
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 24, 1023-1040 (2008)

1023

On Message Sequences for Incremental Network Computing*

CHO-CHIN LIN

Department of Electronic Engineering
National Ilan University

Yilan, 260 Taiwan
E-mail: cclin@niu.edu.tw

In a network computing platform, tasks compete with others for shared resources to

communicate messages. Incremental computing masks communication latency by over-
lapping computation with communication. However, a sequence of messages with a
large latency variance still makes computations proceed intermittently. In this paper, the
impact of the message sequence on computation efficiency is studied and a framework
which employs a well organized message sequence to maximize the efficiency of com-
putations is introduced. Firstly, a network computing model for performing incremental
computations is proposed. Based on the model, theorems are developed as the ground-
work based on which algorithms for finding a well organized message sequence are de-
rived. Finally, algorithms which find a well organized message sequence in

1(())kr
kO +

and ()!
(!)

r
k

r
kO comparison steps are given for sending r input data items using r

k mes-

sages of a given size k.

Keywords: network computing, high performance computing, incremental computing,
parallel and distributed computing, message sequence

1. INTRODUCTION

Due to the advances in information technologies, the capability of many personal
devices such as PDA’s or laptop computers can now meet the computational require-
ments of daily life. By employing the device, many services can be computed based on
the data retrieved from a data storage. In general, the storage capacity of a personal de-
vice is limited. Thus, it is not possible to store world-wide data in the device. Recently, a
network computing infrastructure [1] has been proposed to conquer the problem, in
which network-wide repositories are integrated to store huge amount of data and the
computing facilities compute the requested services based on the data retrieved through
network. On the network computing platform, the computations proceed as follows: re-
mote data repositories send sequences of messages to computing facilities, then the fa-
cilities use the recently arrived messages aggressively to compute the partial result. Since
communicating messages requires both hardware modules to route messages and soft-
ware message layers to deliver messages, communication latency can be experienced by
the computing facilities. Researches [2, 3] have shown the software overhead is one of
the major bottlenecks in communicating messages. However, the communication latency
can still be unstable even though software overhead can be eliminated. The unstable
communication latency comes from the nature of resource sharing inherited from net-

Received June 30, 2006; revised November 13, 2006 & January 2, 2007; accepted January 23, 2007.
Communicated by Sy-Yen Kuo.
* This research was partially supported by the National Science Council of Taiwan, R.O.C. under grants No.

NSC 95-2221-E-197-013 and NSC 96-2221-E-197-007.

admin
打字機文字
DOI:10.1688/JISE.2008.24.4.2

CHO-CHIN LIN

1024

work computing. In the network computing platform, the users need to share with others
the data access capabilities of the repositories and the bandwidths of the communication
channels. Thus, the messages from a data repository may arrive at a computing device
intermittently and the unstable communication latency results in low CPU utilization of
the computing device. Consider the computations ((a + b)/(a − b))2 + (c − d) performed
at a computing device based on the data items a, b, c and d sent from a data repository
using message m0 and m1 in order. The arriving interval of the two messages is g clocks.
Assume the computing device takes 4 clocks and 1 clock to complete the computations
((a + b)/(a − b))2 and (c − d), respectively. If m0 = {a, b} and m1 = {c, d}, then the com-
puting device completes the computations in max{4, g} + 2 clocks. However, If m0 = {c,
d} and m1 = {a, b}, then the computing device completes the computations in max{1, g}
+ 5 clocks. Since max{4, g} + 2 ≤ max{1, g} + 5, it is obvious that the first message se-
quence is better than the second sequence. It implies that the computation and communi-
cation issues are closely inter-wined in the network-based computing and should be
studied together.

This research focuses on the area of network computing, where loosely coupled
computers collaborate in the execution of one application. The computing devices in the
network are provided with data from a data server and start computing incrementally.
Incremental computing is a computing process which computes the partial result based
on the partial input data. This paper analyzes how the order of the data sent to the com-
puting devices influences the performance of the overall system. A framework which
employs a well organized message sequence to maximize the efficiency of computations
is also introduced. In this paper, a model, theorems and a new technique are proposed.
First, a network computing model is proposed for studying the effect of message se-
quences on a network computing platform. Based on the model, the impact of a message
sequence on computation efficiency is investigated. Then, theorems which profit the find
of a well organized message sequence are given. Finally, algorithms which find a well

organized message sequence in
1(())kr

kO +
 and !

(!)
r
k

r
k

O ⎛ ⎞
⎜ ⎟
⎝ ⎠

 comparison steps are developed,

where r is the number of total data items and k is the size of a message. The effort of this
study advances the current state of research in network computing. This study shows that
hiding latency using a well organized message sequence can further squeeze the CPU
cycles from a remote computing device. This paper also suggests that the data layouts in
the data servers and the computation protocols between two collaborating computers
should be tailored to match the computation structure of a task.

In the past, many researches have devoted to boosting the communication perform-
ance and the proposed techniques have been proved to be very successful. Several re-
searches [4-10] have been concentrated on developing message scheduling strategies
which maximize the utilization of communication bandwidth. They can be used to im-
prove the efficiency of complicated communication routines. Communication latency
hiding is a well-known technique to increase CPU utilization and several researches [11-
14] have studied the effect of latency hiding. In [11], the gain of communication latency
hiding by overlapping computation with communication was analyzed. However, over-
lapping computation with communication was not necessarily without cost. In [12], the
effect of overlapping computation with communication was investigated for runtime-
dependent network contention. In [13], the interaction of two latency hiding techniques,

ON MESSAGE SEQUENCES FOR INCREMENTAL NETWORK COMPUTING

1025

pre-fetching and write buffer under weak consistency, with the limited bandwidth in a
large multiprocessor was investigated. In [14], the performance of a system employing a
dedicated communication processor and that of a system without employing a dedicated
communication processor were compared. In [15], it has been shown that the pattern of a
message sequence has a serious impact on the performance of network-based computing
using LU decomposition as an example. In [16], several fundamental theorems have been
given to profit the design of efficient algorithms on network computing platform. In [17],
dominant data sequences have been found for the three applications: the product of two
polynomials, matrix multiplication and Fast Fourier Transform. The authors also demon-
strated that no dominant sequences exist for any of the three applications if a special data
representation is used for the sparse cases of matrix multiplication, polynomial product
and FFT computation. This paper extends the works in [15, 16].

A model, theorems and a new technique have been proposed in this paper. First, a
model is given in section 2 to capture the characteristics of a network-based computing
platform. The formal definition of incremental computing is given in section 3. Theorems
profiting the designs of efficient applications and serving as the principle of the algo-
rithms for finding a dominant message sequence are developed in section 4. In section 5,
algorithms for finding a dominant message sequence which maximizes the CPU utiliza-
tion are proposed. Finally, concluding remarks are made in section 6.

2. A MODEL FOR NETWORK COMPUTING PLATFORM

In this section, two parameters are given to capture the characteristics of a network
computing platform. In the platform, the server is a repository which acts as a data pro-
vider and the computing device is a computation provider. Before a computing device
starts to compute a service, it sends a request to the data server. After the data server has
noticed the event of the request, it responses by sending data items to the device for
computing the service. The operation can be summarized as follows: a server sends data
items d0d1…dr-1 using a sequence of messages m0m1…mN-1 to a device and the device
uses the data items as its input to compute the service concurrently. In this paper, it is
assumed the order of the messages arriving at the computing device is the same as the
order of the messages sent from the server. That is, if the server sends messages m0m1
m2…mN-1 in order, then the computing device will receive mi before mi+1 for 0 ≤ i < N − 1.
An onto function ρ which maps A = {0, 1, 2, …, r − 1} to B = {0, 1, 2, …, N − 1} as-
signs a tag to each of the input data items. A data item di with a tag ρ(i) is sent by mes-
sage mρ(i). Note that a message can deliver more than one data item. For example, a data
item d0 with a tag ρ(0) = 8 is sent by message m8. Another data item d3 with the same tag
number ρ(3) = 8 is also sent by the same message m8. By employing the function, the
order of sending input data items can be specified. The data items packed in a message
are ready to be used only after the message has been completely received by the com-
puting device. A computation which is executable based on the arrived data is defined as
a triggered computation.

In the following paragraph, an abstract model of network computing is given. Let M
be the sequence of messages m0m1…mN-1. Define H(M, k) as the function which calcu-
lates the number of triggered computations based on the first k + 1 messages in M: m0m1

CHO-CHIN LIN

1026

…mk. The first parameter is defined for each incoming message to express the amount of
additional computations triggered at the computing device.

• fk: the kth computational fillet of a task (measured in number of CPU cycles). It is de-
fined as the amount of additional computations triggered at a computing device when
message mk has been completely received. That is, fk = κ(H(M, k) − H(M, k − 1)),
where κ is the number of CPU cycles needed to complete a computation. Note that m0
is the first message, thus, define fk = 0 for k < 0.

Fig. 1. Illustration of the computations performed by a task.

The definition of a computational fillet is illustrated by a computation task as shown

in Fig. 1. In the figure, the computation structure of a task is represented by an undirected
graph G(V, E), where V = {d0, d1, d2, …, d11} and E is a set of edges. The existence of an
edge (di, dj) implies that computation of one unit can be performed if both di and dj are
available at the computing device. Assume the server sends the data items using mes-
sages m0m1m2, where m0 = {d0d1d2d3}, m1 = {d4d5d6d7} and m2 = {d8d9d10d11}. According
to the definition of the computational fillet, we have f0 = 3, f1 = 5 and f2 = 4. It is obvious
other data-sending sequences exist and the computational fillets are different. For exam-
ple, if the sequence of the task in Fig. 1 is m0 = {d4d5d6d7}, m1 = {d0d1d2d3} and m2 = {d8
d9d10d11}, then we have f0 = 1, f1 = 7 and f2 = 4. In the following sections, denote F and

0
k

k iiF f
=

= ∑ as sequence (f0, f1, f2, …, fN-1) and the kth accumulative computational fillet,
respectively. Let |S| denote the number of elements in set S or sequence S. In this paper,
we have |F| = N.

The second parameter of the model is given to capture the pattern of available CPU
cycles, which are segmented by a sequence of messages. The parameter is defined as
follows:

• gk: the kth computational gain for a task (measured in number of CPU cycles). It is the
number of available CPU cycles for the computing device to perform computations at
the interval of arrived messages mk and mk+1. Denote tk and tk+1 as the times that mes-
sages mk and mk+1 have been completely received by the computing device. Then, gk =
τ(tk+1 − tk), where τ is the number of CPU cycles per unit time provided by the com-
puting device . If mk is the last message, then gk is defined to be the total CPU cycles
needed to complete the computations specified by fN-1 plus the previous triggered com-
putations which have not been executed. Note that m0 is the first message, thus, define
gk = 0 for k < 0.

ON MESSAGE SEQUENCES FOR INCREMENTAL NETWORK COMPUTING

1027

Fig. 2. Illustration of the incoming messages and the computations at a computing device.

The definition of a computational gain can be illustrated in Fig. 2. In the figure, ti0 is

the time at which the computing device begins to receive message mi, ti1 is the time at
which message mi has been completely received and computational fillet fi is triggered.
Note that fi is triggered immediately after message mi has been completely received. In
Fig. 2, the lengths of the black boxes representing the computational fillets are only for
illustrating the various amounts of triggered computations for the received messages. In
the figure, gi is the number of available CPU cycles for the computing device to perform
computations at the interval between ti1 and ti+11. For a computing device with a fixed
processing speed, the values of the computational gains may be variant due to the uncer-
tainty of communication latency. For example, the value of g0 is larger than that of g1 in
Fig. 2. In general, the values of computational gains depend not only on the processing
speed of a computing device but also on the available bandwidth scheduled by the com-
munication subsystem for transmitting messages. In the following sections, denote G and

0
k

k iiG g
=

= ∑ as sequence (g0, g1, g2, …, gN-2) and the kth accumulative computational
gain, respectively. Note that gN-1 is not included in G. It is worth mentioning that the val-
ues in the sequence of computational gains G are related to the network traffic. Thus, the
term traffic pattern will be used in stead of the term computational gain sequence wher-
ever it is appropriate.

The parameters ρ, fk and gk defined in this paper are summarized as follows. The
data items d0, d1, …, dr-1 stored at the data provider are packed into a sequence of mes-
sages m0m1…mN-1 according to a given function ρ. Message mk consists of all the data
items di’s, where ρ(i) = k for 0 ≤ i < r. As message mk arrives at the computing device, the
number of extra executable computations is fk. Before message mk+1 arrives, the comput-
ing device has gk CPU cycles to perform the extra executable computations plus the pre-
vious unfinished computations if they exist.

CHO-CHIN LIN

1028

3. INCREMENTAL COMPUTING

Overlapping computation with communication is one of the major techniques to in-
crease CPU utilization. In a network computing platform, it can be achieved by com-
municating messages and performing computations concurrently. For example, in Fig. 2,
receiving message m2 overlaps with the ongoing computations specified by f1 at the
computing device. In the network computing platform, each device competes with others
for the shared network bandwidth as well as the data access capability of data reposito-
ries. Thus, the messages may arrive at a computing device intermittently. In this case, the
CPU utilization may become intolerably low. For example, in Fig. 2, the computing
device is idle at the interval between t02 and t11 because the message m1 arrives at the
computing device late. Although overlapping computation with communication is an
effective technique to mask the latency, however, the number of computations which
wait to be performed between two consecutive messages should be large enough to keep
the device busy. To effectively overlap computation with communication, a message se-
quence should be tailored to tolerate the uncertainty of communication latency.

The computation structure of the task given in Fig. 1 is used as an example to illus-
trate that various message sequences lead to possibly different execution times. Accord-
ing to Fig. 1, there are 12 computations to be performed. Initially, the data items d0, d1,
d2, …, d11 are stored at a server and they are sent to the computing device for performing
computations concurrently using a sequence of messages. One of the possible sequences
is m0m1m2, where m0 = {d0d1d2d3}, m1 = {d4d5d6d7} and m2 = {d8d9d10d11} as shown in Fig.
3 (a). The computational fillets triggered by the sequence are f0 = 3, f1 = 5 and f2 = 4. Let
the interval between m0 and m1 be 6 CPU cycles and the other interval between m1 and
m2 be 4 CPU cycles. That is, the computational gains are g0 = 6 and g1 = 4. Assume one
computation takes one CPU cycle and the starting time of execution is the time when the
first message has been completely received by the computing device. Based on the as-
sumption, the computing device takes 15 CPU cycles to complete the 12 computations
and its CPU utilization is 80%. Another possible sequence is 0 1 2 ,m m m′ ′ ′ where m'0 = {d4d5
d6d7}, m'1 = {d0d1d2d3} and m'2 = {d8d9d10d11} as shown in Fig. 3 (b). The computational
fillets triggered by the sequence are f0 = 1, f1 = 7 and f2 = 4. Let the arrival intervals of the
consecutive messages be the same as the previous case. Then, the computing device takes
17 CPU cycles to complete the 12 computations and its CPU utilization is 71%. It is ob-
vious that the first sequence leads to a better CPU utilization compared with the second
sequence. However, the first sequence is not a best sequence. Another better sequence

0 1 2m m m′′ ′′ ′′ can be found, where 0m′′ = {d0d1d6d7}, 1m′′ = {d2d3d8d9} and 2m′′ = {d4d5d10 d11}
as shown in Fig. 3 (c). The computational fillets triggered by the sequence are f0 = 6, f1 =
4 and f2 = 2. Let the arrival intervals of the consecutive messages be the same as the pre-
vious cases. Then, the computing device takes 12 CPU cycles to complete the 12 com-
putations and its CPU utilization is 100%. In the third case, the device keeps on per-
forming computations without being idle. It is easy to verify that, for a given number of
received messages, the third sequence makes the computing device accumulate more
triggered computations than the other two. That is for 0i i iF F F i′′ ′≥ ≥ ≤ ≤ 2.

Network computing that employs incremental computing technique to mask latency
can be described by a pair of sequences F and G. An incremental computing process is
defined as follows.

ON MESSAGE SEQUENCES FOR INCREMENTAL NETWORK COMPUTING

1029

(a) (b)

(c)

Fig. 3. Illustration of three different message sequences.

Definition 1 In a network computing platform, the computing process in which a com-
puting device employs available CPU cycles greedily to perform triggered computations
is defined as incremental computing process. An incremental computing process is de-
noted by a 2-tuple (F, G).

Assume a server sends a sequence of messages m0m1…mi…mN-1 to a computing de-
vice. The computational fillets of the messages are f0f1f2…fi…fN-1 and their corresponding
computational gains are g0g1g2…gi…gN-1. Two cases can be observed for fi and gi: gi ≤ fi
or gi > fi. For example, in Fig. 2, g1 is less than f1. In this case, the execution of the trig-
gered computations of fi − gi CPU cycles are delayed and will be performed later. Thus, fi
− gi CPU cycles should be taken from gi+1gi+2…gN-2gN-1 to complete part of the computa-
tions specified by fi. For example, in Fig. 2, some of the CPU cycles specified by g2 are
used to complete part of the computations specified by f1. The other case: gi is larger than
fi. In this case, gi − fi CPU cycles are wasted or used to perform the previous triggered
computations that cannot get sufficient CPU cycles from their corresponding computa-
tional gain. For example, in Fig. 2, g0 is larger than f0. Thus, the computing device is idle
at the interval between time t02 and t11. Then, the time to finish the task is delayed due to
the wasted CPU cycles. The gap of a computational fillet fi and its corresponding com-
putational gain gi is a performance measure which indicates how efficiently a computa-
tional gain is employed. Thus, the ith gain utilization index (gui) denoted as δi is defined

CHO-CHIN LIN

1030

based on the difference of gi and fi. That is, δi = gi − fi. Furthermore, the kth accumulative
gui Δk is defined as 1 .k

ii δ
=−∑ The pattern of a gui sequence indicates the CPU utilization

of an incremental computing process. Based on the δi, we define the characteristic se-
quence of an incremental computing process as follows:

Definition 2 The characteristic sequence of (F, G) is defined as (δ0, δ1, δ2, …, δN-2). It
is denoted as P(F, G).

The execution time of a task denoted as Φ(F, G) is defined to be 1
0 .N

ii g−
=∑ The time

to complete the partial computations specified by (f0, f1, f2, …, fk) is denoted as Φ(Fk, Gk-1).
Denote E(F, G) as the CPU utilization of running (F, G) and it is defined as FN-1/Φ(F, G).
In Table 1, fi, δi and Δi for an incremental computing process (F, G) are given as an ex-
ample, where F = (f0, f1, f2, f3, f4, f5, f6, f7, f8) and G = (g0, g1, g2, g3, g4, g5, g6, g7). Note
that, based on the definition of the computational gains, the value of g8 depends on se-
quences F and G. Thus, we need to calculate g8 using F and G before we can derive Φ(F,
G). In section 4, a theorem is given for deriving Φ(F, G) without knowing g8 in advance.

Table 1. Parameters of an incremental computing process (F, G).
i 0 1 2 3 4 5 6 7 8
fi 2 9 1 4 3 5 9 4 2
Fi 2 11 12 16 19 24 33 37 39
gi 2 7 6 2 5 7 7 2 6
δi 0 − 2 5 − 2 2 2 − 2 − 2 4
Δi 0 − 2 3 1 3 5 3 1 5

E(F, G) 88.6

Denote ST as the set of computational fillet sequences for performing task T using a

sequence of messages of a given size k. Since the number of input data items of task T is
fixed, thus, the sequences in ST have the same number of computational fillets. Note that
it is not necessary for ST to include all the combinations of the computational fillet se-
quences for performing task T. In the following definition, a special sequence of compu-
tational fillets is defined. Assume the accumulative computational fillets for sequences F
and F ′ are denoted as Fk and F'k, respectively.

Definition 3 Let F be a member of ST. If Fi ≥ F'i for 0 ≤ i < N, where F ′ is any other
member of ST, then F is a dominant sequence in ST.

It will be shown, in section 4, that the execution time of a dominant sequence is less

than that of any other sequence in ST.

4. GROUNDWORK

Theorems guiding the design of efficient applications and serving as the base for
developing the algorithms of finding a dominant message sequence are given in this sec-

ON MESSAGE SEQUENCES FOR INCREMENTAL NETWORK COMPUTING

1031

tion. Let σ be a permutation function. The following notations are given to simplify
mathematical expressions. Assume L = (l0, l1, …, la, …, lb, …, lN-1). Sequence Lσ is
formed by permuting the elements in L using function σ. La,b is a subsequence of L
which consists of la…lb. If a = 0, Lb is used instead of L0,b. For example, if F = (f0, …,
fa, …, fb, …, fN-1), then Fσ = (f '0…f 'N-1) where f 'i = fσ(i), Fa,b = (fa…fb) and Fb = (f0…fb).
The time needed to complete the computations triggered by the received messages is
given in Theorem 1. The correctness of the theorem is based on Lemma 1. Lemma 1
gives the recurrence relation for the time to complete the computations triggered by
messages m0 m1…mb+1. In the lemma, the expressions at the righthand sides of the cases
1 and 2 consist of two terms. In the first case, the first term is the CPU cycles needed to
complete the computations triggered by messages m0m1…mk+1 under a given traffic pat-
tern Gk, where k is the largest integer such that Δk = max{Δ-1, Δ0, Δ1, …, Δb-1}. The sec-
ond term is the total computations triggered by the remaining messages mk+2, …, mb+1. In
the second case, the first term is the CPU cycles needed to complete the computations
triggered by messages m0m1…mb under a given traffic pattern Gb-1. The second term is
fb+1 plus extra CPU cycles. The number of extra CPU cycles is the interval of time at
which the CPU is idle in waiting for the forthcoming message mb+1.

Lemma 1 Let k, k < b, be the largest integer such that 1
1max { },b

k i i
−
=−Δ = Δ where b ≤

|F| − 2. Thus, we have:

(1) If Δb ≤ Δk, then Φ(Fb+1, Gb) = Φ(Fk+1, Gk)
1

2 .b
ii k f+

= +
+∑

(2) If Δb > Δk, then Φ(Fb+1, Gb) = Φ(Fb, Gb-1) + (fb+1 + Δb − Δk).

Proof: Cases (1) and (2) are proved separately. In the proof of this theorem, k < b and k is
the largest integer such that 1

1max { }.b
k i i

−
=−Δ = Δ

Case 1: Δb ≤ Δk. It implies Δj − Δk ≤ 0 for k + 1 ≤ j ≤ b. Denote 1, 1
j

k j ii kG g+ = +
= ∑ and

Fk+1,j = 1 .j
ii k f

= +∑ Since Δj − Δk = Gk+1,j − Fk+1,j, we have: Gk+1,j − Fk+1,j ≤ 0, for k + 1 ≤ j
≤ b. It implies that the available CPU cycles specified by gk+1, gk+2, …, gj are not enough
to perform computations needed by fk+1, fk+2, …, fj. The statement leads to the following
equation:

Φ(Fb+1, Gb) = Φ(Fk+1, Gk)
1

2
.

b

i
i k

f
+

= +
+ ∑

Case2: Δb > Δk. It implies Δj − Δk ≤ 0 for k + 1 ≤ j < b and Δb − Δk > 0. Thus, the follow-
ing equations hold

Δj − Δk = Gk+1,j − Fk+1,j ≤ 0 for k + 1 ≤ j < b and (1)

1, 1 1, 1() () 0.
A

b k k b k b b b
CB

G F g f+ − + −Δ − Δ = − + − >

������������

��	�
����	���

 (2)

From Eqs. (1) and (2), it is known that terms B ≤ 0 and A > 0. Thus, C > 0 must be
true. It implies that some CPU cycles provided by gb are used to perform computations

CHO-CHIN LIN

1032

defined by the computational fillets fk+1fk+2…fb-1 that are short of CPU cycles. That is, the
extra CPU cycles specified by term C can be used to perform the computations specified
by term B. It is the number of computations which have not been performed when mes-
sage mb arrives at the computing device. However, there are still B + C wasted cycles
which cannot be used by the forthcoming computational fillet fb+1. Note that B + C = Δb −
Δk. The statement leads to the following equation:

Φ(Fb+1, Gb) = Φ(Fb, Gb-1) + (fb+1 + Δb − Δk).

Note that Gj-1 can be considered as the sequences of arrival intervals of the first j
messages. The execution time of an incremental computing process is given in Theorem
1 which is derived based on Lemma 1. The theorem states the time needed to complete
the computations specified by messages m0m1…mj with intervals Gj-1 is the number of Fj
cycles plus the maximum of {0, Δ0, Δ1, Δ2, …, Δ j-1}.

Theorem 1 Φ(Fj, G j-1) = Fj +
1
1max { }.j

ii
−
=− Δ

Proof: Mathematical induction is used to show the correctness of Theorem 1.

Basis: According to the definition of computational gain, G-1 = (). It is easy to verify that
Φ(F0, G-1) = F0 and Φ(F1, G0) = F1 + max{0, Δ0}. It leads to that (Φ(Fj, Gj-1) = Fj +

1
1max { }j

ii
−
=− Δ for j = 0, 1. Thus, it is true for j = 0, 1.

Hypothesis: Φ(Fj, Gj-1) = Fj +
1
1max { }j

ii
−
=− Δ for j ≤ b is true.

Induction: Considering j = b + 1, we want to prove: Φ(Fb+1, Gb) = Fb+1 + 1max { }b
i i=− Δ

is also true.

Let k, k < b, be the largest integer such that Δk =
1
1max { }.b

i i
−
=− Δ Two cases need to be

considered: Δb ≤ Δk and Δb > Δk.

• Δb ≤ Δk: Based on Lemmas 1 and Hypothesis, we have:

Φ(Fb+1, Gb) = Φ(Fk+1, Gk) +
1

2

b

i
i k

f
+

= +
∑ Based on Lemma 1

=
1

1 1 2
max{ }

bk

k i ii i k
F f

+

+
=− = +

+ Δ + ∑ Based on Hypothesis

= 1 1
max{ }

k

b ii
F +

=−
+ Δ

= 1 1
max{ }.

b

b ii
F +

=−
+ Δ

Thus, the first case is proved.

• Δb > Δk: Based on Lemma 1 and Hypothesis, we have:

ON MESSAGE SEQUENCES FOR INCREMENTAL NETWORK COMPUTING

1033

Φ(Fb+1, Gb) = Φ(Fb, Gb-1) + fb+1 + Δb − Δk Based on Lemma 1

=
1

1
max{ }
b

b ii
F

−

=−
+ Δ + fb+1 + Δb − Δk Based on Hypothesis

= Fb+1 + Δb

= 1 1
max{ }.

b

b ii
F +

=−
+ Δ

Thus, the second case is proved.

The following corollary is a direct result of Theorem 1. It is the formula to calculate
the time needed to complete the incremental computing process (F, G).

Corollary 1 Given an incremental computing process (F, G) and |F| = N, then, the exe-
cution time Φ(F, G) is

2
1 1max { }.N

N i iF −
− =−+ Δ

Proof: Since F = (f0, f1, …, fN-1), it is obvious according to Theorem 1.

The execution time of the incremental computing process illustrated in Table 1 can
be derived using Corollary 1. Its execution time is

7
8 1max { } 44.i iF =−+ Δ = Let F and F ′

be members of ST. The maximal accumulative gui of (F, G) and (F ′, G′) are Δk and ,k ′′Δ
respectively. The comparison on the execution times of the incremental computing proc-
esses with various maximal accumulative gui’s is given in Corollary 2. The corollary
states that the incremental computing process with a smaller maximal accumulative gui
can finish earlier than those with larger maximal accumulative gui’s.

Corollary 2 If F, F ′ ∈ ST and Δk < ,k ′′Δ then Φ(F, G) < Φ(F ′, G′).

Proof: According to Theorem 1, the execution time of (F, G) is 2
1 1max { }N

N i iF −
− =−+ Δ and

the execution time of (F ′, G′) is 2
1 1max { }.N

N i iF −
− =−′ ′+ Δ F and F ′ ∈ ST implies FN-1 = F'N-1.

Since FN-1 = F'N-1 and Δk < ,k ′′Δ it leads to Φ(F, G) < Φ(F ′, G′).

Let A be an increasing sequence (a0, a1, …, ai, ai+1, …, aN-1) in which ai+1 is no less
than ai, for all i. Lemma 2 gives a fundamental property of an increasing sequence which
is used as the base in proving Theorem 2. Denote the Ath prefix sum of A as 0 .ii a

=∑ A
The lemma states that the Ath prefix sum of A is no larger than the Ath prefix sum of Aσ
which is formed by permuting the elements in A using the permutation function σ.

Lemma 2 Let A = (a0, a1, …, aN-1) and 0 1 1(, , ,).NA a a aσ −′ ′ ′= … If A is an increasing
sequence, then 0 0 ,i ii ia a

= =
′≤∑ ∑A A

 for all A, 0 ≤ A < N.

Proof: Let set S = {a0, a1, a2, …, aA} and 0 1 2(, , , ,).S a a a aσ ′ ′ ′ ′= A… Denote S as the com-
plement of S. That is 1 2 3 1{ , , , , }.NS a a a a+ + + −= A A A … It is obvious that for any x ∈ S and
y ∈ ,S we have: x ≤ y; otherwise, A cannot be an increasing sequence. Notations S ′
and Sσ′ are used to represent the sets which are formed by excluding the common

CHO-CHIN LIN

1034

elements from S and Sσ, respectively. That is, S ′ = S − (S ∩ Sσ) and ().S S S Sσ σ σ′ = − ∩
Since ()S S Sσ′ ⊆ ∪ and 0,S Sσ′∩ = / we have .S Sσ′ ⊆ It implies that for any x ∈ S ′ and
y ∈ ,Sσ′ x ≤ y. In addition, |S ′| = |Sσ′ | because of |S| = |Sσ|. Thus, .x S y Sx y

σ′ ′∈ ∈
≤∑ ∑ It

leads to x S x
∈∑ .y S y

σ∈
≤ ∑ Thus, this lemma is proved.

Theorem 2 compares the execution times for the two processes: one with an in-
creasing characteristic sequence and the other with the permuted version of the sequence
denoted as P(F, G)σ. Note that the characteristic sequence P(F, G)σ is formed by per-
muting the elements of the characteristic sequence P(F, G).

Theorem 2 If P(F, G) is an increasing sequence, then Φ(F, G) ≤ Φ(F, G)σ.

Proof: Since P(F, G) is an increasing sequence, then δi+1 ≥ δi for all i. Let P(F, G)σ =

0 1 2 1(, , , ,),Nδ δ δ δ −′ ′ ′ ′… where () .i iσδ δ′ = Denote 0 .b
i bi δ

=
′ ′= Δ∑ Let k and k′ be the largest

integers such that 2 2
1 1max { } and max { }.N N

k i i k i i
− −

′=− =−′ ′Δ = Δ Δ = Δ From Lemma 2, it is known
Δi ≤ Δ′k′ for all i, 0 ≤ i < N. Thus, Δ ≤ Δk ≤ Δ′k′. It implies Φ(F, G) ≤ Φ(F, G)σ.

Incremental computing processes (F, G) and (F ′, G′) are fairly treated if gi = gi′ for
all 0 ≤ i ≤ N − 2. Incremental computing processes (F, G) and (F ′, G′) are unfairly treated
if there exists an i, 0 ≤ i ≤ N − 2, such that gi ≠ gi′. Corollaries 3 and 4 are statements re-
garding fairly treated processes and unfairly treated processes, respectively. Corollary 3
states that for a given traffic pattern G of fixed message arrival intervals, the time to com-
plete the task specified by a decreasing sequence F is no more than that specified by its
permuted version.

Corollary 3 Let (F, G) and (Fσ, G) be fairly treated. If F is a decreasing sequence and
gi = gj for 0 ≤ i, j ≤ N − 2, then Φ(F, G) ≤ Φ (Fσ, G).

Proof: Since F is a decreasing sequence and gi = gj for all 0 ≤ i, j ≤ N − 2, we have: (1)
P(F, G) is an increasing sequence and (2) P(Fσ, G) = P(F, G)σ. Based on Theorem 2,
Φ(F, G) ≤ Φ(Fσ, G) is true.

Corollary 4 states that if each of the incoming messages triggers a fixed number of
computations then the time to complete the task under the traffic pattern G of increasing
arrival intervals is no more than that under the permuted version of G.

Corollary 4 Let (F, G) and (F, Gσ) be unfairly treated. If G is an increasing sequence
and fi = fj for 0 ≤ i, j ≤ N − 1, then Φ(F, G) ≤ Φ(F, Gσ).

Proof: Since G is an increasing sequence and fi = fj for all 0 ≤ i, j ≤ N − 1, we have: (1)
P(F, G) is an increasing sequence, and (2) P(F, Gσ) = P(F, G)σ. Based on Theorem 2,
Φ(F, G) ≤ Φ(F, Gσ) is true.

Corollaries 3 and 4 consider either the elements in F have the same value or the
elements in G have the same value. The following theorem considers the general case the
values of the elements in G and F are variant.

ON MESSAGE SEQUENCES FOR INCREMENTAL NETWORK COMPUTING

1035

Theorem 3 Let (F, G) and (Fσ, G) be fairly treated. If F is a decreasing sequence then
Φ(F, G) ≤ Φ(Fσ, G).

Proof: Let F = (f0, f1, …, fN-1) and Fσ = 0 1 2 1(, , , ,).Nf f f f −′ ′ ′ ′… Based on F and Fσ, �F

and σ
�F are formed by attaching a negative sign to each of the elements in F and Fσ.

That is, �F = (− f0, − f1, …, − fN-1) and σ
�F = 0 1 2 1(, , , ,).Nf f f f −′ ′ ′ ′− − − −… Since F is a

decreasing sequence, �F is an increasing sequence. According to Lemma 2, 0 ()ii f
=

− ≤∑ A

0 ()ii f
=

′−∑ A
 for all 0 ≤ A < N. It implies that 0 0() ()b b

i i i ii ig f g f
= =

′− ≤ −∑ ∑ for all b. Let

0 (b
b ii g

=
Δ = ∑ − fi) and 0 ().b

b i ii g f
=

′ ′Δ = −∑ Thus, Δi ≤ Δi′ for all 0 ≤ i ≤ N − 2. It leads
to that FN-1 +

2 2
1 1 1max { } max { }.N N

i i N i iF− −
=− − =− ′Δ ≤ + Δ Thus, the statement: Φ(F, G) ≤ Φ (Fσ,

G) is true.

The following theorem considers the execution times of different message se-
quences in ST which are sent to a computing device for performing task T. Let the ith
accumulative fillets of (F, G) and (F ′, G) be denoted as Fi and .iF ′ Theorem 4 states that
for a given traffic pattern G, the incremental computing process which accumulates more
computations than the other processes at any moment can finish its task earlier.

Theorem 4 F and F ′ ∈ ST. If Fi ≥ Fi′ for all 0 ≤ i ≤ N − 2, then Φ(F, G) ≤ Φ(F ′, G).

Proof: Since Fi ≥ Fi′ for all 0 ≤ i ≤ N − 2, it implies ,i i i iG F G F ′− ≤ − for all 0 ≤ i ≤ N −
2. Thus, Δi ≤ i′Δ for all 0 ≤ i ≤ N − 2. According to Theorem 1, the statement: Φ(F, G) ≤
Φ(F ′, G) is true.

The following corollary is a direct result of Theorem 4. Corollary 5 states that a
dominant sequence has the shortest execution time for any given traffic pattern G.

Corollary 5 If F is a dominant sequence in ST, then Φ(F, G) ≤ Φ(F ′, G), for any other
F ′ ∈ ST.

Proof: Since F, F ′ ∈ ST and F is dominant, then Fi ≥ Fi′ for 0 ≤ i ≤ N − 2. Based on
Theorem 4, this corollary is proved.

Theorem 5 shows that the execution time of the task specified by an increasing
computational fillet sequence is no more than that of the same task specified by a de-
creasing computational fillet sequence.

Theorem 5 F and F ′ ∈ ST. If F and F ′ are decreasing and increasing sequences, re-
spectively, then Φ(F, G) < Φ(F ′, G).

Proof: Firstly, the proof of the correctness on the claim: Fi ≥ Fi′ for all 0 ≤ i < N is con-
ducted. Since F is a decreasing sequence and F ′ is an increasing sequence, f0 ≥ f0′ must
be true. Otherwise, F and F ′ cannot be both in ST. So, F0 ≥ F0′. Assume the claim is not
true for some i > 0. Thus, a smallest integer h, for 1 ≤ h ≤ N − 2, such that Fh < Fh′ can be
found. It implies that Fh − Fh-1 < Fh′ − F ′h-1. It leads to that fh < fh′. Since F is a decreas-
ing sequence and F ′ is an increasing sequence, it implies that fN-1 ≤ fN-2 ≤ … ≤ fh+1 ≤ fh <

CHO-CHIN LIN

1036

fh′ ≤ f ′h+1 … ≤ f ′N-2 ≤ f ′N-1. Thus,
1 1

1 1 .N N
i ii h i hf f− −

= + = +
′<∑ ∑ It implies that Fh +

1
1

N
ii h f−

= +
<∑

Fh′ +
1

1 .N
ii h f−

= +
′∑ That is, FN-1 < F ′N-1. It is a contradiction. Thus, it leads to the correct-

ness of the claim: Fi ≥ Fi′ for all 0 ≤ i ≤ N − 2. Since Fi ≥ Fi′ for all 0 ≤ i ≤ N − 2, Φ(F, G)
≤ Φ(F ′, G) is true according to Theorem 4.

5. FINDING A DOMINANT SEQUENCE

Given a set S of messages, the Dominant Subsequence problem (DSP) is to find a
subset S ′ of k messages such that the number of executable computations triggered by S ′
is no less than that triggered by any other subset of k messages. To show DSP is NP-hard,
the Heaviest Subgraph problem (HSP) [18] is introduced first. For an undirected graph G
= (V, E) with nonnegative edge weights wij for (vi, vj) ∈ E and an integer k ≤ N = |V|, the
HSP problem is to determine a subset V ′ of k vertices such that the weight of the sub-
graph induced by V ′ is maximized. Let cij denote the number of executable computations
triggered by a pair of messages mi and mj after the pair of messages have been com-
pletely received by the computing device. Given a set of N messages, the computations
performed by a task is defined as follows: cij = wij if wij ≠ 0; otherwise cij = 0. It is obvi-
ous that HSP is polynomial-time reducible to DSP. Thus, DSP is NP-hard. In this section,
assume the number of data items r is a multiple of k, where k is the number of data items
in a message. Based on the theorems developed in section 4, algorithms which find a

well organized message sequence in
1(())kr

kO +
 and

!
(!)

r
k

r
k

O ⎛ ⎞
⎜ ⎟
⎝ ⎠

 comparison steps are given

for sending r input data items using messages of a given size k.
Theorem 4 states that a dominant message sequence minimizes the time of execut-

ing a task across a network. According to Definition 3, a dominant sequence F of ST
must satisfy Fi ≥ Fi′ for all 0 ≤ i ≤ N − 2, where F ′ is any other sequence in ST. Assume
ST consists of all the possible computational fillet sequences of task T and there is at least
one dominant sequence in ST. The following steps are given to find a dominant sequence
from a special type of ST in which Fi ≠ Fi′ for all 0 ≤ i ≤ N − 2. Let S and S ′ be sets of
data items. The data items needed to perform task T are d0, d1, …, dr-1 and each message
consists of k data items.

1. Initially, i ← 0, S ′ ← 0/ and S ← {d0, d1, …, dr-1}.
2. Choose k data items 0 1 1

, , ,
kj j jd d d
−′ ′ ′… from set S such that Fi is largest.

3. Pack the chosen data items into message mi and define ρ(jh′) = i for 0 ≤ h < k.
4. S ← 0 1 1 0 1 1

{ , , , } and { , , , }.
k kj j j j j jS d d d S S d d d
− −′ ′ ′ ′ ′ ′′ ′− ← ∪… …

5. i ← i + 1. Go to step 2 for the next iteration if there is any data item left in set S.

The uncertainties of communication latency can be effectively masked by sending

the computational fillet with the largest value first. Thus, step 2 is to make the largest
amount of computations triggered as early as possible by packing the computation-cor-
related data items into one message. The computational fillets with large values can keep
CPU busy even though the next message is blocked by heavy network traffic. In step 2,
the number of triggered computations is calculated based on the currently chosen data

ON MESSAGE SEQUENCES FOR INCREMENTAL NETWORK COMPUTING

1037

items and the data items in S ′. Then, the number is compared with the temporary largest
number which is the Fi of another set of k data items previously chosen from set S. To
select k appropriate data items from set S at iteration i, r ki

kC −
 comparisons are needed.

Since the algorithm is proposed to find a dominant sequence from a special type of ST,
only one message of k data items which leads to the maximal number of triggered com-
putations can be found at step 2. Thus, the algorithm finds a dominant sequence in

1
0

r
k r ki

ki C− −
=∑ comparison steps. That is, it takes

1(())kr
kO +

 comparison steps to find a domi-
nant sequence from ST for a given size k.

Algorithm FindSequnce({d0, d1, …, dr-1}, CS, k)
{i ← 0;

0
kiS ← {d0, d1, …, dr-1};

0
ˆ 0;kiS ← /

0 0
ˆ{(, , 0)};ki ki

i S SΛ ←
repeat

1 0;i+Λ ← /
for each

ˆ(, ,) ;ki ki ki
j j j iS S z ∈Λ

1 1
ˆ(, , ,);ki ki

i i j jS S CS k+ +Λ ← Λ ∪ϒ
Λi+1 ← ExtractMultipleMax(Λi+1);
i ← i + 1;

until (i = r/k);
return (Λi);

}
end FindSequence

Fig. 4. Algorithm for finding a dominant sequential in ST.

Assume ST consists of all the possible message sequences for performing task T and

there is at least one dominant sequence in ST. A general algorithm which finds a domi-
nant sequence is given in Fig. 4. The algorithm takes {d0, d1, …, dr-1}, CS and k as its
input parameters. {d0, d1, …, dr-1} is the set of input data items sent from a server to a
computing device. CS is a collection of 2-tuples (S, FS), where S is a subset of the input
data items and FS is the number of total executable computations after the computing
device has received all the data items in S. k is the number of data items in a message.
Without loss of generality, assume r is a multiple of k. Three variables are used in the
algorithm:

ˆ, and . ki ki ki ki
j j j jS S z S is the set of data items left in the server after messages m0,

m1, …, mi-1 have been sent. ˆki
jS is the set of data items received by the computing device

after messages m0, m1, …, mi-1 have been sent. ki
jz is the accumulated triggered computa-

tions when the computing device receives messages m0, m1, …, mi-1. Note that j is the
index for

ˆ,ki ki
j jS S and .ki

jz In the algorithm, function ϒ takes
ˆ, ,ki ki

j jS S CS and k as its

input. Its output is a set of triples 0 0 0 1 1 1
ˆ ˆ{(, ,), (, ,), , (,ki k ki k ki k ki k ki k ki k ki k

lS S z S S z S+ + + + + + +…
ˆ ,),ki k ki k
l lS z+ + …}. The function chooses data items 0 1 1

, , ,
kj j jd d d
−′ ′ ′… from ,ki

jS where 0
,jd ′

CHO-CHIN LIN

1038

1 1
, ,

kj jd d
−′ ′… are the candidates to form a new message. Then, set is formed by excluding

the data items 0 1 1
, , , from

k

ki
j j j jd d d S

−′ ′ ′… and set
ˆki k
lS +

 is formed by including the data
items of 0 1 1

ˆ and , , , .
k

ki
j j j jS d d d

−′ ′ ′… Based on the data items in set
ˆ ,ki k ki k

j jS z+ +
 can be

calculated. In the algorithm, set Λi+1 temporarily stores the output of
ˆ(, , ,)ki ki

j jS S CS kϒ

for all j. Let max 1
ˆmax{ | (, ,) }.ki k ki k ki k ki k ki k

l l l l iz z S S z+ + + + +
+= ∈Λ Then, the triples with their

max
ki k ki k
lz z+ += are extracted from Λi+1 using function ExtractMultipleMax and all the ele-

ments in Λi+1 are replaced by those triples with their
ki k
lz + = max .ki kz +

 At the end of iteration
i, only the triples with the maximal

ki k
jz +

 are kept in Λi+1. According to the definition of a
dominant sequence, algorithm FindSequence finds dominant sequences for performing
task T and it finds dominant sequences in

1
0

r
k r ki

ki C− −
=∏ comparison steps. That is, it takes

!
(!)

r
k

r
k

O ⎛ ⎞
⎜ ⎟
⎝ ⎠

 comparison steps to find dominant sequences. The algorithm employs the

branch-and-bound technique to focus on searching dominant sequences by pruning the
subsequences with smaller .ki k

lz +
 Thus, the complexity of the number of comparison

steps can be lower than
!

(!)
.r

k

r
k

O ⎛ ⎞
⎜ ⎟
⎝ ⎠

 If the number of triples (,ki k
lS + ˆ ,)ki k ki k

l lS z+ + ’s with

their third term
ki k
lz + ’s equal to max

ki kz +
 is no more than a constant c at the end of iteration

i, for all i, then the complexity of comparison steps is
1(()).kr

kO +
 Based on Corollary 5,

the found dominant sequence leads to the minimal execution time compared with the
other sequences in ST.

6. CONCLUDING REMARKS

In this paper, a network computing model has been proposed for studying the effect
of message sequences on a network computing platform. Based on the model, the impact
of a message sequence on CPU utilization has been investigated. It has been shown that
well organized message sequences have the computing power of a computation provider
to be employed efficiently. A novel technique which employs a well organized message
sequence to maximize the efficiency of computations has been introduced in this paper.
Theorems which profit the find of a well organized message sequence have been given.
Finally, algorithms which find a well organized message sequence in

1(())kr
kO +

 and
!

(!)
r
k

r
k

O ⎛ ⎞
⎜ ⎟
⎝ ⎠

 comparison steps have also been developed.

REFERENCES

1. I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: enabling scalable
virtual organizations,” International Journal of Supercomputer Applications, Vol. 15,
2001, pp. 200-222.

2. S. Chandra, J. R. Larus, and A. Rogers, “Where is time spent in message-passing and
shared-memory programs?” in Proceedings of International Conference on Archi-
tectural Support of Programming Languages and Operating Systems, 1994, pp. 61-
73.

ON MESSAGE SEQUENCES FOR INCREMENTAL NETWORK COMPUTING

1039

3. V. Karamcheti and A. A. Chien, “Software overhead in messaging layers: where
does the time go?” in Proceedings of International Conference on Architectural
Support of Programming Languages and Operating Systems, 1994, pp. 51-60.

4. P. Liu, “Broadcast scheduling optimization for heterogeneous cluster systems,”
Journal of Algorithms, Vol. 42, 2002, pp. 135-152.

5. P. B. Bhat, V. K. Prasanna, and C. S. Raghavendra, “Efficient collective communi-
cation in distributed heterogeneous systems,” Journal of Parallel and Distributed
Computing, Vol. 63, 2003, pp. 251-263.

6. S. Ranka, R. V. Shankar, and K. A. Alsabti, “Many-to-many personalized commu-
nication with bounded traffic,” in Proceedings of Symposium on the Frontiers of
Massively Parallel Computation, 1995, pp. 20-27.

7. W. Liu, C. L. Wang, and V. K. Prasanna, “Portable and scalable algorithm for ir-
regular all-to-all communication,” Journal of Parallel and Distributed Computing,
Vol. 62, 2002, pp. 1493-1526.

8. T. S. Hsu, J. C. Lee, D. R. Lopez, and W. A. Royce, “Task allocation on a network
of processors,” IEEE Transactions on Computers, Vol. 49, 2000, pp. 1339-1353.

9. W. M. Lin and W. Xie, “Load-skewing task assignment to minimize communication
conflicts on network of workstations,” Parallel Computing, Vol. 26, 2000, pp. 179-
197.

10. M. Guo and Y. Pan, “Improving communication scheduling for array redistribution,”
Journal of Parallel and Distributed Computing, Vol. 65, 2005, pp. 553-563.

11. V. Strumpen and T. L. Casavant, “Exploiting communication latency hiding for par-
allel network computing: model and analysis,” in Proceedings of International Con-
ference on Parallel and Distributed Systems, 1994, pp. 622-627.

12. A. Sohn, J. Ku, Y. Kodama, M. Sato, H. Sakane, H. Yamana, S. Sakai, and Y. Ya-
maguchi, “Identifying the capability of overlapping computation with communica-
tion,” in Proceedings of ACM/IEEE Conference Parallel Architectures and Compi-
lation Techniques, 1996, pp. 133-138.

13. S. Kim and A. V. Veidenbaum, “The effect of limited network bandwidth and its
utilization by latency hiding techniques in large-scale shared memory systems,” in
Proceedings of International Conference on Parallel Architectures and Compilation
Techniques, 1997, pp. 40-51.

14. B. Falsafi and D. A. Wood, “Scheduling communication on an SMP node parallel
machine,” in Proceedings of IEEE International Symposium on High Performance
Computer Architecture, 1997, pp. 128-138.

15. C. C. Lin, “A novel message scheduling paradigm for developing algorithms in net-
work computing platform,” in Proceedings of International Conference on Advanced
Information Networking and Applications, 2003, pp. 650-655.

16. C. C. Lin, “Strategies for achieving high performance incremental computing on a
network environment,” in Proceedings of International Conference on Advanced In-
formation Networking and Applications, Vol. I, 2004, pp. 113-118.

17. C. C. Lin, T. S. Hsu, and D. W. Wang, “Bounds on the client-server incremental
computing,” IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, Vol. E89-A, 2006, pp. 1198-1206.

18. A. Srivastav and K. Wolf, “Finding dense subgraphs with semidefinite program-
ming,” Lecture Notes in Computer Science, No. 1444, 1998, pp. 181-191.

CHO-CHIN LIN

1040

Cho-Chin Lin (林作俊) is an associate professor at the
Department of Electronic Engineering, National Ilan University.
He received his B.S. degree in Computer Science and Informa-
tion Engineering from National Taiwan University in 1985. He
received his Ph.D. in Computer Engineering from University of
Southern California in 1995. His research interests include paral-
lel and distributed computing, high performance computing, and
task migration.

