
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 29, 1211-1225 (2013)

1211

Ray-Box Culling for Tree Structures*

JAE-HO NAH1, WOO-CHAN PARK2, YOON-SIG KANG1 AND TACK-DON HAN1

1Department of Computer Science
Yonsei University

Seoul, 120-749 Korea
2Department of Computer Engineering

Sejong University
Seoul, 43-747 Korea

Ray-primitive intersection tests are the most important operations in ray tracing.

The ray-box culling algorithm was presented to accelerate these intersection tests on grid
structures, but this algorithm has not been widely used due to the poor ray traversal per-
formance of the grid structures themselves. In this paper, we demonstrate how to apply
this algorithm to tree structures and investigate its efficiency in terms of tree construction
time and ray traversal performance. Experimental results show that our approach
achieves up to 1.15× faster ray tracing performance and up to 1.22× faster total render-
ing performance, including tree construction and ray tracing.

Keywords: ray tracing, ray-box culling, ray-primitive intersection tests, kd-trees, primi-
tive culling

1. INTRODUCTION

Ray tracing [1] naturally supports various global illumination effects, such as reflec-
tion, refraction, and shadows. Thus, it has been widely used in high-quality offline ren-
dering applications. However, the high computation cost of ray tracing is a major obsta-
cle to its use in real-time rendering. Currently, many researchers are studying ray tracing
acceleration techniques to overcome this obstacle.

Most ray tracers use acceleration structures, such as grids, kd-trees, and bounding
volume hierarchies (BVHs) for fast ray tracing. Uniform grids subdivide space into equal-
sized cells. Kd-trees adaptively partition space by using axis-aligned splitting planes.
BVHs are hierarchical tree structures constructed by object partitioning.

If no acceleration structures are present, each ray should test the intersections with
all primitives in the scene to find the nearest hit point. A primitive is a simplest geomet-
ric object that the rendering system can handle, such as a triangle [21]. By using accel-
eration structures, this computation is greatly reduced. When an acceleration structure is
used, traversal is performed prior to the ray-primitive intersection tests. Traversal is the
process of visiting nodes of tree structures or visiting cells of grid structures. When a ray
visits either a leaf node or a grid cell through traversal, intersection tests between a ray
and the primitives in either the leaf node or the grid cell are executed to find the hit point.
That is, each ray tests the intersections with the smaller subset of primitives as calculated
by traversal.

Received August 18, 2011; revised October 19 & December 20, 2011; accepted February 1, 2012.
Communicated by Yung-Yu Chuang.
* This work was supported by the Students’ Association of the Graduate School of Yonsei University funded

by the Graduate School of Yonsei University.

JAE-HO NAH, WOO-CHAN PARK, YOON-SIG KANG AND TACK-DON HAN

1212

Most recent ray tracing acceleration algorithms have focused on accelerating tra-
versal. In particular, coherent grid traversal [18], the multi-level ray tracing algorithm
[19], and dynamic bounding volume hierarchies [15] have achieved interactive ray cast-
ing on commodity PCs by using ray packets [8].

Although the use of acceleration structures reduces the number of ray-primitive in-
tersection tests, the cost of these required intersection tests is still high. In other words,
the performance of ray tracing is heavily influenced by both traversal and the intersection
tests [2]. According to Benthin [2], speeding up intersection tests has become increas-
ingly important. Therefore, additional acceleration techniques that decrease the number
of intersection tests are useful for faster ray tracing.

A few approaches are capable of accelerating intersection tests. These approaches
can be divided into three categories: single-ray-based primitive culling [3, 20], packet-
based primitive culling [4-6, 18], and mailboxing [2, 7-9]. Both types of primitive culling
are substitutes for expensive and unnecessary ray-primitive intersection tests, allowing
the overall rendering speed to increase. Mailboxing reduces the duplication of ray-
primitive intersection tests by recording the results of previous intersection tests.

Among these approaches, we shed new light on the ray-box culling algorithm [3],
which is a typical type of single-ray-based primitive culling. We chose to highlight this
method for several reasons. First, packet-based approaches are useful for coherent rays,
but high-quality image synthesis by ray tracing requires many incoherent secondary rays.
If the rays in a ray packet are incoherent, frustum (or shaft) culling can be ineffective
because a large frustum (or shaft) is constructed. Second, there has been no attempt to
apply the ray-box culling method to tree structures. Tree structures, such as kd-trees and
BVHs, are known to provide greater rendering performance than grid structures [10].
However, use of the ray-box culling algorithm has only been presented for grid structures.
Therefore, the ray-box culling approach has not been widely used for ray tracing despite
the fact that it was introduced more than 20 years ago.

In this paper, we present a detailed method that can be used to apply the ray-box
culling algorithm to tree structures. We also investigate the effect of this method from
two perspectives: rendering performance and tree construction time. The tree construc-
tion time is very important in the rendering of dynamic scenes because acceleration
structures, such as trees, should be updated at each frame.

After conducting experiments with the physically based rendering toolkit (PBRT)
[11], two important results were obtained. First, the ray-box culling method increased the
rendering performance regardless of the degree of ray coherence. Second, it prevents a
significant decrease in the ray tracing performance when shallow trees were used. Be-
cause shallow trees require less construction time than deeper trees, our approach can
provide a good trade-off between tree construction time and ray tracing time. Also, the
memory footprint can be reduced by using shallow trees.

The remainder of this paper is organized as follows. In Section 2, we briefly review
studies related to accelerating intersection tests. In Section 3, we present detailed informa-
tion about how to apply the ray-box culling algorithm to tree structures. In Section 4, we
describe the experimental results obtained from using the PBRT system. In Section 5, we
conclude the paper.

RAY-BOX CULLING FOR TREE STRUCTURES

1213

2. RELATED WORK

In this section, we provide a short overview of intersection acceleration techniques.
The common goal of these techniques is to reduce the number of ray-primitive intersec-
tion tests during ray traversal.

2.1 Primitive Culling

Culling algorithms that are used to reduce the number of ray-primitive intersection

tests can be divided into two categories: single-ray-based culling and packet-based cull-
ing. The ray-box culling algorithm [3] is included the first category. It uses overlap tests
between a ray box and the primitive’s bounding box. A ray box is constructed using a
grid cell and the ray’s t values on the cell. Because both of these boxes are axis-aligned
bounding boxes (AABBs), in Section 3 we refer to the ray box as rayAABB and the
primitive’s bounding box as primitiveAABB. In an extended study of the ray-box culling
algorithm, Woo [20] presented a dynamic ray bounding box to increase the efficiency of
the ray-box culling method.

The second approach, packet-based primitive culling, culls entire ray packets against
a primitive. SIMD (single instruction, multiple data) shaft culling [4] uses four corner
shaft rays. Coherent grid traversal [18] also uses this approach. The interval arithmetic
test [5] culls ray packets using ray intervals. Vertex culling [6] tests the intersection be-
tween vertices of a triangle and the planes of a packet’s frustum. This method creates a
transient frustum to increase the culling rates when reaching a leaf.

2.2 Mailboxing

Mailboxing [7] is another optimization technique that can reduce the number of ray-

primitive intersection tests. In spatial subdivision structures, such as grids and kd-trees,
primitives can overlap multiple leaves. As such, mailboxing adds a mailbox to each ob-
ject to prevent the duplication of ray-primitive intersection tests. The mailbox serves as a
space to store the ID of the last ray that was tested against each primitive. In parallel en-
vironments, memory writing to update mailboxes causes problems. To overcome this,
improved mailboxing algorithms have been presented. Hashed mailboxing [2, 8] retains a
small hash table in the thread-local memory. Inverse mailboxing [9] stores the last visited
primitive IDs on a ray packet. The ray-box culling algorithm can be combined with mail-
boxing.

2.3 Split Clipping

Split clipping [12] was introduced to reduce the number of ray-primitive intersec-

tion tests for kd-trees. Because split clipping provides tighter bounding boxes for primi-
tives straddling the split planes, the number of primitive references in the leaves is effec-
tively reduced. Some studies have extended this method to BVHs to decrease the overlap
between BVs. In early split clipping [13], bounding boxes of large primitives are refined
before BVH construction. Split BVHs [14] are constructed through spatial splits.

JAE-HO NAH, WOO-CHAN PARK, YOON-SIG KANG AND TACK-DON HAN

1214

3. RAY-BOX CULLING FOR TREE STRUCTURES

3.1 Overview

In this section, we discuss how to extend the ray-box culling algorithm [3] to tree

structures. The ray-box culling method is performed during the leaf traversal stage. The
traditional leaf traversal process is as follows. Non-shadow rays must find the nearest hit
point. In this case, intersection tests are performed between the ray and all primitives in
the leaf. When a shadow ray finds the hit primitive, the tracing of the ray is aborted.

The ray-box culling algorithm inserts the following three steps into the leaf traversal
process: rayAABB construction, an AABB/AABB overlap test, and the updating of ray-
AABB. Algorithm 1 describes these steps. First, we determine the minimum number of
primitives to enable the ray-box culling method (line 2). For further experiments, this
value is set to 2. Next, the rayAABB is constructed at the beginning of the leaf traversal
process (line 3). Overlap tests between rayAABB and the primitiveAABBs are then per-
formed before the ray-primitive intersection tests are conducted (lines 5-8). Primitive-
AABBs are constructed during the acceleration structure construction stage. If two of the
AABBs are not overlapped, the intersection test between the ray and the primitive is not
executed. If the hit primitive is found in the leaf and the ray type is a non-shadow ray, the
rayAABB is updated to reduce the possibility of overlap between the rayAABBs and the
rest of the primitiveAABBs (line 12). Of course, updating is performed only if there are
additional rest primitives that need to be tested.

3.2 PrimitiveAABB Construction

Fig. 1 illustrates the primitiveAABBs. If the initial primitive’s bounding boxes are

used in the construction of acceleration structures [11, 15], the primitiveAABBs are

Algorithm 1: Leaf traversal with the ray-box culling. Grey lines indicate the culling
parts.

function LeafTraversal(ray,tmin,tmax,node)
01. n = node.numPrims();
02. bCull = (n > PRIM_NUM)? true:false;
03. if (bCull == true) then rayAABB = CreateRayAABB(ray, tmin, tmax);
04. for (i = 0; i < n; i++)
05. if (bCull == true) then
06. primAABB = LoadPrimAABB(node.primList[i]);
07. if (AABBTest(rayAABB, primAABB) == false) then continue;
08. end if
09. prim = LoadPrim(node.primList[i]);
10. if (intersectionTest(ray, prim) == true) then
11. if (ray.type == SHADOW_RAY) then break;
12. if (bCull == true && n i > 1) then rayAABB = UpdateRayAABB(ray);
13. end if
14. end for

RAY-BOX CULLING FOR TREE STRUCTURES

1215

(a) (b)

Fig. 1. (a) PrimitiveAABBs without split clipping; (b) PrimitiveAABBs with split clipping.

identical to the initial primitive’s bounding boxes (Fig. 1 (a)). In this case, there are no
additional calculation costs. Because the calculated primitiveAABBs should be kept in
memory, the ray box method requires 24 bytes per primitive to store the min-max values
of the three axes.

Smaller primitiveAABBs help increase culling efficiency. To obtain smaller primi-
tiveAABBs, split clipping can be applied (Fig. 1 (b)). However, one disadvantage of split
clipping is that it increases the kd-tree build time by 2.39× [12]. Additionally, the num-
ber of primitiveAABBs will increase because the number of primitiveAABBs is identical
to the number of primitive references, not the number of primitives. Thus, we did not
consider split clipping for subsequent experiments.

3.3 RayAABB Construction

Fig. 2 illustrates the rayAABB construction process. The rayAABB is an axis-

aligned box that bounds the area pierced by a ray. Algorithm 2 describes the rayAABB
construction process. A ray with origin o and direction vector d is defined as Eq. (1):

r(t) = o + t · d. (1)

Fig. 2. Construction of a rayAABB.

When a ray visits the leaves, there are two t values: tmin and tmax. The first (tmin) is
the t value at the entry point and the second (tmax) is the t value at the exit point. By sub-
stituting tmin and tmax for t in Eq. (1), we gain the following two intersection points be-
tween the ray and the leaf: pmin and pmax. The first (pmin) is the entry point and the second
(pmax) is the exit point.

If the ray direction sign on an axis is negative, the pmin value on the axis is greater

JAE-HO NAH, WOO-CHAN PARK, YOON-SIG KANG AND TACK-DON HAN

1216

than the pmax value. Therefore, the ray direction signs should be checked to obtain the
precise minimum and maximum AABB values (rayAABBmin and rayAABBmax in Fig. 2)
of the three axes. We also add small epsilon values to the calculated rayAABB to prevent
visual artifacts that could result due to floating point errors. According to the experimen-
tal results, ±0.0001 is suitable for the epsilon values.

Algorithm 2: RayAABB construction

function createRayAABB(ray,tmin,tmax)
01. for (axis=0; axis<3; axis++)
02. pmin[axis] = ray.o[axis] + tmin * ray.d[axis];
03. pmax[axis] = ray.o[axis] + tmax * ray.d[axis];
04. if (ray.d[axis]>=0) then
05. rayAABB.min[axis] = pmin[axis] EPSILON;
06. rayAABB.max[axis] = pmax[axis] + EPSILON;
07. else then
08. rayAABB.min[axis] = pmax[axis] EPSILON;
09. rayAABB.max[axis] = pmin[axis] + EPSILON;
10. end if
11. end for
12. return rayAABB;

3.4 The AABB/AABB Overlap Test

After obtaining the primitiveAABBs and the rayAABB, the culling process is per-
formed using the two AABBs as shown in Fig. 3 (a). This culling routine uses a very
simple AABB/AABB overlap test, as described in Algorithm 3. If the test result is true,
an intersection between the ray and the primitive is possible. If this occurs, a ray-primi-
tive intersection test is performed.

Algorithm 3: AABB/AABB overlap test

function AABBTest(rayAABB, primAABB)
01. if (rayAABB.min[0]>primAABB.max[0] ||

rayAABB.max[0]<primAABB.min[0] ||
rayAABB.min[1]>primAABB.max[1] ||
rayAABB.max[1]<primAABB.min[1] ||
rayAABB.min[2]>primAABB.max[2] ||
rayAABB.max[2]<primAABB.min[2]) then

02. return false;
03. end if
04. return true;

3.5 Updating of RayAABBs

Smaller rayAABBs help increase the efficiency of culling; in this way they are simi-

lar to primitiveAABBs. To exploit this feature, the rayAABB could be updated to a

RAY-BOX CULLING FOR TREE STRUCTURES

1217

smaller size when a ray hits a primitive (Fig. 3 (b)) as described in [20]. The updating
cost is half of the rayAABB construction cost because the updating process only requires
the updating of the tmax value, as described in Algorithm 4. If we calculate the position of
a hit point immediately after the hit point is found, then the updating cost is zero because
the position of the hit point is the same as the updated vertex of the rayAABB.

Algorithm 4: updating of a rayAABB

function updateAABB(ray)
01. for (axis = 0; axis < 3; axis++)
02. phit[axis] = ray.o[axis] + ray.tmax * ray.d[axis];
03. if (ray.d[axis] >= 0) then rayAABB.max[axis] = phit[axis] + EPSILON;
04. else then rayAABB.min[axis] = phit[axis] EPSILON;
05. end if
06. end for
07. return rayAABB;

Fig. 3. (a) RayAABB/primitiveAABB overlap test; (b) Updating of a rayAABB.

4. EXPERIMENTAL SETUP AND RESULTS

4.1 Experimental Setup

To evaluate our approaches, we implemented the ray-box culling algorithm using

PBRT v2 [11]. All tests were performed on a 3.3GHz Intel Core i7 980X with 6GB
DDR3 RAM. In order to fully exploit six hyper-threaded cores in a Core i7 980X, we
used 12 threads for rendering. Because PBRT does not support parallel tree construction,
multi-threading was only used for parallel rendering after single-threaded tree construc-
tion.

The experiment was setup in PBRT as follows. For the acceleration structures, kd-
trees were used. In the PBRT’s surface area heuristic (SAH) [16] construction, the maxi-
mum number of primitives in the leaf node (maxPrims) was 1, 8, 16, and 32 of primitives.
When a tree is constructed in this way, a leaf node is created if the number of primitives
is less than the maxPrims. Using this configuration, we tested the efficiency of the ray-

JAE-HO NAH, WOO-CHAN PARK, YOON-SIG KANG AND TACK-DON HAN

1218

box culling algorithm with shallow trees. The number of ray-primitive intersection tests
is proportional to the leaf sizes. In contrast, the tree build costs and traversal costs are
inversely proportional to the leaf sizes. Therefore, we can expect that our approach will
be advantageous in dynamic scenes despite the fact that the PBRT system does not sup-
port dynamic scenes. Note that the actual leaf size can be larger than the set leaf size be-
cause the max tree depth and the SAH values also make leaf nodes.

We used four benchmark scenes: Balls, Killeroo, Buddha, and Sponza. Table 1 in-
cludes details of these scenes. The kd-tree max depth in each scene was determined by
the PBRT heuristic: 8 + 1.3 log2 (the number of primitives). The Sponza scene was
rendered with different settings (direct lighting and path tracing) to measure the effect of
our approach on ray coherence.

Table 1. Details of the four PBRT scenes.

Balls
 2 triangles + 7,381 spheres
 direct lighting (2 samples)
 3 point light sources
 900×900 resolution
 maximum depth of the kd-tree: 25

Killeroo
 33,271 triangles
 direct lighting (4 samples)
 1 area light source (1 sample)
 684×513 resolution
 maximum depth of the kd-tree: 27

Buddha
 1,087,721 triangles
 direct lighting (4 samples)
 1 area light source (8 samples)
 256×600 resolution
 maximum depth of the kd-tree: 34

Sponza
 66,454 triangles
 direct lighting (1 sample) and path trac-

ing (8 samples, max depth 3)
 1 point light source
 750×350 resolution
 maximum depth of the kd-tree: 29

(direct lighting)

(path tracing)

RAY-BOX CULLING FOR TREE STRUCTURES

1219

4.2 Results and Analysis

We compared the experimental results with and without the ray-box culling algo-

rithm. The results included the acceleration structure build time, the ray tracing time, and
various performance-independent statistics. Table 2 describes the results in detail. Fig. 4
describes the peak performance comparisons based on the results. A result of 100 percent
means that peak performance was achieved without the ray-box culling algorithm. Fig. 5
compares relative tree build time and ray tracing time by changing leaf sizes. Fig. 6 de-
picts the culling efficiency of the ray-box culling algorithm. Finally, in Table 3 and Fig.
7, we analyze the memory footprint.

The notations in Table 2 are as follows: TB – time required to build the kd-tree; NT

– the number of traversals per ray; NPI – the number of ray-primitive intersections per
ray; NAC – the number of AABB constructions per ray for the ray-box culling algorithm;
NAU– the number of AABB updates per ray for the ray-box culling algorithm; TR – time
required for rendering; and RBC – the ray-box culling. The boldfaced values in TR indi-
cate the peak performance for each case. The comparisons presented in Fig. 4 are based
on these values. The ray-box culling method removed up to 92 percent of the
ray-primitive intersection tests (Fig. 6).

Table 2. Experimental results using the PBRT system.
NPI NAC NAU TR(s) TB + TR (s)

Scene
Leaf
size

TB(s) NT
no cull RBC RBC no cull RBC no cull RBC

1 0.031 30.66 6.25 2.77 2.21 0.12 1.75 1.67 1.78 1.64
4 0.025 26.47 7.38 2.33 2.82 0.18 1.80 1.63 1.83 1.68
8 0.023 24.27 9.89 2.30 2.80 0.19 1.81 1.61 1.83 1.63
16 0.021 21.39 17.70 2.61 2.83 0.22 2.11 1.65 2.13 1.67

Balls

32 0.019 19.09 30.52 3.14 2.69 0.23 2.73 1.71 2.75 1.73
1 0.28 32.39 12.10 2.42 2.83 0.46 0.90 0.80 1.18 1.08
4 0.25 29.11 15.18 2.30 4.15 0.47 0.96 0.80 1.21 1.05
8 0.22 25.71 16.82 2.26 3.99 0.47 0.99 0.78 1.21 1.00
16 0.20 23.87 19.99 2.34 3.90 0.46 0.99 0.78 1.19 0.98

Killeroo

32 0.18 21.51 34.53 2.76 3.78 0.46 1.23 0.79 1.41 0.97
1 8.36 36.00 9.36 3.85 2.79 0.14 1.50 1.41 9.86 9.77
4 7.72 31.27 12.21 3.54 3.01 0.14 1.58 1.38 9.30 9.10
8 7.04 26.99 12.31 3.26 3.29 0.21 1.61 1.35 8.65 8.39
16 6.23 25.31 15.83 3.60 3.26 0.21 1.77 1.36 8.00 7.59

Buddha

32 5.63 23.68 23.59 4.14 3.23 0.21 2.08 1.43 7.71 7.06
1 0.73 51.99 17.61 3.35 2.58 0.53 0.38 0.36 1.11 1.09
4 0.64 48.56 21.32 3.37 4.00 0.55 0.39 0.37 1.03 1.01
8 0.47 42.62 31.18 3.46 4.01 0.58 0.41 0.37 0.88 0.84
16 0.33 37.96 38.40 3.95 3.68 0.65 0.41 0.37 0.74 0.70

Sponza
(direct

lighting)
32 0.25 33.43 54.16 4.73 3.50 0.69 0.44 0.38 0.69 0.63
1 0.73 49.84 18.70 4.20 3.16 0.52 4.62 4.21 5.35 4.94
4 0.64 45.88 21.65 4.18 3.99 0.55 4.83 4.19 5.47 4.83
8 0.47 41.07 28.17 4.27 3.92 0.60 5.12 4.25 5.59 4.72
16 0.33 36.17 36.83 4.72 3.58 0.64 5.33 4.17 5.66 4.50

Sponza
(path

tracing)
32 0.25 31.32 56.83 5.62 3.33 0.68 6.62 4.32 6.87 4.57

JAE-HO NAH, WOO-CHAN PARK, YOON-SIG KANG AND TACK-DON HAN

1220

The experimental results show that the ray-box culling algorithm achieved faster
tree build time and faster ray tracing time. Applying the ray-box culling algorithm to kd-
trees improved rendering performance by up to 15% (Fig. 4). When we measured tree
build time and ray tracing time together, the ray-box culling algorithm brought about
performance improvements of up to 22%. In contrast to packet-based approaches, our
method showed performance improvements irrespective of the degree of ray coherence;
the proposed method showed faster ray tracing performance in the Sponza scene with
both directing lighting and path tracing as compared to the case in which the ray-box
culling method was not used.

A close look at the result reveals that the ray-box culling method provided a greater

advantage in shallower kd-trees. Fig. 5 depicts this finding. When we enabled the ray-
box culling method, the difference in the rendering performance between a shallow kd-
tree with a leaf size of 32 and a deep kd-tree with a leaf size of 1 was very small (Fig. 5
right-top). In contrast, when the method was disabled, the shallow trees showed poor
performance because many ray-primitive intersection tests were run (Fig. 5 right-bottom).
This feature of the ray-box culling method originated from a high culling rate of up to
92% (Fig. 6). This culling rate is comparable to that of frustum culling in coherent grid
traversal [18] (88%-93%) and in vertex culling [6] (90%). Furthermore, the shallow kd-
trees provided a faster build time in Fig. 5 (a) because the number of tree nodes was re-
duced by larger-sized leaf nodes. Therefore, we expect that our approach can be suitable
for dynamic scenes. These features are similar the features found in vertex culling [6].

Our approach requires more space for primitiveAABBs. The size of the required
memory is 24 bytes per primitive. For example, if a scene is comprised of 1M primitives,
our approach requires 24 MB more memory space. However, this disadvantage can be
offset by using shallow trees. Fig. 7 describes this feature. When we enabled the ray-box
culling method, the optimal leaf size was 16. When the ray-box culling method was not
used, the optimal leaf size was 1. The size of shallower kd-trees with a leaf size of 16
was approximately one-tenth of the size of the deeper kd-trees with a leaf size of 1. Ac-
cording to the results shown in Fig. 7, the use of the ray-box culling algorithm with shal-
lower kd-trees reduced the total memory footprint by 47%-63%.

In Fig. 4, the ray-box culling algorithm provided 6%-15% faster ray tracing. When
tree construction time is included in the total rendering time, the performance improve-
ment of the ray-box culling method was 8%-22%.

Fig. 4. Peak performance comparisons using the PBRT system.

RAY-BOX CULLING FOR TREE STRUCTURES

1221

In Fig. 5, when larger leaf sizes were used without the ray-box culling method, tree
build time decreased but ray tracing time increased. However, the ray-box culling
method showed slightly better ray tracing performance when the leaf sizes were larger
(up to 16). Note that DL and PT are abbreviations of direct lighting and path tracing,
respectively.

Fig. 5. Relative tree build time and ray tracing time by changing leaf sizes.

Fig. 6. The culling efficiency of the ray-box culling algorithm.

In Table 3, each node requires 8 bytes. Each primitive list requires 4 bytes. Each
PrimitiveAABB requires 24 bytes. The values presented in bold fonts represent the
memory footprint at the optimal leaf size that facilitates peak performance. These values
are used for comparisons in Fig. 7.

In Fig. 7, when we disabled the ray-box culling method (w/o cull), the leaf size was
1. When we enabled the ray-box culling method (w/ cull), the leaf size was 16. We ob-
tained these optimal leaf sizes from the experimental results presented in Table 2.

JAE-HO NAH, WOO-CHAN PARK, YOON-SIG KANG AND TACK-DON HAN

1222

Fig. 7. Memory footprint comparison.

Table 3. Memory footprint analysis.

5. CONCLUSIONS AND FUTURE WORK

This study demonstrated how to apply the ray-box culling algorithm to tree struc-
tures. Our approach showed up to 1.15× faster ray tracing performance and up to 1.22×
faster total rendering performance. This speed-up was achieved by avoiding unnecessary
ray-primitive intersection tests and by using shallow tree structures.

Although we have only analyzed our approach with static kd-trees, our approach

Scene
Leaf
size

Nodes

Primitive
Lists

Memory
usage of a

kd-tree (KB)

Memory usage
of Primitive-
AABBs (KB)

Total memory foot-
print for the ray-box

culling (KB)
1 59567 27933 574 747
4 16497 18498 201 374
8 7217 12877 106 279
16 2765 9985 60 233

Balls
(7,383 primitives)

32 1313 9115 45

173

218
1 313605 373997 3910 4701
4 191393 326854 2772 3562
8 78431 194878 1373 2164
16 27067 112179 649 1439

Killeroo
(33,721 primitives)

32 9881 75394 371

790

1162
1 6495245 8809544 85156 110649
4 4539243 8087699 67055 92548
8 2311833 5791524 40684 66177
16 835053 3402189 19813 45307

Buddha
(1,087,721
primitives)

32 304035 2280724 11284

25493

36777
1 882557 1502004 12762 14322
4 652499 1406676 10592 12152
8 323837 1007575 6465 8025
16 103519 533821 2893 4454

Sponza
(66,564 primitives)

32 29821 270507 1289

1560

2849

RAY-BOX CULLING FOR TREE STRUCTURES

1223

offers the following benefits. First, it can be applied to any axis-aligned acceleration
structure, such as kd-trees, grids, and BVHs. Second, it can be applied to any primitive
types that can be bounded by an AABB, such as a triangle, a box, or a sphere, among
others. Third, it can be useful for both static scenes and dynamic scenes because it effi-
ciently reduces the number of intersection tests created by shallow trees for fast con-
struction. Therefore, we believe that the approach in this paper can be used widely in ray
tracing applications.

This paper only focused on CPU-based ray tracing. In future studies, we would like
to extend our approach to GPU ray tracers. AABB/AABB overlap tests have already
been utilized to accelerate collision detection routines on GPUs [17]. Therefore, we ex-
pect that our method would also be effective on GPUs. We are also interested in imple-
menting our approach to dedicated ray-tracing hardware architectures [22].

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their constructive comments
for this paper. We would also like to thank Jae-Hee Park for his advice.

REFERENCES

1. T. Whitted, “An improved illumination model for shaded display,” Communications
of the ACM, Vol. 23, 1980, pp. 343-349.

2. C. Benthin, “Realtime ray tracing on current CPU architectures,” Ph.D. Thesis, De-
partment of Computer Science, Sarrland University, 2006.

3. J. Snyder and A. Barr, “Ray tracing complex models containing surface tessellations,”
ACM SIGGRAPH Computer Graphics, Vol. 21, 1987, pp. 119-128.

4. K. Dmitriev, V. Havran, and H.-P. Seidel, “Faster ray tracing with SIMD shaft
culling,” Technical Report MPI-I-2004-4-006, Max-Planck Institut für Informatik,
2006.

5. S. Boulos, I. Wald, and P. Shirley, “Geometric and arithmetic culling methods for
entire ray packets,” Technical Report UUSCI-2006-022, SCI Institute, University of
Utah, 2006.

6. A. Reshetov, “Faster ray packets triangle intersection through vertex culling,” in
Proceedings of IEEE/EG Symposium on Interactive Ray Tracing, 2007, pp. 105-112.

7. J. Amantides and A. Woo, “A fast voxel traversal algorithm for ray tracing,” in
Proceedings of EUROGRAPHICS, 1987, pp. 3-10.

8. I. Wald, P. Slusallek, C. Benthin, and M. Wagner, “Interactive rendering with
coherent ray tracing,” Computer Graphics Forum, Vol. 20, No. 3, 2001, pp. 153-164.

9. M. Shevtsov, A. Soupikov, and A. Kapustin, “Ray-triangle intersection algorithm for
modern CPU architectures,” in Proceedings of GraphiCon, 2007, pp. 33-39.

10. I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G. Parker, and P. Shir-
ley, “State of the art in ray tracing animated scenes,” in Proceedings of Computer
Graphics Forum, Vol. 28, 2009, pp. 1691-1722.

11. M. Pharr and G. Humphreys, Physically Based Rendering, 2nd ed., Morgan Kauf-
mann Publishers, 2010.

JAE-HO NAH, WOO-CHAN PARK, YOON-SIG KANG AND TACK-DON HAN

1224

12. V. Havran, “Heuristic ray shooting algorithms,” Ph.D. Thesis, Department of Com-
puter Science and Engineering, Faculty of Electrical Engineering, Czech Technical
University in Prague, 2000.

13. M. Ernst and G. Greiner, “Early split clipping for bounding volume hierarchies,” in
Proceedings of IEEE/EG Symposium on Interactive Ray Tracing, 2007, pp. 73-78.

14. M. Stich, H. Friedrich, and A. Dietrich, “Spatial splits in bounding volume hier-
archies,” in Proceedings of the Conference on High Performance Graphics, 2009, pp.
7-13.

15. I. Wald, S. Boulos, and P. Shirley, “Ray tracing deformable scenes using dynamic
bounding volume hierarchies,” ACM Transactions on Graphics, Vol. 26, 2007, pp.
6:1-6:18..

16. J. D. MacDonald and K. S. Booth, “Heuristics for ray tracing using space sub-
division,” The Visual Computer, Vol. 6, 1990, pp. 153-166.

17. X. Zhang and Y.-J. Kim, “Interactive collision detection for deformable models using
streaming AABBs,” IEEE Transactions on Visualization and Computer Graphics,
Vol. 13, 2007, pp. 318-329.

18. I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker, “Ray tracing animated scenes
using coherent grid traversal,” ACM Transactions on Graphics, Vol. 25, 2006, pp.
485-493.

19. A. Reshetov, A. Soupikov, and J. Hurley, “Multi-level ray tracing algorithm,” ACM
Transactions on Graphics, Vol. 24, 2005, pp. 1176-1185.

20. A. Woo, “Ray tracing polygons using spatial subdivision,” in Proceedings of the
Conference on Graphics Interface, 1992, pp. 184-191.

21. Wikipedia contributors, “Geometric primitive,” Wikipedia, http://en.wikipedia.org/
wiki/Geometric_primitive.

22. J.-H. Nah, J.-S. Park, C Park. J.-W. Kim, Y.-H. Jung. W.-C. Park, and T.-D. Han,
“T&I engine: traversal and intersection engine for hardware accelerated ray tracing,”
ACM Transactions on Graphics, Vol. 30, 2011, pp. 160:0-160:10.

Jae-Ho Nah (羅在鎬) received the B.S., M.S., and Ph.D
degrees from the Department of Computer Science, Yonsei Uni-
versity in 2005, 2007, and 2012, respectively. Currently, he is a
visiting researcher at the University of North Carolina at Chapel
Hill. His research interests include ray tracing, rendering algo-
rithms, and graphics hardware.

RAY-BOX CULLING FOR TREE STRUCTURES

1225

Woo-Chan Park (朴祐贊) received M.S. and Ph.D. degrees
in Computer Science, Yonsei University in 1995 and 2000,
respectively. Currently, he is a Professor at the School of Com-
puter Engineering, Sejong University, Seoul, Korea. His research
interests include 3D rendering processor architecture, ray tracing
accelerator, parallel rendering, high performance computer archi-
tecture, computer arithmetic, and ASIC design.

Yoon-Sig Kang (姜允植) received his Ph.D. degree from
the Department of Computer Science, Yonsei University in 2012.
He is currently the CEO of Dreamize. He is mainly interested in
dynamic ray-tracing for photo-realistic image synthesis especially
the acceleration structures of dynamic ray-tracing.

Tack-Don Han (韓鐸敦) is a Professor in the Department of
Computer Science at the Yonsei University, Korea. His research
interests include high performance computer architecture, media
system architecture, and wearable computing. He received Ph.D.
in Computer Engineering from the University of Massachusetts.

