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According to a literature review, breast arterial calcification (BAC) in mammograms 

can be used to predict the risk of cardiovascular disease, including coronary artery disease, 
atherosclerotic cardiovascular disease, and arrhythmia. This study applied a deep Q net-
work and a state-action-reward-state-action learning algorithm combined with a deep re-
inforcement learning (RL) network to construct a computer-aided diagnosis system for 
detecting BAC in mammograms. The proposed system has an artificial agent that automat-
ically learns the strategy and can iteratively modify the focus of attention from an initial 
bounding box to a smaller bounding box containing the BAC area. Then, the agent con-
structs a deep learning feature representation within the bounding box that is used to allow 
deep RL to determine the next action, such as transforming or scaling the current bounding 
box or triggering the end of the search process. The experimental results prove that the 
deep RL network with numerous training samples is significantly better than the regional 
growth method. The precision, recall, and F-measure of the proposed system are 0.9498, 
0.9575, and 0.9536, respectively. For 50 ground truth samples, the average Intersection 
over Union (IoU) of the proposed system is 0.9355, minimum IoU is 0.9010, maximum 
IoU is 0.9591, median IoU is 0.9363, and standard deviation of the IoU is 0.0132. Thus, 
the proposed computer-aided diagnosis system can assist radiologists to make preliminary 
auxiliary judgments for detecting BAC in mammograms. 
 
Keywords: deep reinforcement learning, convolutional neural networks, mammograms, 
breast artery calcification, cardiovascular diseases 
 
 

1. INTRODUCTION 
 

Deep learning is a branch of state-of-the-art machine learning in which highly abstract 
features are extracted from large sets of training data under mostly unsupervised situations. 
A computer finds it difficult to understand the meaning of original sensory input data. The 
input might represent the portrait of a person as a collection of pixel values. It can be 
difficult for a computer to identify objects from a set of pixel mappings. It seems remark-
ably difficult for a computer to learn or evaluate this type of mapping. Deep learning solves 
this problem by decomposing the complex mapping required into a series of simple map-
pings. Deep learning uses complex structures or multiple processing layers composed of 
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multiple nonlinear transformations to perform operations on data. Its greatest advantage is 
that it can use unsupervised or semisupervised methods, instead of manually obtaining 
features, to perform efficient learning, such as feature learning and hierarchical feature 
selection. Several deep learning frameworks, such as deep neural networks, convolutional 
neural networks (CNNs), deep belief networks, and recurrent neural networks, have 
achieved excellent results in computer vision, speech recognition, natural language pro-
cessing, audio recognition, and bioinformatics. Deep learning has been used under various 
names since the 1940s. This field has been renamed many times, which reflects the dispar-
ate influences of researchers with diverse viewpoints [1]. 

Another advanced type of machine learning is reinforcement learning (RL), which 
allows the system to benefit from learning by interacting with the environment. RL is in-
spired by psychology. The basic idea is to learn the optimal strategy for accomplishing the 
goal by maximizing the cumulative reward value that the agent obtains from the environ-
ment. Therefore, RL methods are more focused on learning problem-solving strategies. 
With the rapid development of human society, in increasingly complex realistic scene tasks, 
deep learning systems must automatically learn abstract representations of large-scale in-
put data and use these representations as a basis for self-incentivizing RL. RL has been 
widely used in industrial manufacturing, simulation, robot control, optimization, schedul-
ing, games, and other fields [2]. 

Modeling strategies and value functions are generally required in RL. Early RL algo-
rithms mainly considered states and actions to solve discrete and limited problems. These 
algorithms often used tables to record probability values. However, in many practical prob-
lems, the status and action spaces of some tasks are remarkably large. For example, the 
game of Go has 3361 to 10170 states, and the number of moves (i.e., the position of the drop) 
is 361. Moreover, the status and action spaces of some tasks are continuous. For example, 
in autonomous driving, the environmental state sensed by the agent is described by various 
traditional device data. To effectively solve the aforementioned problems, a complex net-
work function [such as a deep learning network (Fig. 1)] can be added to enable the agent 
to perceive more complex environmental conditions. Complex networks can establish 
highly complex strategies to improve RL, thereby increasing the performance of the algo-
rithm and improving its generalization. An architecture that combines deep learning and 
RL is called deep RL. Systems with this architecture use RL to define problems and opti-
mize goals as well as deep learning to manage strategies and value functions [2]. Few 
studies have used deep RL for medical image processing. 
 

 
Fig. 1. Architecture of deep RL [3]. 
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The American Cancer Society currently recommends that women receive mammo-
grams once a year to promote the early detection of breast cancer in women over the age 
of 40. Those who are not routinely screened for coronary artery disease are advised to do 
so as soon as possible. Several prospective and cross-sectional studies in the past few years 
have proven that the severity of atherosclerosis and cardiovascular disease can be assessed 
using mammography; however, even when mammography detects breast artery calcifica-
tion (BAC), the problem is often ignored [4]. 

Breast masses have various image features, such as image grayscale, mass acupunc-
ture shape, smoothness, and color block size. These features can be calculated as various 
values through a series of algorithms, such as the grayscale co-occurrence matrix calcula-
tion. After obtaining the feature values of the image, relevant algorithms, such as stepwise 
feature selection and heuristic algorithms, can be used for feature filtering. When develop-
ing a series of algorithms, one might retain features with excellent classification effects to 
improve the efficiency of the later classification algorithms. Such retention can also avoid 
redundant features and affect the subsequent classification results. If one wishes to use a 
machine learning method with input features, screened features can be subjected to ma-
chine learning for determining the feature statistics and analyzing the features to classify 
different mass types, such as benign and malignant masses. The shortcomings of this 
method are as follows: (1) confirming whether the selected features are the best combina-
tion for tumor classification is impossible and (2) manual procedures must be used to edit 
out regions of interest (ROIs), because the automated tumor detection technology is not 
yet completely mature [5]. 

To solve the aforementioned problems, a deep RL model can be applied. Caicedo and 
Lazebnik [6] proposed a deep Q network (DQN) for effective target detection; however, 
their system can manage only a limited amount of information. The following obstacles 
must be overcome when applying the aforementioned system to medical image analysis; 
(1) Expanding from visual target categories (such as animals and cars) to targets in medical 
images (such as tumors and BAC), these are often in shape, appearance, position, back-
ground, and size have poor consistency; (2) The high dimensionality of medical images is 
a considerable challenge for DQN training procedures. Ghesu et al. [7] applied the DQN 
for the detection of anatomical markers. Their visual class used a consistent pattern and 
extracted small fixed areas from medical images. They also improved the accuracy and 
speed of detection. Another commonly used deep RL model is state-action-reward-state-
action (SARSA) algorithm, which is used for learning Markov decision process strategies 
[8]. Travnik et al. [9] proposed a reactive RL algorithm that can take immediate action 
after observing new state information to solve the problem of asynchronous environments. 
They compared the performance of the reactive SARSA learning algorithm with that of 
the traditional SARSA learning algorithm for two asynchronous robot tasks (emergency 
stop and impact prevention). The results of Travnik et al. indicated that the reactive 
SARSA algorithm had a shorter reaction time than the traditional SARSA algorithm. 

Through our literature review, we found that BAC in mammograms can be used to 
predict the risk of cardiovascular disease. In this study, we used the DQN and SARSA RL 
algorithms to construct a computer-aided diagnosis system that does not require input fea-
tures to detect BAC in mammograms. Our agent can automatically learn strategies and 
describe how to iteratively modify the focus of attention from the initial large bounding 
box to a smaller bounding box containing the presence of BAC. Our agent constructs a 
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deep learning feature representation in the current bounding box, which is used to let deep 
RL decide the next action, such as transforming the current bounding box, scaling the cur-
rent bounding box, or triggering the end of the search process.  

Moreover, after our preliminary study of deep RL [16], we found that the most diffi-
cult part of the RL model is the preparation of training samples, which is remarkably time-
consuming and labor-intensive. Therefore, according to the line segment characteristics of 
breast calcified blood vessels, this study used the region growth algorithm to segment the 
BAC in mammograms to provide additional BAC training samples. The remainder of this 
paper is organized as follows: Section 2 describes related work; Section 3 details the re-
search methods used in this study; Section 4 presents an analysis of the experimental re-
sults; Section 5 provides the conclusions. 

2. RELATED WORK 

In this section, we present brief reviews of using BAI to predict heart diseases, intro-
duction to RL, and the application of deep RL for medical image processing. 

2.1 Use BAI to Predict Heart Diseases 

Many studies have proven that evidence regarding BAC from mammograms can be 
used to predict the risk of cardiovascular disease, including coronary artery disease, ather-
osclerotic cardiovascular disease, and arrhythmia. For examples, Rotter et al. [10] estab-
lished a correlation among BAC, coronary artery disease risk factors, and a history of ath-
erosclerotic cardiovascular disease. They used BAC to predict the relative risk of athero-
sclerotic cardiovascular disease. The results of Rotter et al. indicated that among 1,919 
women, 268 exhibited BAC. Moreover, five cardiovascular risk factors (age, hypertension, 
hypercholesterolemia, diabetes, and menopause) were observed in these women. Positive 
BAC also has a significantly higher incidence than atherosclerotic cardiovascular diseases, 
such as angina pectoris, myocardial infarction, abnormal angiography, stroke, and coro-
nary artery bypass grafting. Logistic regression analysis indicated that BAC and athero-
sclerotic cardiovascular disease have a strong correlation with other atherosclerotic risk 
factors (including hypertension, smoking, diabetes, age, and family history). Thus, Rotter 
et al. found that BAC is highly correlated with cardiovascular morbidity and may be a 
practical tool used as a risk indicator for atherosclerosis in women.  

Hendriks et al. [11] explored the relationship between BAC, cardiovascular risk fac-
tors, and cardiovascular risk through a systematic literature review and meta-analysis. 
They found that the occurrence of BAC is associated with an increased risk of cardiovas-
cular disease and some known cardiovascular risk factors. The aforementioned authors 
also proved that unlike endometrial atherosclerosis, mid-layer arterial calcification may 
have an effect on cardiovascular disease. Hendriks et al. [12] also investigated the associ-
ation of BAC with the incidences of cardiovascular disease and Type 2 diabetes. They 
conducted a series of case studies by using many samples and long-term tracking, which 
provided sufficient data for multivariate analysis. Their analysis indicated that the presence 
of BAC is related to cardiovascular disease. Severe BAC increases the risk of cardiovas-
cular disease by approximately 3 times, which indicates that medial nonatherosclerosis 
may have an effect on cardiovascular disease. 
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Chadashvili et al. [13] investigated the use of BAC in mammograms and coronary 
artery calcification scores on coronary tomography scans as markers for judging the risk 
of developing coronary artery disease symptoms. Their study comprised 145 women with 
coronary artery tomography. All the mammograms were captured within a year. They 
scored coronary artery calcification by multiplying the calcification area by the weight 
value and assigning it to the highest Hounsfield Unit. Then, the aforementioned authors 
summed the scores of all the lesions and presented the scores obtained using the Agaston 
method. Their experimental results proved that the correlation score between the BAC and 
coronary artery calcification was greater than 11, which indicates that the possibility of the 
BAC predicting low-risk coronary artery diseases is higher than that of it predicting me-
dium- and high-risk coronary heart diseases. This result confirms that BAC in mammo-
grams can be used as an index to predict the risk of coronary artery disease. 

Zuin et al. [14] replied to the journal editor that coronary artery calcification is a cru-
cial risk factor for coronary artery disease, and vascular calcification has been proven to 
increase the risk of coronary artery disease in patients with atypical coronary artery disease. 
Surveys have indicated that BAC is a risk factor for cardiovascular and coronary artery 
disease in many women. A total of 35,542 patients had participated in the 25 studies re-
viewed by Zuin et al. that assessed the association between BAC and cardiovascular dis-
ease, coronary artery disease, intracranial artery disease, coronary artery calcification, and 
cervical and peripheral artery disease. The results of these studies confirmed that a statis-
tically significant relationship exists between arterial calcification and other diseases, and 
the associated mortality can be analyzed. Therefore, the aforementioned authors concluded 
that mammography can be used as a screening tool for cardiovascular and coronary artery 
disease. 

Polonsky and Greenland [15] described some observational studies that have demon-
strated the presence of BAC acting as pivotal precursors of cardiovascular risk. However, 
the appearance of BAC does not clearly indicate the risk of increased cardiovascular dis-
ease. It may only represent long-term exposure to known cardiovascular risk factors. BAC 
has also been proven to be an indicator of calcification in other vascular beds. Calcification 
increases the stiffness of blood vessels and may explain that in addition to coronary artery 
disease and stroke, BAC is related to heart failure. 

2.2 Introduction to RL 

The most important characteristic of RL is learning from interaction. By definition, 
an RL agent must interact with its environment. According to the rewards or punishments 
obtained, the continuous learning of knowledge makes the RL agent more adaptable to the 
environment. The operation of RL is remarkably similar to the process by which humans 
learn knowledge. Therefore, RL is regarded as a vital general artificial intelligence ap-
proach. The formal definition of RL is that two objects exist and can interact; (1) Agents 
can sense the state of the external environment and rewards of the feedback, can learn, and 
can make decisions. The decision-making function of the agent refers to making different 
actions according to the state of the external environment, and the learning function refers 
to adjusting the strategy according to the rewards of the external environment; (2) The 
environment refers to all things outside the agent. The state of the agent is changed by the 
actions of the agent. The corresponding reward is fed back to the agent.  
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The four basic elements in RL (a, s, r, and p) are illustrated in Fig. 2; (1) The state s 
describes the environment, which can be discrete or continuous, and its state space is S; (2) 
The action a describes the agent’s behavior, which can be discrete or continuous, and its 
action space is A; (3) Strategy (a|s) is a function with which the agent decides the next 
action a according to the environmental state s; (4) The probability of the state transition 
p(st+1|st, at) is the probability that the environment will change to the state st+1 at the next 
moment after the agent makes an action according to the current state st, where t is the 
current time and t + 1 is the time of the next moment; (5) The instant reward r(s, a, s) is a 
quantified function. After the agent makes an action a according to the current state s, the 
environment will feedback a reward to the agent. This reward is often related to the next 
moment state s (or st+1) [2]. 

 
Fig. 2. Four basic elements of RL [17]. 

 

The strategy of a policy agent refers to how the agent decides the next action a ac-
cording to the environmental state s. Policies can usually be divided into two groups: de-
terministic and stochastic policies. The deterministic policy involves mapping the function 
: S → A from the state space to the action space. The random strategy involves determin-
ing the probability distribution of an agent selecting a certain action in a given environ-
mental state. This probability distribution is defined as follows: 

( | ) ( | ),a s p a s   (1) 

( | ) 1.
a A

a s


  (2) 

In general, RL involves using a random strategy. Random strategies can have many 
advantages. For example, when learning, we can explore the environment better by intro-
ducing certain randomness. Taking the Markov decision process as an example, the agent 
starts from the sensed initial environment s0 and then decides to make a corresponding 
action a0. The environment changes accordingly to the new state s1 and feeds back an 
instant reward r1 to the agent. Then, the agent performs an action a1 according to state s1; 
the environment changes to s2; and the environment feeds back reward r2. This interaction 
can continue until sn ends. 

s0, a0, r1, s1, a1, r2, …, st-1, at-1, rt, st, …, sn-1, an-1, rn, sn (3) 

where rt = r(st-1, at-1, st) is the instant reward at time t. The process of the interaction be-
tween the agent and the environment can be regarded as a Markov decision process. This 
process has the following Markov random variable sequence: s0, s1, …, st  S. The state 
st+1 at the next moment only depends on the current state st. Thus, the following equation 
is obtained: p(st+1|st, …, s0) = p(st+1|st), where p(st+1|st) is called the state transition prob-
ability. 
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In the Markov decision process, an additional variable action a is added. Thus, the state 
st+1 at the next moment is related to the state st and action at at the current moment. Conse-
quently, the following equation is obtained: p(st+1|st, at, …, s0, a0) = p(st+1|st, at), where 
p(st+1|st, at) is the probability of state transition. Given the strategy (a|s), the trajectory of 
the Markov decision process is  = s0, a0, r1, s1, a1, r2, …, sT-1, aT-1, sT, rT. The proba-
bility is given as follows: 

1

0 0 1 1 1 1 0 10
( ) ( , , , ,..., , ) ( ) ( | ) ( | , ).

T

T T t t t t tt
p p s a s a s a p s a s p s s a 

  
    (5) 

Given the strategy (a|s), the cumulative reward received by the trajectory  of an 
interaction between the agent and the environment is the total return, which is defined as 
follows: 

1 1

1 10 0
( ) ( , , ).

T T

t t t tt t
G r r s a s  

  
    (6) 

Assuming that the environment has one or more special termination states, when the ter-
mination state is reached, the interaction process between an agent and the environment 
ends. This interactive process is called an episode or trial. If no termination state occurs in 
the environment, that is, if T = 1, the task is called a continuous RL task. The total return 
of a continuous RL task may be infinite. To solve this problem, a discount rate can be 
introduced for reducing the weight of forward returns. The discounted return is defined as 
follows: 

1

10
( )

T t
tt

G r 


  (7) 

where [0, 1] is the discount rate. When the discount rate is close to 0, the agent cares 
more about the short-term return. When the discount rate is close to 1, the long-term 
return becomes more critical. In addition, because the strategy and state transition have 
some randomness, the trajectory obtained in each test is a random sequence and the total 
rewards obtained in each test are different. The goal of RL is to learn a strategy (a|s) to 
maximize the expected return, that is, the agent is expected to perform a series of actions 
to obtain as much average return as possible. The objective function of RL is defined as 
follows: 

1

~ ( ) ~ ( ) 10
( ) [ ( )] [ ]

T t
p p tt

J E G E r
      


    (8) 

where  is the parameter of the strategy function. Thus, we should adjust the parameters 
to increase the probability of strategy (a|s) [18]. The objective function can be applied for 
the construction of deep RL models, such as the DQN and SARSA learning algorithms. 

2.3 Application of Deep RL for Medical Image Processing 

Deep RL has been used in applications of medical image processing, such as com- 
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puted tomography (CT) and magnetic resonance imaging (MRI). For example, Ali et al. 
[19] developed and validated an RL model based on a deep artificial neural network for 
the early detection of lung nodules in CT images of the chest. The aforementioned model 
is inspired by the AlphaGo system. It uses the original CT image as an input, treats the 
image as a set of states, and outputs the classification results regarding whether the image 
has nodules. The data used to train the aforementioned model was the lung nodule analysis 
challenge data obtained from the LIDC/IDRI database. The training data comprised 888 
CT images with at least three-fourth agreement among the annotations of different radiol-
ogists. Of these 888 images, 590 had one or more nodules and 298 only had a single nodule. 
The experimental results indicated that the overall accuracy of the training results was 
99.1%. Moreover, the sensitivity, specificity, positive predictive value, and negative pre-
dictive value of the training results were 99.2%, 99.1%, 99.1%, and 99.2%, respectively. 
However, the overall accuracy of the test results was 64.4%. Moreover, the sensitivity, 
specificity, positive predictive value, and negative predictive value of the test results were 
58.9%, 55.3%, 54.2%, and 60.0%, respectively. Thus, the aforementioned system still has 
room for improvement. 

Maicas et al. [20] proposed the automatic detection of breast lesions through the deep 
RL of dynamic contrast-enhanced MRI (DCE-MRI) images. This method was compared 
with the exhaustive search method. The aforementioned authors used an attention mecha-
nism to accelerate the search of lesions in appropriate areas. This mechanism learns a 
search policy by training an artificial agent and then utilizes the search strategy during 
inference. Specifically, the aforementioned authors extended the DQN method to detect 
lesions with significant changes in shape, appearance, location, and size. A total of 117 
DCE-MRI datasets were used in the experimental design analysis. The results indicated 
that the running time of lesion detection was considerably short, and the accuracy was 
maintained at approximately 80%. 

Shen et al. [21] used deep RL methods to train and automatically adjust the system 
parameters. This approach caused the system to behave like a human. In the study of Shen 
et al., pixel-based total variation rule items were used to optimize and reconstruct CT im-
ages repeatedly. Moreover, a parameter-tuning policy network (PTPN) was set up. This 
network was used to map the CT image patch to the output position of the specified direc-
tion and amplitude by adjusting the parameters of the patch center. End-to-end RL was 
used to train the PTPN. The results of the trained PTPN achieved similar or higher quality 
compared with the manually reconstructed CT image. 

Ghesu et al. [7] followed a new paradigm to redesign the detection problem as an 
artificial agent for behavioral learning tasks. They used the capabilities of deep RL and 
multiscale image analysis to combine the anatomical appearance and object search models 
in a behavioral framework. The training object of an artificial agent must not only distin-
guish the target anatomical object from other parts of the body but also train how to 
discover the object through learning and follow the optimal navigation path of the target 
object in the imaging volume space. The aforementioned authors evaluated 1487 3D CT 
volume data samples from 532 patients, and the number of image slices was more than 
500,000. The results proved that several anatomical structures were detected from a clini- 
cal acceptance perspective. The system developed by the aforementioned authors is supe 
rior to the most advanced technology (20% to 30% higher detection accuracy). The detec-
tion speed of the system developed by Ghesu et al. [7] was 2-3 times higher than that of 
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the other compared systems. Their system achieved unparalleled instant performance for 
large 3D CT scans. 

Mahmud et al. [22] comprehensively reviewed of the use of deep RL techniques for 
exploring biological data. In addition, they applied deep learning techniques to different 
datasets and application fields and compared their performance. Finally, the aforemen-
tioned authors resolved research challenges and discussed future developments.  

3. RESEARCH METHODS 

The flowchart of applying a region growth algorithm and deep RL for the detection of 
BAC in mammograms is illustrated in Fig. 3. The entire research process involves the fol-
lowing steps: (1) image preprocessing, including removing the pectoral muscle area and reduc-
ing image noise by using a Gaussian blur filter; (2) image segmentation by experts for ROI 
annotation and use of the line-strength method and region growth algorithm; (3) deep RL by 
combining a CNN model and deep Q-learning; and (4) performance evaluation by computing 
the Intersection over Union (IoU). The following sections describe the image preprocessing, 
image segmentation, deep RL, and performance evaluation steps. 

 

 
Fig. 3. Research flowchart. 

3.1 Image Preprocessing 

The diagnosis of BAC involves determining whether the two parallel calcified blood 
vessels on the mammogram can be easily identified. These easily identifiable parallel 
structures are called tram-like calcifications. Fig. 4 (a) illustrates a mammogram with BAC 
(green arrows), which can be defined as a typical arterial configuration of any visible linear 
calcium deposits that are different from the breast ducts along the periphery of the conical 
structure and have a length of at least 1 mm (Figs. 4 (b) and (c)). Fig. 5 is an example ROI 
of BAC arteries segmented from a mammogram. The length is defined as the longest con-
tinuous calcification segment. For example, in the arterial vessel AB depicted in the figure, 
the longest segment is CD. 
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(a)                 (b)                (c) 

Fig. 4. Mammograms with BAC [23] and typical BAC artery configuration [24]. 
 
 

 
Fig. 5. Example of an ROI of the segmented BAC artery [25]. 

 

A mammogram is usually accompanied by an image label. Due to the high density of 
the label, X-rays cannot easily penetrate. In X-ray imaging, when useless high-brightness 
white color patches interfere with the subsequent image segmentation of the BAC, they 
must be removed during the preprocessing. The image tag removal process is illustrated in 
Fig. 6. Fig. 6 (a) displays an original mammogram. Fig. 6 (b) illustrates the binary image 
of Fig. 6 (a). Fig. 6 (c) is the color block with the largest area (i.e. breast). Fig. 6 (d) illus-
trates that image label and other noise outside the breast area are completely removed. This 
study used the method of marking color patches to remove useless image tags. First, the 
original X-ray image was binarized. After the binarization, only two levels of black and 
white remained. Similar pixels were merged to form a color block. A function defined by 
MATLAB was used to mark each color patch, record its area, locate the color patch with 
the largest area (i.e., breast), and remove the remaining color patches (other noise outside 
the breast area) for completely removing the image tag and other noise outside the breast 
area. 

During the mammography examination, a part of the pectoral muscle area connected 
to the breast tissue must be photographed from the mediolateral oblique perspective. Be-
cause of the high density of muscle tissue in this area, X-rays cannot easily penetrate it. 
Fig. 7 (a) indicates that the pectoral muscles are connected to the breast tissue in the X-ray 
image; thus, the pectoral muscle area cannot be removed in the same manner as the image 
label. This study used the method of threshold detection to remove the aforementioned 
area. Because the pectoral muscle area belongs to a high-brightness white color block, the 
gradation distribution between the pectoral muscle area and breast tissue can be found by 
observing the peak of the gradation in the histogram. Then, after the threshold has been 
found and the image has been binarized, the pectoral muscle and breast tissue can be sep-
arated. The histogram of the displayed image is illustrated in Fig. 7 (b). Fig. 7 (c) depicts  
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(a)                (b)               (c)               (d) 

Fig. 6. Image label removal: (a) original mammogram; (b) binary image; (c) color block with the 
largest area; and (d) image after preprocessing. 
 

 
(a)                           (b) 

 
(c)                   (d)                (e) 

Fig. 7. Pectoral muscle area removal: (a) original mammogram; (b) histogram; (c) binary image; (d) 
image with reserved breast area; and (e) image after removing the pectoral muscle area. 
 

the threshold binarized image. Fig. 7 (d) illustrates the reserved breast area. Fig. 7 (e) dis-
plays the mammogram obtained after removing the pectoral muscle area. 

Typical original breast mammogram samples have different sizes. To facilitate the 
subsequent research, each mammogram was cropped to a size of 4000  2100 pixels. A 
mammogram is a grayscale image, and each pixel has 256 levels of intensity. Because the 
human breast has many tissues with similar gradations stacked on each other in X-ray im-
ages, suspicious areas with BAC are often difficult to identify. To reduce image noise and 
the level of detail of normal tissue, this study used Gaussian blur to make the outlines of 
suspicious areas more obvious. 

To highlight the linear features of BAC and facilitate the subsequent image segmen-
tation, this study used the line-strength algorithm proposed by Zwiggelaar et al. [26]. This 
algorithm can perform special image processing for mammograms after Gaussian blur fil-
tering. The calculation formula of the line-strength algorithm for segmentation is defined 
as follows: 
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S = (L  N) + (1  )(I  ) (9) 

where S is the intensity value of the line segment, L is the average value of the gradation 
intensity of the pixels on the line segment, N is the average gradation intensity of the pixels 
in the square area through which the line segment passes, I is the original tone intensity, 
and G is the tone intensity after Gaussian filtering. The value of  in Eq. (13) determines 
the size of the square area where N is calculated, and  is a parameter between 0 and 1. As 
per the study of Nava et al. [27], this study set  as 0.1. 

3.2 Image Segmentation 

The purpose of image segmentation is the automatic depiction, instead of the manual 
depiction, of the skeleton of the linear structure. Therefore, the goal of this study was to 
detect pixels that may represent more severe calcifications to persuade patients to control 
their cardiovascular disease risk factors. The entire image segmentation process is mainly 
divided into the following three stages. 

3.2.1 Binarized image 

For image binarization, this study input the result S of the line-strength algorithm as 
a threshold into a binarization function that compared each pixel with a given threshold to 
extract the linear structure with the highest image intensity. Pixels with higher image in-
tensity are more likely to be calcified vessels. 

3.2.2 Region growth algorithm 

   This study then used the region growth method to segment the binarized image further. 
The entire segmentation process mainly involved image area division, region growing, and 
image joining; (1) Image area division: Even after cropping, the area of the entire binarized 
image was still too wide. To facilitate regional growth, this study referred to the approach 
of Mazidi et al. [28] and divided the 4000  2100-pixel binary image into six 2000  700- 
pixel areas; (2) Region growing: The area with BAC was selected from the six areas, and 
the region growing method was used to perform segmentation. The region growth algo-
rithm involves collecting pixels with similar gradation intensity to form a region. Specifi-
cally, a “seed” is first found in each region that must be divided as the starting point of the 
region growth. Then, the pixels in the adjacent area are continually examined to determine 
whether their gradation intensity is similar the pixels at the starting point. Pixels are added 
to an area until no more pixels meet the conditions for being added to the area. In this study, 
the seed point was set to a pixel with a gradation intensity of 255, and the condition for 
stopping the growth of the region was a critical value of 55; (3) Image joining: After the 
segmentation was completed, the six 2000  700-pixel areas that were originally divided 
were joined to form the original image with a size of 4000  2100 pixels, which is the final 
segmentation resolution. 

3.2.3 Performance evaluation 

    The performance evaluation of ROI extraction involved examining the performance 
of segmentation of the BAC area from the original mammogram by using the region 
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growth algorithm. The criterion of evaluation was the IoU, which is defined as follows: 

GT SR
IoU

GT SR





 (10) 

where GT represents the ground truth, which is the area with BAC in the original mammo-
gram, and SR represents the segmentation result, which is obtained using the region growth 
method. The detection and evaluation functions mainly focus on observing the intersection 
of the segmented image area and ground truth as a percentage of their joint area; thus, these 
functions evaluate the accuracy of image segmentation. The higher the percentage, the 
higher is the accuracy. 

3.3 Deep RL Model 

    The structure of the deep RL network used for the target area segmentation of gray-
scale images is illustrated in Fig. 8. The entire network architecture is mainly divided into 
two parts: FirstP-Net and NextP-Net. The FirstP-Net CNN is responsible for finding the 
first coordinate at the edge of the target area. The NextP-Net DQN must locate the coordi-
nates of the next edge point according to the previous edge points and image information. 
The model must gradually obtain the segmentation result of a closed area by gradually 
finding the edge point to segment the target area. The architecture of FirstP-Net is illus-
trated in Fig. 9. It comprises an image input layer, followed by a convolutional layer that 
contains a convolution sublayer and a pooling sublayer, several residual learning modules 
(resblk), a concatenation layer, and a probability map of the target area. The output of 
FirstP-Net is the first coordinate at the edge of the target area. 
 

 
Fig. 8. Structure of the deep RL network used to process grayscale images. 

  

 
Fig. 9. Architecture of FirstP-Net. 
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The concatenation layer is responsible for creating the environment that interacts with 
the agents in the DQN. This layer generates four images: a grayscale image, a Sobel edge 
image, a probability map of the target area, and an image with all the previous edge points. 
The images generated by the concatenation layer are illustrated in Fig. 10. 

 

 
Fig. 10. Images generated by the concatenation layer. 

     

 
Fig. 11. Architecture of NextP-Net. 

 

The architecture of the NextP-Net DQN is illustrated in Fig. 11. The fully connected 
layer must classify the actions that the agent can take, and the agent must select one of the 
possible actions. Seven choices exist for the agent’s walking path. When the agent makes 
a choice, it becomes an immediate state input to the environment. Subsequently, the envi-
ronment outputs the agent’s new state and reward to the agent. 

Reward is a type of feedback mechanism through which one can measure whether the 
agent’s displays successful or failed behavior in the state. The agent must strengthen its 
behavior in a relatively positive or negative manner depending on the rewards received. 
Three types of rewards exist for DQNs in this research: difference IoU, edge distance, and 
point clustering. The preset IoU value was 0.5. When the ratio of the segmented area to the 
ground truth area was greater than 0.5, the agent received a high reward. The preset con-
dition of the edge distance was that it must be less than 10 to obtain a reward. The closer 
the selected edge point was to the edge of the ground truth area, the higher was the accuracy. 
When the edge point selected during the segmentation process did not fall on the edge of 
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the ground truth area, it indicated that the edge of the target area was not accurately pre-
dicted. In this case, the obtained reward was negative and had a punitive effect. The pur-
pose of the reward is to allow the selected edge point to be as close as possible to the edge 
of the ground truth area. 
 

Fig. 11. Architecture of NextP-Net.      
 

3.4 Performance Evaluation 

The criteria used in this study to evaluate the performance of the deep RL network 
model were the precision, recall, and F-measure. Precision is a measure of the proportion 
of all predicted positive samples that are correctly classified as true positives. Recall is the 
proportion of all positive samples that are correctly classified as true positives. F-measure 
is the harmonious average of the precision and recall rate. These criteria can be obtained 
from the confusion matrix of the classification results in Table 1. 

 

Table 1. Confusion martix. 

predicted class 
actual class

positive negative 
positive True Positives (TP) False Positives (FP) 
negative False Negatives (FN) True Negatives (TN) 

TP

TP FP
Precision


  (11) 

TP

TP FN
Recall


  (12) 

2 Precision Recall

Precision Recall
F measure

 


   (13) 

4. EXPERIMENTAL DESIGN AND ANALYSIS 

This section introduces the database and experimental environment as well as de-
scribes the segmentation results of the region growth algorithm and deep RL network. 
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(a)               (b)               (c)               (d) 
Fig. 12. Line-strength image: (a) Mammogram obtained after Gaussian filter filtering; (b) Image 
obtained after using the line-strength method; (c) Binary image; and (d) Image obtained after region 
growth algorithm processing. 

4.1 Database 

The mammograms used in this research were obtained from the Curated Breast Im-
aging Subset of the DDSM, which is an improved and updated version of the DDSM cre- 
ated by Lee et al. [29]. The images from this database were decompressed and converted 
to the DICOM format. Because BAC is typically classified as a benign case by physicians, 
this study selected 170 images from the benign dataset of the aforementioned database. Of 
the selected images, 50 were used to study the performance of the region growth algorithm 
and deep RL network. The 50 ground truth BAC samples used in this study had been an-
notated manually by experts. 

4.2 Experimental Environment 

The experiments in this study were performed on a laptop with a high-end graphics 
card. The laptop comprised an Intel Core i5-4200H octa-core processor, 8 GB of DDR3 
2400 MHz RAM, and an NVIDIA GeForce GTX 820 GDDR5 8 GB GPU. The program-
ming languages used were MATLAB and Python 3.6.4. Python, which includes pandas, 
numpy, matplotlib, git, scikit-learn, opencv-python 4.1.0.25, scikit-image 0.14.3, Shapely 
1.6.4. post2, ciffi, scipy, and other library packages, runs on the Anaconda suite version of 
Jupyter Notebook. The deep RL network adopted in this study uses TensorFlow, PyTorch 
0.4.0, and torchvision 0.2.1. Each input image segmented with the region growth algorithm 
must be divided into one or several BAC ROIs. Subsequently, the deep RL method must 
be executed. In addition, to increase the processing speed of the CNN, batch processing 
can be used in convolution operations. 

4.3 Results of Segmentation with the Region Growth Algorithm 

The main difference between the original mammogram and line-strength image was 
that the area of the ground truth had to be larger than the calcified blood vessels after line-
strength algorithm processing. The reason for this criterion is that the main purpose of the 
line-strength method is to strengthen the identification of blood vessels with severe calci-
fication. Fig. 12 presents a comparison of the process of recognizing calcified blood vessels 
from the original mammogram and from the image obtained after using the region growth 
algorithm. Fig. 12 (a) displays the mammogram obtained after Gaussian filtering. The line 
structure at the red arrow is the BAC. Fig. 12 (b) illustrates the result of image processing.  
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The area indicated by the red arrow is the line-strength structure. Fig. 12 (c) depicts 
the binarized image obtained by inputting the binarization function with the result of the 
line-strength calculation (S = 0.1113) of the images. Fig. 12 (d) illustrates the image ob-
tained after region growth algorithm processing. This image proves that most of the calci-
fied blood vessels were detected. Fig. 13 illustrates a binary image divided into six regions 
before executing the region growth algorithm. Only regions containing calcified blood ves-
sels were selected for region growth.  

 

 
Fig. 13. Area division: (a) Binary image with BAC and (b) Image divided into six areas. 

 

 
Fig. 14. Distribution of the union area and intersection area of three samples. 

 
Fig. 14 illustrates the distribution of the joint area and intersection area. The area 

marked in red is the ground truth; the area marked in yellow line is the result of region 
growing; and the area marked in green is the intersection of the ground truth and region 
growing result. Fig. 14 (a) displays a sample with an IoU value of 0.56. Fig. 14 (b) depicts 
a sample with an IoU value of 0.75. Fig. 14 (c) illustrates a sample with an IoU value of 
0.89. The average IoU of 50 samples was 0.7578, the minimum IoU value was 0.56, the 
maximum IoU value was 0.89, the median IoU value was 0.7539, the standard deviation 
was 0.0763, and the unit was mm2 (for the region growth model). 



JINN-YI YEH, SHENG-YOU WU, SIWA CHAN 

 

770

4.4 Results of Segmentation with the Deep RL Network 

The architecture and parameters of FirstP-Net and NextP-Net are listed in Tables 2 
and 3, respectively. Deep RL fixes the input size of the image to 368 × 368 pixels. To train 
and test the proposed deep RL network, 290 images were used and randomly divided. A 
total of 70% of the images formed the training set, and 30% of the images formed the test-
ing set. 
 

Table 2. Architecture and parameters of FirstP-Net. 
Type Kernel # of channels Stride Padding Dilation Output size 

Conv-BN-ReLU 33 64 2 1 1 18418464 
Maxpooling 33 64 2 1 1 929264 

Resblk 1 

1 1 64

3 3 64 2

1 1 256

 
   
  

 
1 0 1

9292256 
1 1 1

1 0 1 

Resblk 2 

1 1 128

3 3 128 2

1 1 512

 
   
  

 
1 0 1

4646512 
1 1 1

1 0 1 

Resblk 3 

1 1 256

3 3 256 2

1 1 1024

 
   
  

 
1 0 1

46461024 1 2 2

1 0 1 

Resblk 4 

1 1 512

3 3 512 2

1 1 2048

 
   
  

 
1 0 1

46462048 
1 4 4

1 0 1 

Conv-BN-ReLU 33 64 1 1 1 18418464 
Concate  256    184184256 

Conv-BN 33 128 2 1 1 9292128 
Conv-BN 33 128 2 1 1 4646128 
Conv-BN 33 128 1 1 1 4646128 

Conv 33 16 1 1 1 464616 
Conv 11 1 1 0 1 46461 

 

The experimental results of the deep RL network are illustrated in Fig. 15. The blue 
line represents the ground truth boundary, and the red point represents the first edge point 
found by FirstP-Net. The purple point is the walking path found by NextP-Net. Fig. 15 (a) 
displays an original mammogram. Fig. 15 (b) illustrates the image with ground truth. Fig. 
15 (c) depicts the first edge point found by FirstP-Net. Fig. 15 (d) displays the points and 
walking path found by NextP-Net. Fig. 15 (e) presents the enlarged image of the area near 
the first edge point. To evaluate the segmentation performance of the deep RL network, 
we used 50 ground truth samples for testing. The average IoU of 50 samples was 0.8998, 
the minimum IoU value was 0.8533, the maximum IoU value was 0.9385, the median IoU 
was 0.9134, and the standard deviation of the IoU was 0.0241 (for the Deep RL 1 model). 
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Table 3. Architecture and parameters of NextP-Net. 
Type Kernel # of channels Stride Padding Dilation Output size 

Conv-BN-ReLU 77 64 2 3 1 262664 

Maxpooling 3 3 64 2 1 1 131364 

Resblk 5 
3 3 64

1
3 3 64

 
  

 
1 1 1 

131364 1 1 1 

Resblk 6 
3 3 128

1
3 3 128

 
  

 
2 1 1 

77128 1 1 1 

Resblk 7 
3 3 256

1
3 3 256

 
  

 
2 1 1 

44256 1 1 1 

Resblk 8 
3 3 512

1
3 3 512

 
  

 
2 1 1 

22512 1 1 1 

Average Global 
Pooling 

 
11512 

FC  8 
 
 

      
(a)               (b)                                 (e) 

Fig. 15. (a) Original mammogram; (b) Ground truth; (c) First edge point; (d) Point and walking path; 
and (e) Enlarged image of the area near the first edge point. 
 

The reward curve of NextP-Net is illustrated in Fig. 16. Fig. 16 (a) displays the curve 
of the difference IoU reward. Fig. 16 (b) illustrates the curve of the edge distance reward. 
Fig. 16 (c) depicts the curve of the point clustering reward. Fig. 16 (d) presents the curve 
of the total reward. The total reward is the sum of the aforementioned three rewards. The 
reward curves prove that the model continues the optimization process as the number of 
iterations increases to obtain rewards. The best performance was achieved in approxi-
mately 2000 iterations. At the end of the training, the reward values of the difference IoU, 
edge distance, and point clustering were 109.0760, 41.6081, and −2.4585, respectively. 
Moreover, the total reward was 148.2256. The experimental results indicated that the pre-
cision, recall, and F-measure were 0.9157, 0.9273, and 0.9215, respectively.  

  

(c) (d)
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(a)                                  (b) 

 
(c)                                   (d) 

Fig. 16. Reward curve of NextP-Net: (a) Difference IoU reward; (b) Edge distance reward; (c) Points 
clustering reward; and (d) Total reward. 

 

To improve the performance of deep RL for segmentation, we artificially augmented 
the 290 samples by using 90°, 180°, and 270° rotation transformations, vertically mirroring 
the transformed images, and then rotating them again. These actions produced 2320 (290 
 8) images from the original 290 images. We randomly assigned 70% of the images to a 
training set and 30% to a testing set. When the image files were sequenced by their name, 
the precision, recall, and F-measure were 0.9432, 0.9547, and 0.9489, respectively. In the 
aforementioned case, the average IoU of 50 samples was 0.9278, the minimum value IoU 
was 0.8975, the maximum IoU was 0.9549, the median IoU was 0.9283, and the standard 
deviation of the IoU was 0.0138 (Deep RL 2 model). When the image files were placed 
randomly by their name, the precision, recall, and F-measure were 0.9498, 0.9575, and 
0.9536, respectively. In the aforementioned case, the average IoU of 50 samples was 
0.9355, the minimum IoU value was 0.9010, the maximum IoU value was 0.9591, the 
median IoU was 0.9363, and the standard deviation of the IoU was 0.0132 (Deep RL 3 
model). 

The performance of the deep RL network is summarized in Table 4. The higher the 
number of samples, the better was the performance. To compare the performance of the 
region growth algorithm and deep RL network for BAC detection, Table 5 presents the 
IoU descriptive statistics of different segmentation methods. The analysis of variance 
(ANOVA) results listed in Table 6 indicate significant differences in the IoU among these 
four methods because the F-value was 204.807 and the P-value was 0.00, which is less 
than  at the 0.05 level. The multiple comparison results obtained through Scheffe post 
hoc testing indicate that among the four adopted models, only Deep RL 2 and Deep RL 3 
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had no significant difference. Table 7 lists the means for the groups in homogeneous sub-
sets. The results in Table 7 prove that the Deep RL 2 and Deep RL 3 models outperformed 
the Deep RL 1 and region growth models. 

Table 4. Performance of the deep RL network. 
Methods Samples Precision Recall F-measure 

Deep RL 1 290 .9157 .9273 .9215 
Deep RL 2 2320 .9432 .9547 .9489 
Deep RL 3 2320 .9498 .9575 .9536 

 

Table 5. IoU descriptive statistics of different segmentation methods. 
Methods Samples Mean Std. Dev. Minimum Maximum 

Region Growth 50 .7578 .0763 .56 .89 
Deep RL 1 50 .8998 .0241 .85 .94 
Deep RL 2 50 .9282 .0134 .90 .95 
Deep RL 3 50 .9360 .0137 .90 .96 
Total 200 .8805 .0830 .56 .96 
 

Table 6. ANOVA results. 
 Sum of Squares df Mean Square F Sig. 

Between Groups 1.039 3 .346 204.807 .000 
Within Groups .331 196 .002  
Total 1.371 199  
 

Table 7. Means for groups in homogeneous subsets. 

Method N 
Subset for alpha = 0.05

1 2 3 
Region Growth 50 .7578  
Deep RL 1 50 .8998  
Deep RL 2 50 .9282 
Deep RL 3 50 .9360 
Sig.  1.000 1.000 .8260 

4.4 Comparison Experiments 

In order to test the performance of deep RL on BAC detection, we compared other 
four deep neural networks (DNN) including Cascade R-CNN, Grid R-CNN, YOLO, and 
RetinaNet. Cascade R-CNN is a multi-stage target detection architecture, which consists 
of a series of detectors trained with continuously increasing IoU thresholds, so that more 
choices can be made for the close false positive sequences [30]; Grid R-CNN uses a grid 
guided positioning mechanism for accurate object detection. Unlike traditional regression-
based methods, Grid R-CNN clearly obtains spatial information and has the position-
sensitive characteristics of a fully convolutional architecture [31]; YOLO integrates a 
complete convolutional neural network. The network is applied to the entire image, it 
divides the input image into grids, and predicts the bounding box and probability of each 
grid to detect the target [32]; RetinaNet is composed of a backbone network and two task-
specific subnets. The backbone network is responsible for calculating the convolution fea- 
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ture map on the entire input image, and it is an unconventional convolution network [33]. 
The results of the DNN experiment are shown in Table 8, and Table 9 is IoU descriptive 
statistics of different DNN methods. The experimental results show that the Deep RL 3 
model outperforms other DNN models. 

Table 8. Comparison deep RL network with other DNN models. 
Methods Samples Precision  Recall F-measure Accuracy 

Cascade R-CNN 2320 .8971 .8868 .8919 89.22% 
Grid R-CNN 2320 .8520 .8404 .8461 84.52% 

YOLO v3 2320 .7980 .7842 .7910 79.04% 
RetinaNet 2320 .8813 .8687 .8749 87.75% 
Deep RL 3 2320 .9498 .9575 .9536 95.46% 

 

Table 9. IoU descriptive statistics of different DNN methods. 
Methods Samples Mean Std. Dev. Minimum Maximum 

Cascade R-CNN 50 .7519 .10128 .57 .89 
Grid R-CNN 50 .6690 .12352 .52 .86 

YOLO v3 50 .6195 .08681 .51 .84 
RetinaNet 50 .6996 .04301 .55 .86 
Deep RL 3 50 .9360 .0137 .90 .96 

5. CONCLUSION 

This study compared the performance of the region growth algorithm and deep RL 
network for identifying BAC in mammograms. The experimental results indicated that the 
deep RL network with numerous samples significantly outperformed the regional growth 
method. The best precision, recall, and F-measure of the deep RL network were 0.9498, 
0.9575, and 0.9536, respectively. For the optimal RL network, the average IoU for 50 
samples was 0.9355, the minimum IoU value was 0.9010, the maximum IoU value was 
0.9591, the median IoU value was 0.9363, and the standard deviation of the IoU was 
0.0132. The poor performance of the region growth method is related to the line-strength 
algorithm. The less obvious calcified blood vessels must be diluted after image processing, 
which affects the results of the region growing method. Therefore, the regional growth 
method is currently only suitable for the preliminary auxiliary judgment of BAC by a ra-
diologist rather than as an independent diagnostic method. The experimental results of the 
deep RL network appear to be ideal; however, because only seven choices were available 
related to the agent’s walking path, the walking path was prone to a 90° sharp turn or even 
a hairpin bend where the calcification was relatively light or the blood vessel was bent. 
The problem of including normal tissue in the calcified area or judging the calcified area 
as normal tissue must be solved. 

In this study, obtaining image data was difficult and the hardware equipment per-
formed inadequately. We recommend the establishment of a database that specifically col-
lects mammograms of BAC. Such a database could facilitate follow-up research. In the 
future, we plan to use a portion of our research funding to upgrade our hardware equipment. 
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