Nij are the elements of N. 
 
Step 2: Z-scan each Bij to generate mn/4 row vectors Aij by data rearrangement. For ex-
ample,  
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Step 3: Express the intermediate matrix M with these Aij using Eq. (5): 
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Step 4: Apply matrix multiplication to compute the matrix 
1
2 ( ).M M C′ = ×  We denote 

the contents of M ′ as in Eq. (6): 

11 12 13 14

21 22 23 24

/4,1 /4,2 /4,3 /4,4

.

mn mn mn mn

M M M M
M M M M

M

M M M M

′ ′ ′ ′⎡ ⎤
⎢ ⎥′ ′ ′ ′⎢ ⎥′ = ⎢ ⎥
⎢ ⎥′ ′ ′ ′⎢ ⎥⎣ ⎦

                           (6) 

Step 5: In order to describe the process conveniently, let us divide W into four sub-ma- 
trices WLL, WHL, WLH, and WHH (all 4 are 2 2

m n×  matrices). The final result W then looks 
like: 
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The elements of these sub-matrices are the elements in M ′ rearranged. Specifically, the 
elements in the first column of M ′ are filled in WLL row by row WHL. Similarly, the 2nd, 
3rd, 4th column of M ′ are row by row filled in WHL, WLH, and WHH respectively. As a re-
sult, 
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Assemble these 4 sub-matrices and we obtain an m × n matrix W, which is the DWT 
coefficients matrix for original image N. 

3. VLSI ARCHITECTURE  

Various architectures have been proposed for the implementation of DWT. Some 
are based on bit-serial architecture [21] while others are based on the systolic algorithm 
[15]. Applying the segmented-matrix algorithm, the computational process involves only 
two rows (columns) at a time. Hence, it is very convenient to improve the speed per-
formance by exploiting parallel and/or pipeline methods. 
 
3.1 The Proposed VLSI Architecture 
 

To establish a regular architecture, a basic cell is designed as shown in Fig. 2. It 
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stores one column of C (denoted as Ci) and its input is one row of M (denoted as Mj). The 
output for this cell is the multiplication of this input row vector and the stored column 
vector Ci. Hence, the resulted output is a scalar (an element of M ′). Since the 4 columns 
of C are all different, we need 4 different basic cells as shown in Fig. 3. However, the 
internal structure of each cell is almost the same except the stored column vectors are 
different. As a reminder, the internal circuit of these cells is pretty simple because the 
filter coefficients for Haar DWT are either 1 or − 1. Therefore, although we have men-
tioned about matrix “multiplication” many times, there is actually no multiplier required 
at all. 

As shown in Fig. 4, we pump the elements of M into the cells at the speed of one 
row (4 elements) per clock cycle. As a result, 4 DWT coefficients (one row of M ′) are 
generated in one clock cycle. Four extra blocks marked as “Shr1” are applied to shift the 
results 1 bits right (hence the results are divided by 2).  

 jM
iC  ijij MCM ,'=×

       
 1C 2C 3C 4C   

Fig. 2. The basic operational cell.           Fig. 3. The four basic cells array. 

C1 Shr1

C2 Shr1

C3 Shr1

C4 Shr1

M j

1/2  ×  Mj    ×   C1   =   M’

1/2  ×  Mj    ×   C2   =   M’

1/2  ×  Mj    ×   C3    =   M

1/2  ×  Mj    ×   C4   =   M’

1/2 × Mj × C1 = M′j,1

1/2 × Mj × C2 = M′j,2

1/2 × Mj × C3 = M′j,3

1/2 × Mj × C4 = M′j,4

Mj 

C1

C2

C3

C4  
Fig. 4. Proposed VLSI architecture. 

As shown in Fig. 4, the proposed architecture is regular and easily to expand. The 
best part of this parallel architecture is that one can always sacrifice hardware for speed 
performance. For example, one can achieve twice the speed by using 8 cells concurrently. 
Moreover, unlike the conventional approach, there is no waiting phase involved since all 
processes are independent. 

 
3.2 Design Flexibility for System Architecture 
 

One beneficial characteristic of the segmented-matrix algorithm is the Haar DWT 
coefficients at any sub-band can be obtained independently (no need to wait for other 
coefficients to be computed). Observing the matrix M ′, we find the elements in the first 
column of M ′ are exactly the DWT coefficients in LL sub-band (i.e. WLL). Similarly, the 
elements in the 2nd, 3rd and 4th column are the DWT coefficients in HL, LH and HH sub- 
bands respectively. This feature allows us to do higher-level Haar DWT with more flexi-
bility. For instance, if we need to quickly obtain a rough version of an image, we can at 
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first apply all the computational resource for computing the DWT coefficients in the LL 
sub-band and neglect the HL, LH and HH parts temporarily. 

By doing such kind of computation adjustments, the first level LL coefficients can 
be ready for higher level transformation before the computation of 3 detail sub-bands. 
The segmented-matrix algorithm is effective for implementing k-level 2-D Haar DWT 
and it takes only one matrix multiplication as well. As a result, a fully scaled multi-reso-
lution system can be implemented based on a simple yet efficient algorithm. Another 
example to demonstrate the system design flexibility is the embedded system shown in 
Fig. 5. Two external memory units are used to store image data and computed results. By 
using two microprocessors such as MCS-8051, we can accomplish the data rearrange-
ments of the segmented-matrix algorithm. On the other hand, the FPGA chip is in charge 
of the matrix multiplication. When the left microprocessor and RAM unit are dealing 
with preliminary data rearrangements for next input image (to obtain M from N if in 
DWT mode), the right microprocessor and RAM unit can deal with the post-arrange-
ments for the computed results. Specifically, due to the new algorithm, software/hard- 
ware integrated designs are available for implementing a pipelined image processing 
system. 

 

Memory FPGA Memory 

2Pμ1Pμ

 
Fig. 5. The full embedded system.  

4. IMPLEMENTATION AND ANALYSIS 

4.1 Software Implementation 
 
Simulated on an Intel Pentium IV 1.5G Hz CPU with VISUAL C++ codes, the con-

ventional approach consumes 0.109 second to transform a 512 × 512 image while the 
segmented-matrix algorithm costs only 0.047 second (same amount of memory is util-
ized in both codes). Further analyzing the time consumption, we find the data rearrange-
ments cost only about 33% of the total processing time. According to the Amdahl’s law, 
we choose the most time-consuming portion (matrix multiplications) for hardware im-
plementation. 
 
4.2 FPGA Implementation 
 

A Xilinx XC4010XL FPGA chip is applied to implement the proposed VLSI archi-
tecture. Verilog HDL is utilized to describe the integrated VLSI architecture and circuit 
in the basic cells. There are two inputs (8 bits each), two clocks (CLK1 and CLK2) and 
one control signal for the 4 basic cells in the integrated system. Two non-overlapped 
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CLK2

CLK1

 
Fig. 6. The two clocks timing. 

 
Fig. 7. The placement of the FPGA. 

Table 1. FPGA resource usage. 
 Used Units Percentage 

CLBs 86 20% 
IOBs 51 78% 

CLB Flops 64 8% 
4 inputs LUTs 99 12% 
3 inputs LUTs 32 8% 

 
clocks as shown in Fig. 6 are applied. When the CLK1 is edge-triggered, either on posi-
tive or negative edges, the chip reads in two pixels. After one cycle of CLK1, we have 4 
pixels stored in the buffers. When CLK2 is positive edge-triggered, the system supplies 
these 4 pixels to the DWT computational units. The simulation results indicate the inte-
grated architecture functions correctly. After the FPGA implementation, the usage of 
hardware resource is reported as shown in Table 1 (data rearrangement is supposed to be 
resolved by software and hence not included). Obviously there is enough hardware re-
source for implementing more basic cells on the chip. Fig. 7 demonstrates the CLB 
placement of our design. 

The system works at a rate of 37.31 MHz. It takes approximately 0.00526 sec for 
transforming one 512 × 512 image (data rearrangement is not included). Based on the 
new algorithm, we can decompose the original image appropriately and use more com-
putational units to improve the system throughput. However, more expensive series of 
FPGA with more gates may be required when we need to design a significantly high 
speed system. 
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5. CONCLUSIONS 

Haar DWT is a powerful tool which provides a wide variety of digital signal and 
image processing applications. In this paper, we present the segmented-matrix algorithm 
for Haar DWT and exploit full parallelism to speed up the overall system. A regular and 
expandable VLSI architecture is proposed and implemented using FPGA chips to verify 
the effectiveness. Furthermore, with this new scheme, the system design becomes more 
flexible and the throughput can be improved as much as we need at the expense of extra 
hardware. 
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