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Paravirtual I/O systems have been paid much attention to due to their reasonable perfor-
mance levels. To increase these levels, Non-Volatile Memory (NVM) such as flash memory
is considered and used as their storage media alternative to HDD. Although the storage me-
dia is fast, the performance of paravirtual I/O systems using the media is much lower than
expected. The performance is lowered because the I/O process in the guest and host OSes
is serialized and the OSes are run ignoring the processor affinity while the same software
layers performing I/O are duplicated in the OSes. We present our methodology to em-
ploy towards optimizing the performance of NVM-based paravirtual I/O systems: the use
of polling rather than interrupt, and parallel batching in order to maximize the parallelism
in performing the sequence of I/O operations, and avoidance of context switches in order
to consider the processor affinity. Our experiments with Kernel Virtual Machine (KVM)
I/O systems using different NVM storage devices suggest that the use of the methodology
can lead to enhancements in throughput by 50% to more than 80% while reducing CPU
usage by up to 25% for a microbenchmark program and by up to 100% for workloads in
mixed-read/write patterms.
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1. INTRODUCTION

As the need for sharing the resources of each of many large-scale computing facili-
ties such as datacenters in executing a variety of workloads on it has increased, different
kinds of virtualization techniques have been developed and used, providing virtualized
computing environments. Since the amount of data to access and process in these en-
vironments is often huge, achieving high I/O performance in terms of latency and/ or
throughput in such environments is one of the major issues regarding the virtualization.

Efficient I/O virtualization techniques have been developed. One of the most popular
I/O virtualization techniques currently being employed is paravirtual I/O such as KVM’s
virtio [1] and VMware’s VMXNET3 [2]. In paravirtual I/O, the host provides a virtual I/O
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device to its guests. It has been found that traditional paravirtual I/O systems significantly
slow down mainly when a guest and the host make context switches performing exits [3]
or there are multiple competing I/O intensive guests. There have been attempts to address
these problems. ELVIS is one of them, using a fine-grain I/O scheduler combined with
exit-less interrupts on x86 processors in order to improve the paravirtual I/O performance
[4]. As an alternative approach to enhance the performance of a paravirtual I/O system,
it is natural to consider using fast storage technologies for the system. Many people have
experienced performance boosts with their computing systems or devices by replacing
HDDs with flash memory-based SSDs. Also, recent high-end flash memory-based SSDs
have become even faster; for example, Samsung 845DC evo (a SATA SSD) and Samsung
XS1715 (an NVMe [5] SSD), show about 70K IOPS (I/Os per second) and 750K IOPS,
respectively, in physical machine environments. It is expected that the use of these fast
flash memory-based SSDs in a computing system may lead to lower latency and higher
throughput in the execution of the system. Moreover, these kinds of SSDs have been
becoming cheaper. For these reasons, the use of these fast Non-Volatile Memory (NVM)-
based SSDs may be adopted in the first place.

However, even when very fast NVM-based SSDs are used for a system, the perfor-
mance of the system may not be increased accordingly due to the software overhead. The
more the performance of the SSDs is enhanced, the more does the overhead affect the
performance. Therefore, in order to take the advantage of utilizing fast NVM-based SSDs
for a system at maximum, it is crucial to minimize the software overhead. For instance,
a study has recently showed that the performance of a flash memory-based system even
in a physical machine environment can be significantly increased by minimizing software
delays caused by additional I/O processing contexts such as interrupt bottom halves and
background run queues [6]. Although the storage media for a paravirtual I/O system is
fast, the performance of the system is expected to be the lower due to the inherent virtu-
alization overhead; guest Virtual Machines (VMs) are emulated by the host as software
components, and almost the same I/O stack is duplicated in each of the guests and the host.
The overhead increases when guests perform random I/O because they need to communi-
cate with the host more. In addition to the additional I/O layers, exit-based notifications
between the guest and host OSes incur huge overhead also as explained in ELVIS [7, 8].

Fig. 1 shows the duplication of I/O stack and exit-based notifications between the
guest and host OSes in the I/O flow in Linux KVM, a paravirtual system. The following
is illustrated in the figure: an I/O request is issued in a guest VM, it is transferred to
the virtio [1] block driver, finally being queued into the shared internal virtqueue. The
guest can notify the host of it only indirectly by first performing an exit to the hypervisor,
QEMU (Quick EMUlator) [9] to have the hypervisor do the notification. After the host
performs I/O, it can notify the guest of the completion only indirectly by first causing the
running guest to exit in order to run the hypervisor so that the hypervisor can inject the
virtual interrupt to the guest.

A previous study suggests that the performance of an existing paravirtual I/O sys-
tem using one SSD may be comparable to that of a non-virtual I/O system using the
device, but the performance is degraded when multiple devices are used or when a PCIe
or NVMe SSD with very high throughput is used as a file-based storage device [10]. It is
found in the study that the performance of executing random read operations using a flash
memory-based device can be improved if multiple I/O requests are issued and multiple
completions are processed simultaneously, and that the performance of executing random
read operations using multiple flash memory-based devices may be enhanced if the I/O
delay caused by exits and context switches is reduced, combined with using a processor
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Fig. 1. I/O system of KVM.

affinity-aware method of scheduling I/O threads. By extending this study, it is analyzed
why the performance of an NVM-based paravirtual I/O system is lowered even though
the storage media is very fast.

The performance of a fast NVM-based paravirtual I/O system is degraded because
the I/O process in the guest and host OSes is serialized and the OSes are run ignoring
the processor affinity while the same software layers performing I/O are duplicated in
the OSes. As explained for the I/O flow in Linux KVM, the steps of the I/O process
in the guest and host Oses are taken in a serialized manner, causing two exits with two
context switches. Even a third exit may be performed in some implementations in order
for the guest to write into the End-of-Interrupt (EOI) register when it finishes processing
the virtual interrupt for the notification of the I/O completion [8]. The serialized course-
grained I/O processing of the paravirtual I/O system leads to the minimization of the
parallelism in performing the I/O operations causing unnecessary waits. If the guest and
host OSes are run on the same CPU ignoring the processor affinity, the performance is
lowered by the delay due to cache misses.

We present our methodology to employ towards optimizing the performance of
NVM-based paravirtual I/O systems. There are several component methods to use in
order to maximize the parallelism of performing the sequence of I/O operations. Polling
may be used rather than injecting an interrupt to send a notification so that as many non-
serialized operations can be performed in parallel as possible. This non-serialization per-
mits processing notified multiple events in a batch. Also, the guest and host OSes are
run on different CPUs to avoid unnecessary context switches considering the processor
affinity. In principle, the methodology should be hardware independent [10], based only
on software without requiring special permissions not causing any security problem, af-
fecting only the minimal part of the system [7, 8], and leading to high throughput and low
latency without wasting CPU cycles. The CPU usage can be lowered by decreasing the
lock contention in the execution of exits [10].

The main contributions of this work are summarized as follows:

• We thoroughly describe our methodology to employ towards optimizing a given
NVM-based paravirtual I/O system with a detailed demonstration for Linux KVM.

• We present that the performance of using multiple I/O queues can be enhanced by
pinning a queue per vCPU because the context switches are reduced and the locality
is improved.
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• We show the result of the complete evaluation on write operations in addition to
read operations.

This paper is organized as follows: Section 2 explains why the performance of NVM-
based paravirtual I/O systems is low. Section 3 presents our performance optimization
methodology. Section 4 describes the design and implementation of the methodology for
KVM. Section 5 discusses design issues for KVM. Section 6 shows the result of validation
of employing the methodology for KVM. Section 7 explains related work, and Section 8
concludes the paper.

2. PROBLEM DEFINITION

2.1 Terms and Definitions

• Virtual storage device is a device file in guest OS. It can be a virtual file or real one
if the device is connected by pass-through.

• File-based storage is a device file in guest OS which represents a file in host OS as
shown in Fig. 1.

2.2 Performance Degrations

We obtained the following results by conducting experiments with the fio benchmark
performing random I/O in a flash memory-based SSD equipped KVM system in order to
check the effectiveness of existing mechanisms designed for NVM-based paravirtual I/O
systems.
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Fig. 3. IOPS for SSDs in direct-access tests (with
128 fio processes per device, performing 4KB
random reads).

2.2.1 Performance for multiple devices

Fig. 2 shows the performance result for multiple devices, which means that each de-
vice corresponds to a file that is mapped to one virtual storage device in a VM. In other
words, having four devices means that there are four virtual storage devices associated
with four files in four different physical devices. As can be seen, the data plane from
QEMU could achieve relatively good performance when there were multiple virtual stor-
age devices in a single VM, but the performance was degraded by about 25% compared
with the host OS case. In the vhost-blk case, the performance similar to that of host OS
case was achieved. Note that it was not possible to perform the test if three or more de-
vices were connected. Also, in the case of using KVM, the performance was significantly
lowered, even if the tested VM was provided with sufficient CPU capacity.
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2.2.2 Performance for a single device

Fig. 3 shows the performance result for four SSDs in RAID-0 which performed as a
single (file-based) virtual storage device in the paravirtual environment. As shown in the
figure, even though over 200K IOPS was achieved in host OS, there was significant per-
formance degradation in the other cases. Particularly, a reasonable level of performance
was achieved for each device when multiple devices were used in the data-plane case, but
the performance was not improved even when a single fast device was used.

2.2.3 CPU usage

CPU usage of almost 1,000% was needed (which means that 10 cores were used
on the 32 core machine) in the data-plane case although the number of vCPUs was six.
This result was confirmed by the observation that the a very large amount of CPU was
consumed for I/O requests to be issued in host OS as well as a VM. There was no case
where bare-metal performance was reached for multiple devices and a single one, while
using the CPU minimally.

2.3 Causes of the Degrations

2.3.1 Serialization of the process in the guest and host OSes

Only one I/O thread per VM is traditionally allocated in KVM, and therefore an
I/O thread is shared in a single VM. Its capacity is not sufficient to reach the maximum
I/O performance achievable for multiple storage devices. Even though it requires larger
capacity, its I/O performance is limited to a single I/O thread at maximum due to the
internal structure of QEMU that lacks scalability. To address this problem, the data plane
[11] is implemented in KVM, where an I/O thread runs per device. However it is still
problematic in that parallelism is not considered because a single I/O thread handles both
the I/O request and completion. Moreover, since it is in QEMU itself, only QEMU is taken
into account, and thus it has the drawback that the VM overhead is not considered. There
is also a parallelism issue for the multi-core architecture. As mentioned in splitX [12],
each layer needs to run independently in order to fully utilize the multi-core parallelism,
but KVM cannot currently run in this way. In order to maximize the I/O performance, not
only multiple vCPUs are required for ensuring parallelism, but also the process in the I/O
layer in KVM/QEMU needs to be changed to allow for parallel processing.

2.3.2 Execution of OSes ignoring the processor affinity

The I/O performance for a VM is degraded mainly due to context switches between
the guest and host OSes, which are called exits. The previous studies [7, 13] showed
that exits incur a large portion of the overhead in the VM operation when switches occur
between the guest and host OSes. As mentioned in ELI [7], three exits occur in KVM.
The first exit occurs to notify QEMU of issuing an I/O request, the second one occurs in
order to inject a virtual interrupt for completed I/O, and the third one occurs due to End Of
Interrupt (EOI) in the VM for accessing the Advanced Programmable Interrupt Controller
(APIC). These operations are problematic because not only such an operation itself incurs
overhead but also it is intended to stop the guest operation and resume the host operation,
which hampers efficient parallel processing. It is notable that a relatively small number
of exits occur in the case of batch operations. On the other hand, even an exit cannot be
overlooked in the direct-access case, which requires quick response. It is thus necessary
to alleviate the exit overhead in order to achieve the bare-metal performance. The overall
process in the I/O layer is divided into two parts: host and QEMU I/Os. They are pinned
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to different CPUs in a NUMA (Non-Uniform Memory Access) machine in order to limit
the number of unnecessary switches between the CPUs to one as the processor affinity is
very crucial in the NUMA architecture with NVM-based storage devices.

2.3.3 Duplication of the I/O processing stack

Fig. 1 illustrates that the length of I/O flow is almost doubled because there are an
additional OS and an application. This problem may be solved by removing the unnec-
essary duplicated parts in the I/O layer, including the deletion of the I/O scheduler in the
guest block layer and the transmission of guest’s bio to the host block layer directly. But
this solution has the drawback that VMs cannot use file-based storage since it is necessary
to connect physical devices to the guest OS directly. The guest application that requests
I/O will be scheduled when the I/O is completed in host OS but the delay in I/O in the VM
environment is much longer than the time it takes to perform I/O in host OS because the
guest application is assigned to a vCPU process that is in charge of emulating a physical
CPU first, and then the process scheduler in guest OS schedules the guest application.

We have addressed the above mentioned performance problems for file-based storage
in NVM-based paravirtual systems since file-based storage is widely used in datacenters
even though SR-IOV [14] which is connected directly to a VM achieves good perfor-
mance. Such storage is preferred because it is easy to use software techniques such as
migration and copy on write. We have focused on random read workload for several rea-
sons even though we have also considered random write workload. First, read is more
sensitive with respect to the time of response from device than write. Also high read
performance is often required for real workload. Second, to reduce the context switches
between the guest and host OSes, we need to exclude other factors that cause performance
degradation; for example, there is some overhead incurred by garbage collection in SSD
in the case of random direct write. Third, the I/O flow of write is basically the same as that
of read in the case of direct-I/O mode. Thus if we improve the flow of read, we should be
able to enhance the write performance by taking the same approach for improvement; as
expected, the performance random write is also improved in the same way, which will be
shown in Section 6.

3. PERFORMANCE OPTIMIZATION METHODOLOGY

We have developed a methodology to enhance the low performance of NVM-based
paravirtual systems: the use of polling rather than interrupt and parallel batching in order
to maximize the parallelism in performing the sequence of I/O operations, and avoidance
of context switches in order to consider the processor affinity.

3.1 Maximizing the Parallelism in I/O Operations

3.1.1 Polling

Injecting an interrupt is the traditional method for notification of I/O completion.
However it has disadvantages such as latency and fit only for sequential I/O which is
based on batching. Since NVM- based storage shows high random I/O performance, we
need to reexamine and consider using polling which may replace interrupt. Polling was
also used in an optimization study on an on-board SATA controller [6]. Not only on-board
SATA controllers which are based on a single interrupt but also RAID controllers which
are based on multiple interrupts (MSI-X interrupt) can perform better than interrupt-based
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ones. This result implies that the polling-based method may fit well the current fast stor-
age devices.

3.1.2 Batching

An SSD can process multiple I/O requests at the same time. Thus issuing I/O re-
quests directly without batching can be beneficial. But issuing a single I/O request di-
rectly has a bad effect if other I/O requests are issued at different times within a short
interval because the lock contention occurs due to the shared data structure leading to the
waste of CPU cycles. Therefore temporal merge [15] which permits issuing I/O requests
in a batch without any alignment in a short interval may be a good approach in the case
of using NVM-based devices. In our methodology, polling rather than injecting an inter-
rupt is used to send a notification and notified multiple events are processed in a batch,
and exitless polling allows for non-serialization of many I/O operations so that as many
non-serialized operations can be overlapped in a pipelined fashion as possible.

3.2 Considering the Processor Affinity

3.2.1 Exitless

Each of guest and host needs its I/O module in order to communicate with each
other in a paravirtual environment. Mode switching such as context switching between
guest and host, and notifications for requesting I/O and completing it are also required.
For example, in KVM on an x86 machine, VM entries and exits are needed for mode
switching and virtio is used for communication. A VM performs more context switches
than the host for the reason above described. Context switching causes high latency,
and thus I/O cannot be performed fast. We need to devise an I/O processing mechanism
without context switching.

3.2.2 Processor and vCPU affinity

CPUs of VM can represent threads in host OS. A thread is a minimal scheduling
entity. So allocating each of the vCPUs with CPU affinity is advantageous. This is true
for processes in a VM. Processes on a VM have more effect if it is scheduled in another
vCPU in the case of showing high IOPS. In our methodology, the guest and host OSes are
run on different CPUs in a NUMA system in order to avoid unnecessary context switches
considering the processor affinity.

In principle, the methodology should be hardware independent [10], based only on
software without requiring special permissions not causing any security problem, affect-
ing only the minimal part of the system [7, 8], and leading to high throughput and low
latency without wasting CPU cycles. The CPU utilization can be lowered by decreasing
the lock contention in the execution of exits [10].

4. DESIGN AND IMPLEMENTAION OF THE METHODOLOGY
FOR KVM

We have applied the hardware-independent methodology to KVM/QEMU in order to
demonstrate how to employ it to a given paravirtual I/O system. Polling rather than inject-
ing an interrupt is used to send a notification and notified multiple events are processed in
a batch so that as many non-serialized operations can be overlapped in a pipelined fash-
ion as possible. Also, host I/O and QEMU I/O are performed in different CPUs to avoid
unnecessary context switches considering the processor affinity.
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4.1 Exitless Polling for Overlapping the I/O Process in a Pipelined Fashion

In a KVM/QEMU system, the I/O process is performed as follows: when a guest
application issues an I/O request, the virtio block driver queues this request and notifies
QEMU of it by executing an exit. By employing our methodology as illustrated in Fig. 4,
the driver does not notify QEMU without performing any exit. Instead, the request polling
thread in QEMU polls the memory space which is shared with the guest OS in order to
check I/O requests from the guest. If there are any queued I/O requests from the guest,
they are sent to the host OS, and a response waiting thread may be blocked waiting for
the I/O completion. If there are many I/O requests in Guest OS, the request polling thread
in QEMU checks I/O request via polling. Otherwise if there are few request in Guest OS,
the request polling thread works as interrupt based.

When the requested I/O is completed, the response waiting thread that has waited for
the I/O completion wakes up and then notifies the guest of the I/O completion to the guest
by writing the memory area shared by the guest and host using virtio. Conventionally,
the guest is notified via an interrupt. Instead, the dedicated thread in the guest checks
the I/O completion via removing an exit and polling, and completes I/O, in applying our
methodology. As a result, the I/O process consisting of guest’s I/O request, QEMU’s
request polling, QEMU’s response waiting, and guest’s completion polling is performed
independently; one part does not depend on another, which makes it possible to perform
them in parallel leading to high performance.

The process of direct-access I/O is not serialized by removing exits and using polling
instead because each process can be performed independently. An exit is required when
notifying an I/O request or I/O completion in the case of taking the traditional exit ap-
proach. When an exit is removed, there is no need for waiting for one in the I/O process,
and the process can be divided independently so that it can be performed on multiple CPU
cores concurrently in a pipelined fashion as shown in Fig. 5. It is performed efficiently not
only in a single I/O thread because of pipelining but also in multiple I/O threads due to its
structure which permits being executed in parallel. The I/O process may be overlapped
per device via exitless polling in order to achieve high performance. Alternatively, it is
overlapped for multiple devices as long as the performance is not degraded, leading to
higher CPU utilization.

There are several reasons why overlapping the I/O process based on exitless polling
may lead to higher throughput saving CPU cycles in the case of using multiple NVM-
based storage devices. First, the performance of processing data via interrupts will be
significantly degraded as future storage devices become faster, and if faster I/O is needed,
the polling as provided via NAPI (New API) in Linux kernel may be more beneficial than
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interrupts for I/O intensive applications because the interrupt overhead can be eliminated
and the cost of context switch may be reduced, as shown in the previous studies [16]
[15]. Second, the use of polling permits removing exits, making the methodology hard-
ware independent. The use requires only monitoring the memory space shared by the host
and guest without requiring any hardware support such as posted interrupt [17] unless an
additional exit is executed, or any modification of the existing software because it is suf-
ficient to use just virtio which is already available for communication between KVM and
QEMU. Third, it is possible to lower the CPU usage even in the case of polling compared
with that of interrupts because the overhead of exits is not incurred and the lock contention
in KVM is reduced by avoiding control via APIC. It is found in a previous study [10] that
40% of the total CPU cycles are used for the data plane and most of the CPU cycles are
consumed in the execution of the spin lock in KVM in the case of using KVM with the
data plane. It is also found that most of the lock contention occurs in making APIC related
accesses such as the invocations of kvm ioapic set irq() and kvm ioapic update eoi(). It
is possible to further lower the CPU utilization if this contention is reduced, but it is better
to bypass exits than modifying the lock structure to reduce the contention because the
modification does not result in the elimination of the contention.

Exitless polling is implemented by removing VM entries and VM exits [18]. As
described in the previous section, three VM exits may occur in single I/O process. Among
them, we try to delete two VM exits which are one that occurs injecting an interrupt in
order to notify the guest of I/O completion, and the other that occurs when the guest
writes to APIC in order to process the EOI. When a VM issues an I/O request, the host
OS handles the request eventually. When the I/O is completed, QEMU that executes the
VM by executing the while loop that is in charge of emulation is interrupted, and then
injects an interrupt to the VM. When QEMU receives the request of injecting an interrupt
from the host OS, QEMU stops execution of the emulation loop and confirms the exit
code.

If QEMU stops executing the emulation loop due to I/O completion, it injects an in-
terrupt to guest’s IDT (Interrupt Descriptor Table). The existing code is revised as follows
in order to remove the context switch to the host to manage interrupts in the context of VM
operation: there is a callback function which sends the information on I/O completion to
KVM; when the I/O request from QEMU is completed, the callback function is invoked.
This callback function is in charge of delivering the information on I/O completion and
the request of injecting an interrupt. The callback function is removed and replaced by
the polling thread. It is thus possible to remove the exit which was caused by a context
switch between guest and host OSes. Also, the VM entries are removed because there
is no need for entering the guest context because the guest can recognize I/O completion
without performing an exit. In guest OS, the traditional completion scheme that is based
on interrupt is removed. Also, exitless polling is implemented in order to reduce the la-
tency by recognizing I/O completion without injecting an interrupt. In the case of the VM
exit which is related to EOI, the VM exit is needed because EOI requires accessing APIC
and writing the completion flag. Accessing APIC is a privileged operation, and thus the
guest OS should be context switched out with the host OS is switched in, and then KVM
in host OS handles the APIC control. This exit-based method is replaced by the polling
thread-based one, and thus the guest OS can process I/O completion without EOI because
any interrupt is not being registered or used.

Also, there is an exit for issuing an I/O request from the guest OS because the virtio
blk driver in guest OS uses the io write() in the last stage of I/O request in guest OS.
At this point of time, the guest OS enqueues data to a virqueue that can be shared with
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QEMU and then calls the io write() in order to notify QEMU that there is an I/O request.
The io write() is a privileged one which can perform communication between guest and
host OSes by accessing a specific memory region. When the guest OS uses the io write(),
QEMU performs the exit emulation loop and then checks the exit code. Therefore, if the
io write() in guest OS is removed and just the shared memory for QEMU is monitored,
then the I/O request is processed if the queue is not empty, and thus the exit can be
removed.

4.1.1 Processing multiple notification events in a batch and in parallel

Although the use of exitless polling leads to improvements in throughput and CPU
utilization (saving CPU cycles) in the case of using multiple storage devices and a single
virtual device in guest as explained in the previous subsection, the performance can be
further enhanced for a single device such as an NVMe-based SSD showing more than
700K IOPS. It is possible to improve both the I/O layer in QEMU and the block layer
including the device driver in guest OS by making them process multiple events in a batch
or in parallel. For this parallel batching, the following methods based on exitless polling
are devised and implemented: first, I/O requests are issued as fast as possible to fully
utilize the fast characteristic of NVM-based SSDs. Second, the lock contention is reduced
for parallel processing because the contention leads to high CPU consumption and low
throughput. Third, multiple instances of I/O completion are handled to reduce the latency,
using the dedicated thread rather than interrupts and considering the processor affinity,
although such instances are not handled by multiple CPUs as in the MSI-x interrupt.

We have implemented the parallel batching by considering the followings as shown
in Fig. 6: first, since the virtio block driver in the guest uses one queue for issuing I/O
requests to the host, and the guest driver layer based on a single queue and single interrupt
can achieve only the I/O performance for a single CPU even if VFS and the block layer in
guest OS can perform I/O in parallel, multiple queues can be used for issuing I/O requests
and multiple dedicated threads can be used for checking I/O completion. Second, the
early completion functionality has been added to check I/O completion in the issue context
whenever issuing an I/O request, and to process it if there is any completed request. A lock
should be held when the guest issues an I/O request, and thus it is more efficient to process
it in the issue context if there is any completed request because the overhead incurred by
the lock contention and completion thread can be reduced. Third, a lock per queue is used
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in order to process I/O requests in parallel when the guest issues them and has the I/O
completed. Storage devices presented at the user level operate using each request queue
allocated on a per device basis in Linux. The performance may be degraded in the case
of using NVM-based SSDs with high IOPS and parallelism because a queue lock should
be held when the guest issues I/O requests and has them completed through this queue.
Thus, the guest has been changed to have the parallel structure as suggested in a study
[19] in order to reduce the dependency on lock and permit parallel processing. Fourth,
batch processing performed based on a threshold value when QEMU checks whether
there is an I/O request from the guest leads to reduction in the exit overhead. Since an
SSD consists of a number of channels, it can handle multiple I/O requests concurrently.
In order to take full advantage of this characteristic, not only I/O requests are issued as
fast as possible but also multiple I/O requests are issued at once in order to maximize the
performance with reduced cost of context switch from the host OS. Finally, the thread
polling I/O completion is modified by adding a peek function executed to avoid holding
any unnecessary lock during the polling process unless there is any completed request in
the queue.

Batch processing is implemented by using the traditional method based on virtio
for virtqueues. The number of virtqueues is increased in the modified guest OS and
QEMU. In guest OS, an I/O request is issued in a round robin fashion with queues for
a single storage device. Dedicated threads are also constructed in order to process I/O
completion. In QEMU, for each of the queues, a response waiting thread is created. Early
completion is performed as follows: when an I/O request is issued in guest OS, an added
routine for checking I/O completion and performing I/O is run after issuing I/O. There
is an advantage of using early completion. Early completion permits sharing the jobs of
completion in the I/O issue context. Thus, the dedicated thread can consume less CPU
cycles, pinned onto a single core. This leads to reduction in CPU usage for polling and
enhancement in locality.

4.1.2 Ensuring the processor affinity

The overall I/O layer for KVM consists of host and QEMU I/Os. They are pinned
to different CPUs on a NUMA machine. The number of unnecessary context switches
between the CPUs is limited to one. Ensuring the processor affinity of VMs, I/O threads or
completion threads are very crucial in the NUMA architecture because different amounts
of overhead are incurred depending on the location of memory node [20]. This overhead
is more important in the case of using NVM-based SSDs with high IOPS because the
maximum capacity of the system cannot be fully utilized due to the overhead such as that
of context switch or memory copy operation. In a KVM system, the vCPU and the I/O
threads of QEMU switch their CPUs depending on the system load, which is shown in a
previous study [10]. Therefore, this may be problematic regarding the cache locality and
delay.

5. DESIGN ISSUES FOR KVM

As a result of applying our methodology to KVM, the performance is improved as
explained in the previous section. However, the same level of performance cannot be
achieved for NVMe-based SSDs or Ramdisk as that of using only the host OS. Specially,
the performance result after using the methodology is not linear in the case of using a
single device even though parallel processing is perform as a result for enhancing the
performance of the single device. Low performance in the case of using a single device
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Fig. 7. Comparison between default multi queue and tunned multi queue.

comes from: 1) parallel batching with the Linux multiple queue block layer; and 2) the
scalability problem of the host file system. Thus we have extended the methodology to
further consider the following characteristics observed from our experiments for validat-
ing the methodology: first, the performance of multiple devices has been higher than that
of a single device. The performance sum of three devices having exitless polling applied
polling with a single thread with 3 devices in Fig. 16 (b) is better than that of a single
device having exitless polling applied with three queues for fully parallel processing with
parallel batching in Fig. 15. From a logical point of view, it is expected that the cases
described above should show similar results, but their results are different in practice.
Second, parallel batch processing for a single device leads to a result of performance
improvement which is not completely linear.

As means of analyzing this problem, a NULL test is performed in order to confirm
the performance in the single device case. In the NULL test, I/O is not performed to a
real device but I/O is completed by returning TRUE on a specific layer. Therefore, the
application which issued an I/O request immediately recognizes that I/O is completed
successfully. The reason why the NULL test is performed is that some overhead can
be found as our methodology makes the current I/O structure in guest OS and QEMU
parallel but does not make any other components for I/O better, such as VFS, file system
and host OS. Thus the goal is to find out the source of the overhead in the test. First, the
test is performed to the request function in the Linux block layer in order to confirm the
maximum performance of guest OS. The result of the test shows that 900K IOPS can be
achieved. It may be concluded that 900K IOPS is the maximum performance which the
guest OS can achieve. We thought that it is possible to find out whether there is a problem
in the upper layer on the Linux block layer or in the lower layer below the Linux block
layer by comparing to the maximum performance, those for a single and multiple devices
with the methodology applied. But the test results for a single device and multiple devices
are almost the same, which means that there is no difference from the application layer to
the block layer. This is because the multiple-queue block layer on the Linux is performed
in parallel being well optimized. It is found that the performance problem is caused by the
bottom layer in the block layer, which indicates that our methodology missed something
important.

This problem was investigated focusing on the use of multiple queues for parallel
batching. In parallel batching with multiple queues, I/O requests are issued by Round-
Robin (RR) scheduling as shown in Fig. 7 (b); for example, the first I/O request is issued
onto the first queue, the second one is issued onto the second queue, and so on. But
we thought that RR scheduling conflicts with the upper layer such as the multiple queue
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block layer for the following reasons: as shown in Fig. 7 (a), the multiple queue block
layer has software queues in order to fully utilize the multiple cores. For instance, each
software queue is assigned to each of the CPU cores. Hardware queues are assigned in
order to support the device driver which has many internal queues. This implementation
is beneficial for parallel operations because each of the cores has a software queue with
locality due to pinning. I/O requests are issued by taking such advantage from the upper
layer, and thus the device driver which has internal queues can be fully utilized.

In the NULL test, it was found that the overhead of block layer is incurred by the
lower layer. We first thought that omitting the existing layers would be helpful. However,
after checking the multi-queue results, we finally decided to fully utilize the existing
layers.

In parallel batching, the method of utilizing software/hardware queues in the multi-
queue patch is employed when issuing I/O requests. As mentioned above, in parallel
batching, multiple queues are used by RR scheduling because this permits using multiple
queues in parallel. This works in the case of using NVM-based SSDs because such SSDs
permit processing multiple I/O requests at a time without any seek operations. Fig. 8
shows the total processing time for 100,000 requests in a queue. Because it takes less
than 3ms in each queue, the utilization of each queue is relatively fair. But the RR scheme
can cause the problem that the I/O request can be issued to the irrelevant device queue
of another core whereas it leads to utilization of multiple queues. To avoid having the
problem, a software queue is pinned to each hardware queue in the upper layer as shown
in Fig. 7 (c). This figure illustrates the modified design of software queues in the case
of using our extended methodology. In this design, the request processing time in each
queue, is increased up to 500ms, but it takes only less time to process 100,000 requests in
one queue, that is, a decrease from 980ms to 920ms. This result implies that increasing
the utilization of each queue by reducing the cost of context switch and improving the
locality via pinning software queues can achieve performance enhancement even though
it may lead to unfair utilization of queues. We conducted the same random read tests with
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pinned software queues, and in the experiment illustrated by Fig. 7 (c), we obtained 300K
IOPS, which corresponds to a 10% improvement.

The performance of the single device case was improved, but the ideal performance
was not yet achieved, and the performance of the multiple device case could be higher
than that of the single device case. The performance of single device optimization with
three queues and three threads is the same as that of multiple device optimization with a
single queue and a thread. But the performance result for a single device is 300K IOPS
and that for multiple devices is 350K IOPS. The result of the ideal case is 380K IOPS (in
the iodepth test with three processes in host OS). The single device environment differs
from that using multiple devices in guest OS, and the difference is illustrated in Fig. 9.
As can be seen in the figure, the use of a single device means that the host file system
has several I/O threads make requests to a single file. In contrast to this case of using a
single device, the use of multiple devices means that the host file system has several I/O
threads and files, and each thread makes requests to a different file. The performance is
expected to be degraded when I/O threads make multiple requests to a single device due
to a scalability problem. We thus conducted an experiment with the fio micro benchmark
to confirm the existence of this problem. To simulate the single device, we conducted
random read tests with a single file, three processes and 32 iodepth resulting in 310K
IOPS. Compared with the case of using a single device, we ran the benchmark with three
files, three processes and 32 iodepth, leading to 380K IOPS. This result tells us that there
is a scalability problem in the ext4 file system, because the performance with three devices
to a single file is less than the performance with three devices to each with its own files.
If this scalability problem can be eliminated, the better performance can be achieved.

6. EVALUATION

To demonstrate the effectiveness of applying our methodology to an NVM-based
paravirtual I/O system, we conducted experiments to measure the I/O performance of a
KVM system using a flash memory-based SSD, Ramdisk [10] and NVMe-based SSD as
such an exemplar system in the following environment: an Inter Xeon(R) E5- 2690 with
2.90GHz 2 CPUs (with 16 cores each) with 128GB RAM was used. The host OS was
ubuntu version 12.04, the Linux kernel version was 3.2.0, the guest OS kernel versions
were 3.5.0 rc7 & 3.15.0, the QEMU version was 1.6.2, the number of vCPUs was six with
a single VM based on each, and the ext4 file system was used in both the host and guest
OSes.
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6.1 Flash Memory-based SSDs

A flash memory-based SSD, a Samsung 845DC evo, the capacity of which is 960GB
with SATA3 was used in a test with LSI megaraid 9361-8i.

6.1.1 Performance and CPU usage for multiple devices

Fig. 10 shows four results of enhancing the data plane which leads to the best perfor-
mance among the existing solutions; exitless polling, a high performance version without
saving CPU cycles, exitless polling with CPU saving, and host OS which corresponds to
the ideal case.

Performance for multiple devices The performance in the CPU saving case was mea-
sured using a request polling thread in QEMU used for two devices, which means that
a single request polling thread runs for two devices. In the case of using the high per-
formance version, a request polling thread and a reply polling thread were run for each
of the devices. As a result, this version performed almost the same (240K IOPS) as host
OS (250K IOPS). Also, the performance of the CPU saving case was improved nearly by
10% compared with the data-plane case.

CPU usage for multiple devices As previously mentioned, CPU usage of 1,000% was
measured for random I/O in the data-plane case. The usage was reduced to 750% in the
CPU saving case, which means CPU usage of nearly 150% was needed for I/O process-
ing. Since the number of vCPUs was six, the maximum CPU usage of a single VM was
600%. Also CPU usage of 850% was shown in the case of using the high performance
version. This indicates that the percentages in CPU usage decreased w.r.t. the maximum
CPU usage were 25% and 15% for the cases as shown in Table 1. It is expected that the

Table 1. CPU usage for SSDs (4 deivces case shown in Fig. 10.)
Max CPU utilization Min CPU utilization

Data-plane 1,000% 950%

Pipelined polling
(Performance) 850% 820%

Pipelined polling
(CPU saving) 750% 710%
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Fig. 11. Performance of a single device on ramdisk. (KVM with multiqueue patch: default KVM
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performance will be further enhanced if many devices are connected to the system, caus-
ing congestion because the lock contention in KVM is significantly reduced. Also, CPU
consumption regarding polling is reduced because the response waiting thread in QEMU
consumes CPU cycles only when computation is needed in that it is blocked waiting for
an I/O event.

The request polling thread periodically checks I/O requests from the guest OS. Thus
it might need to consume CPU cycles more than any exiting solution. However it uses
busy polling only if there are many I/O requests in the I/O queue in the request thread; oth-
erwise, it comes to sleep. For this reason, it does not incur high overhead. The completion
polling thread in guest OS periodically checks I/O completion using the peek function, but
in our methodology, the completion polling thread becomes active only when receiving
an I/ O request in order to avoid incurring high overhead.

6.2 Ramdisk

6.2.1 Maximum performance with a single device

A test with a ramdisk was performed to check the maximum performance in the case
of using a single fast NVM-based storage device. First, the use of our methodology led
to much higher performance than any other existing solution mainly by applying exitless
polling. The performance for a single device previously mentioned (65K IOPS) was im-
proved up to 140K IOPS. But this was still far lower than that in the RAID-0 case (about
250K) where four SSD devices were connected or in the case of using a single NVMe
SSD. Lack of scalability in the block layer in guest OS might cause this problem. The
use of our methodology led to almost the same result compared with the case where only
exitless polling was used. The I/O layer in guest OS except for the device driver cannot
currently issue I/O requests as fast as possible even if fast processing is needed in order
to achieve the maximum hardware performance. The problem of scalability in the Linux
block layer is solved by taking the Linux multi-queue approach [19]. This was tested
in guest OS version 3.15 with our methodology applied, in order to confirm performance
improvement without incurring the overhead of the guest block layer. As a result, the base
performance was improved achieving up to 150K IOPS. When exitless polling was ap-
plied, it reached up to 250K IOPS. When parallel batching in addition to exitless polling
was employed, it reached up to 280K IOPS. However this result was not a desirable linear
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Fig. 12. Performance of multiple devices on ramdisk.

one. We performed experiments after changing the options of the fio benchmark including
iodepth from 1 to 32 and the number of processes from 4 to 128 because a large number
of threads would incur context switching overhead in process scheduling. As shown in
Fig. 11, the use of parallel batching led to improvements in the I/O performance by more
than 50% compared with the baseline case after changing the fio benchmark options. But
there was some performance limitation as shown in Fig. 11 (a); although more queues
and completion threads were added, it would not be possible to achieve over 400K IOPS,
which is not the maximum performance for a single VM because the use of multiple de-
vices can lead to more than 600K IOPS and the ideal performance is 900K according to
the pervious simulation study.

6.2.2 Performance and CPU utilization for multiple devices

Fig. 12 shows the result of applying our methodology compared with the data-plane
case for multiple queues; in our methodology, only the threads for parallel batching were
not used but the function for parallel batching was used. The figure shows that the per-
formance could be improved when an additional device was connected. Also the perfor-
mance was enhanced in the iodepth test where less “exits” occurred. On the contrary, in
the case of using the existing method, the more exits and lock contention occurred, the
more devices were connected, because of accessing APIC and performing internal KVM
operations in KVM compared with our methodology. However our methodology does
not cause this problem by performing exitless polling. The more devices are attached,
the higher performance is obtained. 50 to 100% more CPU usage is required than any
existing approach because busy polling is used for fully utilizing the disk bandwidth.

6.3 NVMe Device

This test was performed with a Samsung NVMe SSD with 800GB, named XS1715.

6.3.1 Performance of random read

We tested the NVMe device in host OS for checking the maximum performance
of random read. As shown in Figs. 13 and 14, the maximum NVMe performance was
not achieved in the case of a single thread or a small number of iodepth. In the case of
direct access with 128 threads, the maximum performance of device was reached, and
in the iodepth test, six threads should be used to reach the maximum performance. As
mentioned above, in the random I/O case, the maximum NVMe device performance could
not be achieved due to the serialization of I/O operations. In order to reach the maximum
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NVMe performance, I/O needs to be performed in parallel. If we want to fully utilize an
NVMe SSD, we should simultaneously perform more than six I/Os with 32 as iodepth or
96 I/O threads.

6.3.2 Performance for a single device

A test was conducted in order to measure the performance for a single virtual stor-
age device in guest OS using the NVMe device. Fig. 15 shows the result of applying our
methodology and using the current technologies in the case of running fio. Each result
in the graph includes that next to in the left; for example, the result of exitless polling
means that of affinity awareness plus exitless polling. The result of the iodepth test was
slightly better than that of direct-access test. But the overall tendency was similar. The
original result shown in Fig. 15 indicates that about 95K IOPS was obtained without any
components of the methodology applied. The affinity awareness test was performed with
pinning vCPUs and batching memory with consideration of the processor affinity in the
NUMA architecture; as a result, 135K IOPS was obtained. The exitless polling result was
200K IOPS which was obtained while affinity awareness was applied. Parallel batching
with three queues led to 250K IOPS, but did not achieve a linear improvement that we had
expected. The result of applying early completion and other components of the methodol-
ogy shows improvements but does not show a big difference because I/O was performed
faster when the NULL test was conducted, without causing congestion, and thus early
completion made no big impact. In the test, QEMU immediately returned with in the
I/O process. This means that the other I/O processing in host was eliminated. There was
no big performance improvement even though parallel batching can lead to processing
three I/O requests concurrently, because there are three queues and a completion thread.
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Fig. 16. IOPS for an NVMe SSD in the direct-access, aio test on multiple virtual storage devices;
our approach is taken except for the use of multiple queues and a dedicated thread to increase the
cpu utilization.

But the result of tuning multiple queues via pinning a queue per vCPU as described in
Section 5 can achieve good performance. The ideal result is the same as that of using
three threads and 32 as iodepth with the NVMe device because we implemented parallel
batching based on the aio interface.

6.3.3 Performance for multiple devices

In this test, we used only one partition in an NVMe SSD. Then we created four files
in the raw format, and each of the files is connected to the guest as a virtual storage node
in order to provide four storage devices in the VM. We set the numbers of queues and
dedicated threads to ones. We assumed that the use of four processes leads to 500K IOPS
which is the ideal result as shown in Fig. 13 since the numbers of devices and I/O threads
are fours. Fig. 16 shows the result. The performance in the original case is improved
when more devices are attached and used. But the degree of performance improvement
becomes lower in the data plane. On the contrary, compared with our methodology, the
performance gain is small in the case where the number of attached devices is small, but
the more devices are connected to the VM, the more the performance is improved; when
four devices are connected, the performance is improved by about 80% compared with
the original case. Note that in the case of making and using multiple file-based storage
devices from a single physical device, in a VM, the performance in this case is higher
compared with that for a single storage device with multiple thread connections. This
means that a VM has a large amount of I/O processing capability but that single VM
storage will suffer from a scalability problem when high IOPS is required.

6.3.4 Random write

Normally, the performance of random write to an NVMe SSD depends on the state
of the SSD. For instance, the clean state which means that the SSD is not dirty can lead to
the maximum performance of the SSD because there is no need for erasure and garbage
collection. The state of sustain means that data is written to most of the flash memory of
the SSD, and thus there is need for erasure before write or garbage collection. The follow-
ing three states of SSD are defined: Clean, Partially-clean and Sustain. To a manufacturer
such as Samsung, the performance in the sustain state is the base of write performance.
But the random write performance in the sustain state is approximately 100 to 120K IOPS.
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Fig. 17. Performance for multiple devices on an NVMe.
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Fig. 19. IOPS in the direct-access test for mixed
workload of random read/write.

This does not reflect only the effect of our methodology, and thus we focus on the clean
or partially clean state.

The maximum performance in the clean state is 350K IOPS with Fig. 13 and Fig. 14.
As shown as Fig. 17, the use of our methodology can lead to the performance for multiple
devices up to 350K IOPS, and 210K IOPS can be achieved in the case of a single device
as shown in Fig. 18 because the write performance for a single file in host OS is 260K
IOPS. Compared with random read, random write can be more affected by the virtual
environment due to journaling of the filesystem and synchronization of metadata.

6.3.5 Mixed Workload

Fig. 19 shows the performance of random read/write in running fio. This test has
great importance because the real-world workloads have mixed-read/write I/O patterns
and process I/O requests in parallel. The result shows that the performance is improved
up to twice in terms of IOPS by applying our methodology.

6.3.6 Macrobenchmark

We ran the TPC-C workload on MySQL in a test. As shown in Fig. 20, the use of
our methodology leads to further performance improvement. The I/O pattern of TPC-
C workload is mixed-read/write. But the performance of the workload cannot reach the
maximum IOPS as described on the mixed workload. For example, the use of our method-
ology can lead to the performance of reading 250,000 blocks per sec, which is shown as
a result of running vmstat in host OS. But the execution of TPC-C workload can reach
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Fig. 20. IOPS in the direct-access test for TPC-C benchmark.

the performance of reading 180,000 blocks per sec even though the CPU is not fully uti-
lized on the VM; which means if the execution of MySQL or TPC-C workload is further
optimized, the use of our methodology can lead to higher performance.

6.3.7 CPU usage

We show that the high performance of random I/O requires high CPU usage as de-
scribed in the SATA SSD case. CPU usage can be reduced by exitless polling. But fast
storage such as NVMe SSDs which is much faster than SATA SSDs consumes slightly
more CPU cycles by approximately 70 to 80% in the cases based on four devices. This is
because: 1) high IOPS requires busy polling; and 2) there is an additional OS in the vir-
tual environment, and thus the same operations should be performed twice; for example,
a read in guest OS will be performed again in host OS. Pass-through can be a solution in
order to reduce CPU usage, because pass-through permits accessing the device directly in
guest OS. However we cannot use file-based storage if pass-through is used. To address
this problem, I/O can be split by pass-through or non-pass-through, which was proposed
in a recent study [21]; reads can be processed by pass-through while writes are performed
in the existing I/O stack.

7. RELATED WORK

There was a study to optimize the host block layer to fully utilize SSDs [22]. In
this work, the authors introduced a request queue incurring the block layer overhead, and
attempted to delete it. The authors of the paper [19] proposed a new request queue for
the multi-core architecture by splitting the queue and reducing the lock contention. We
agree on the fact that the current request queue incurs overhead for SSDs. On the other
hand, the authors of the papers [6, 19, 22] took host OS-based approaches. It is necessary
to minimize the work for queueing and scheduling in the guest context. The authors of
the paper [23] proposed an enhanced request queue by temporal merging. We believe that
this approach can also be effective in the guest block layer; the guest block layer should
be optimized by using a queue which is used for communication between the guest and
host.

The authors of the paper [24] explained the problem that scheduling delay in a VMM
(VM Monitor) leads to delay in the I/O process in the VM. This problem is serious in an
environment where low latency is required. This problem should be addressed in the
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cases of using NVMe and SATA based SSDs. In KVM, VMs are emulated by threads
that consist of vCPUs with I/O threads. I/O in a VM is thus different from the I/O process
in host. Scheduling delay in the VM is more important than that in host OS because
the I/O process in QEMU decides whether to send I/O requests to the host OS or to
send them back to the VM after it receives them from a VM for the first time. This
problem is addressed by our methodology because the process that in charge of I/O with
the methodology applied checks I/O requests by polling, which should be more effective
by considering the processor affinity.

The authors of the paper [25] attempted to optimize networking I/O in VMs by tak-
ing a polling-based approach. This work however focused on networking I/O that is
performed in a stack which is different from that for storage I/O. It was necessary to mod-
ify the host network layer in kernel. On the other hand, in our work only QEMU and
the guest device driver were modified while the storage stack was improved by using the
existing methods, which might minimize changes in QEMU and the guest device driver.

8. CONCLUSIONS

We have devised and developed an architecture independent methodology to improve
the performance of paravirtual I/O systems based on NVM devices, via exitless polling
and parallel batching ensuring the processor affinity. We have demonstrated the effective-
ness of this methodology by applying it to a KVM system using different NVM-based
storage devices. Our experiments study suggests that the use of the methodology can lead
to enhancements in throughput by up to 100% for workloads in mixed read/write patterns
being widely observed in practice. We believe that the methodology will be effective
for such paravirtual I/O systems using not only the current but also future enhanced fast
storage devices.

We are investigating the following issues to further extend methodology towards
optimizing the performance of an NVM-based paravirtual I/O system: taking a hybrid
approach that leads to low latency based on a combination of polling and interrupt for the
VM block layer, dynamically changing s of I/O issue and completion threads depending
on the varying need for the resources to improve the performance, designing and using
low delay scheduling for I/O threads in guest, developing a comprehensive solution for
issuing I/O requests as fast as possible, removing the guest I/O scheduler for fast storage
considering the existence of the duplicated I/O scheduler in the host side, thus incurring
overhead, and finally performing specific I/O by pass-through in order to reduce CPU
usage.
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