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Attendance marking is a burdensome and time-consuming task for every school tea- 

ching staff to perform manually in the classroom. It becomes very attractive if this attend-
ance marking process can be automated through a facial recognition system. Although 
facial recognition works well under constrained environment, identifying each student in 
a dynamic classroom environment remains a challenge especially the students are in un-
cooperative manner. Conventional frame-based accuracy metric cannot reflect the true out-
come of the attendance as it varies drastically over frames, due to the large variations of 
scales, poses and occlusions in the classroom environment. In this paper, a statistical meth-
odology based on multiframe was proposed to improve the attendance marking accuracy 
after a convergence time. This methodology was combined with the mean thresholding 
scheme to achieve the same accuracy as full inference rate (i.e. 30 FPS) with a lower in-
ference rate (i.e. 3 FPS). This drives away the need to invest an expensive hardware to 
maintain the same accuracy with a higher inference rate.         
 
Keywords: artificial intelligence (AI), face detection (FD), face recognition (FR), inter-
pupillary distance (IPD), sliding window filtering, frame per second (FPS), false positive 
(FP), false negative (FN), thresholding 
 
 

1. INTRODUCTION 
 

Facial Recognition (FR) has been widely deployed in many applications, including 
airport security, device access verification, library access and etc. It has been known to 
work well under constrained environment [1] (e.g. sufficient lighting, cooperative faces 
and close distance with test subject) with good accuracy (i.e. > 95%). FR can be a value 
added for attendance marking application to remove the need of manual inspection and 
attendance sheet.  

Many of the FR based attendance marking solutions were proposed, such as the mon-
itoring the students on the fixed seating position, capturing an image when all employees 
are gathered in a cooperative manner before matching [2-4]. However, none of them ad-
dresses the issue of attendance marking in an unconstrained environment, due to the vari-
ations of scales, poses and occlusions in an uncooperative manner. In such scenarios, FR 
may suffer from poor accuracy. Even we can obtain discriminative facial features through 
the state-of-the-art FR model, how to decide the best threshold for practical use in a dy-
namic environment remains a challenge [5].  
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When there is an issue on AI accuracy, people often relate this to the problem of Deep 
Learning (DL) accuracy. Although this is partially true, there are also other factors that 
may influence the overall accuracy, such as the extrinsic factors (A), camera factors (B), 
pre-processing modules (C), thresholding (D) and application (E) as depicted in Fig. 1. 

 

 
Fig. 1. Accuracy limiting factors. 

 

Extrinsic factors (A) refer to the ambient conditions (e.g. lighting) and the conditions 
of the test subjects. In a real-life scenario, the test subjects are normally uncooperative. For 
example, the person-of-interest may not always look frontally to the camera. Camera fac-
tors (B) refer to the camera design, such as the Field-of-View (FOV), video settings (e.g. 
resolution, bitrate) and camera position. For example, the system integrators need to avoid 
backlight and low-light conditions while installing their cameras [6].  

The inter-pupillary distance (IPD) value is commonly used to indicate the FR working 
range. A typical Face Recognition (FR) algorithm recommends a minimum IPD of 32 pix-
els [7] while the Face Detection (FD) can achieve lower IPD than FR. Fig. 2 shows that 
the relationship of a person’s IPD with respect to the camera’s HFOV, video resolution 
and camera distance. Based on Eq. (1), an IPD pixel of a person face can be estimated: 

 

 
Fig. 2. The FR working range with the impact of FOV and video resolution. 

( ) ( )
22 tan ,  ( )HFOV vide width pixel IPD mm

xx d IPD pixel
    (1) 

where the actual IPD range of a female is in between 51.0mm to 74.5mm, and a male is in 
between 53.0 and 77.0mm [8].  

Figs. 3 (a) and (b) show the FD and FR working range based on a 4k resolution with 
different HFOV using colour code. It is noticed that the FR working range is reduced into 
halved (i.e. from 12 feet to 6 feet) by selecting a wider HFOV (i.e. from 90º to 120º). 
Although a wider camera view can improve the coverage of the captured scene, it impacts 
the FR working range significantly.  
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                      (a)                                  (b)  
Fig. 3. Facial Recognition working distance of a 4k resolution with different HFOV; (a) HFOV = 90 
degree; (b) HFOV = 120 degree. 
 

Pre-processing (C), on the other hand, can be applied as an enhancement for the FR 
model. For example, pre-correcting a pose using 2D transformation can improve the FR 
accuracy [9].  

For the deep learning model (D), selecting an optimum threshold to work well in ac-
tual environment is crucial. Figs. 4 (a) and (b) show the distribution of classes on any 
classification model for an ideal case and real-world case respectively. In an ideal situation, 
the two curves do not overlap at all where the FR model is able to distinguish between 
positive class (i.e. matched face) and negative class (non-matched face) using a fixed 
threshold. However, it is impossible to distinguish perfectly between positive and negative 
classes in many real-world applications with a fixed threshold in a real-world scenario 
especially in the classroom where the students are from the same age group, demographic 
and ethnicity. Although an adaptive threshold was proposed in [5], the evaluation was done 
on LFW test cases where the cases are not generalized well for classroom types of use 
cases.  

(a)                (b)  
Fig. 4. Distribution of the classes on any classification model; (a) Ideal case; (b) Real-world case. 

 

Finally, the application level (E) is the post-processing module to digest the inference 
results based on usage scenario. For example, the teachers are not concerned about the 
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precision and recall of FR model, but they are more interested in knowing the actual at-
tendance in a classroom. Practically, it is impossible to conclude the student attendance 
based on the inference result from a single frame where the students are under uncoopera-
tive manner. Therefore, the conventional frame-based FR accuracy metrics cannot address 
the real-world problem for attendance marking [10]. In this paper, our motivation is to 
address the issue of the existing frame-based attendance marking and the manual fine-
tuning of the thresholding during deployment. We compare the conventional frame-based 
result with our proposed methodologies to show that the superiority of the statistical mul-
tiframe and mean thresholding approaches under the unconstrained classroom environ-
ment.  

2. CONVENTIONAL FACIAL RECOGNITION ACCURACY METRICS 

False Positive (FP) and False Negative (FN) are the two types of prediction errors in 
FR system. In contrast, FP is more damaging than FN as recognizing an absentee as pres-
ence is more undesirable. Precision and recall [11] are the two fundamental metrics to 
define the image or frame-level accuracy. These metrics can be calculated based on Eq. 
(2). The mean average precision (mAP) [12] is a measure that combines both precision and 
recall for evaluating the accuracy of the FR model.  

( ) TP
TP FPPrecision frame   

( ) TP
TP FNRecall frame       

( ) TP
TP FP FNAccuracy frame    (2) 

where, TP is the total number of matched faces in an image. FP is the total number of false 
accepted faces in an image. FN is the total number of false negative faces in an image. 

While the frame-based accuracy is useful for training the FR model, but it fails to 
reflect the true attendance in a classroom as the result may be fluctuated over time due to 
large variations of poses and occlusions. Therefore, a statistical multiframe accuracy meth-
odology for attendance marking is desirable. 

3. PROPOSED METHODOLOGY FOR STUDENT MARKING 

Attendance marking is more than just a facial recognition. A correct definition for 
attendance marking should be detecting and tracking of an individual and deciding the 
presence of a known person over an observation time. Fig. 5 illustrates this concept by 
identifying the presence of a known person based on the multiframe inference results. Here 
is the boy who played skateboard in the video. The FR inference result varies as the person 
was moving over the frames. In general, a higher precision FR model would produce a 
relatively higher TP than FP in terms of frames. In this example, majority of the frames 
are predicted correctly with a fewer prediction error. The attendance marking application 
is designed to decide if this boy is either Alan or Tom that is available in the facial database. 
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Since Alan has received a higher voting than Tom, therefore, the system concludes that 
this person is Alan and not Tom. 

 

 
Fig. 5. Statistical multiframe concept for attendance marking. 

 

 
Fig. 6. Proposed attendance marking methodology. 

 

The proposed statistical multiframe accuracy methodology with mean threshold for 
attendance marking is shown in Fig. 6. An FR system should contain three basic elements, 
namely face detection, face tracking and face recognition. To convert FR system into a 
student marking application, three additional blocks were implemented, namely sampling, 
filtering and decision. The inference results from the FR model is known as samples. The 
filtering block removes the excessive noise (i.e. FP and FN) from the samples. Finally, the 
decision block determines the presence of each tracked person based on the statistical anal-
ysis. Additionally, we introduce a thresholding mechanism based on mean to provide an 
optimum balancing between FP and FN based on the given facial database.   

3.1 Sampling 

The sampling frequency or inferencing rate is dependent on the network structure of 
the AI model, the types of hardware and the types of workload that runs in the hardware. 
It is ideal to infer as high as the video frame rate (e.g. 30 FPS) to provide better statistical 
analysis for accuracy. However, it comes with a cost of expensive HW, such as the neural 
network acceleration card. With the hardware constraint, a careful selection of the thresh-
olding can help to reduce the inference rate as low as 3 FPS while achieving the same 
accuracy as full rate at 30 FPS. The explanation of the thresholding scheme will be covered 
in Section 3.4.   
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3.2 Filtering 

It is unavoidable to have both FP and FN prediction errors under an unconstrained 
environment [13]. Sliding window (aka median filter) is one of the effective methods to 
filter out the random noise [14] for image processing. Here, we proposed the use of sliding 
window filtering to remove excessive of FP and FN from the inference samples. Fig. 7 
illustrates the concept of sliding window filtering to improve TP numbers in the inference 
samples. The sliding window length can be adjusted for optimum result depending on the 
usage scenarios. A larger window size can be chosen to provide a better smoothing effect, 
providing the student movement in a classroom is minimal. With the use of sliding window, 
the system can reduce the FP and FN samples, and subsequently improving the statistical 
calculation for attendance decision making. 

   Fig. 7. Sliding window filtering.      Fig. 8. Decision block based on majority voting. 

3.3 Decision  

The FR system may recognize more than one candidate per tracked face in an uncon-
strained classroom environment. The majority voting is proposed to decide the best candi-
date as the true attendance for each tracked face. The decision block updates the voting 
number per tracked face after each inference as illustrated in Fig. 8. The one with the high-
est voting will be selected as the true candidate who presents in the class for each tracked 
face based on Eq. (3).  

Decision(per tracked face) = Majority(F0, F1, …, Fn) (3) 

where F is the number of occurrences per candidate and n is the total number of candidates per 
tracked face. 

3.4 Mean Thresholding 

A thresholding plays an important to maximize the recognition rate of a group of 
students by balancing between the false positive rate and false negative rate. Since the 
attendance marking system has a prior knowledge of the facial database of a specific class-
room, we can leverage it to understand the similarity distribution within a class. Therefore, 
a mean value can be estimated from the similarity measurement to strive a good balance 
between FP and FN.  
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Fig. 9. Mean thresholding methodology. 

 

As shown in Fig. 9, each registered face is compared with the rest of the facial em-
beddings in the database for cosine distance and the one with the lowest distance will be 
selected. The cosine distance calculation is given in Eq. (4). A mean thresholding is esti-
mated by averaging the selected distance over all the faces in the database based on Eq. (5). 

|| || || || (  ) 1 cos 1 AB
A Bcosine distance two vectors      (4) 

where A and B represent two set of face embeddings or vectors and  is the angle between 
the two vectors.  

Mean Threshold(per database) = (T0, T1, …, Tn)/n (5) 

where, T is minimum cosine distance per registered face by comparing all the embeddings 
in the database. n is the total number of registered faces in the database. 

4. PERFORMANCE EVALUATION 

An accuracy tool for attendance marking was developed and evaluated using Open- 
VINO. Some internal test video sequences were used for the evaluation as shown in Fig. 10.  

 

  
Fig. 10. Classroom test videos with different classroom configuration. 

 (To protect privacy of students, we hide their eyes in the paper) 
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Fig. 12. Statistical multiframe analysis for attend-
ance marking. 

Fig. 13. The classroom attendance after 110 sec-
onds of convergence time. 

Each of the video length is 2 minutes with a frame rate of 30 FPS. It contains 48 
students in the classroom. The students were uncooperative in the video, where it contains 
many student activities, such as hand-raising, standing, sitting, reading books, sleeping, 
and chatting. The “face-detection-adas-0001” [15] and the “face-reidentification-retail-
0095” [16] pre-trained models were used and the sample codes are available in [17]. These 
pre-trained models have been optimized for Intel processor. We evaluated both the accu-
racy of the frame-based and the proposed statistical multiframe approach for attendance 
marking. 

Figs. 11 (a) and (b) show the frame-based student attendance results over 120 seconds 
or 3600 frames, with the cases of without and with sliding window. Blue curves indicate 
the true attendance (aka TP), and red curves indicate the false attendance (aka FP). The 
student attendance was significantly improved after applying the sliding window filtering. 
However, it is still impossible to get a full student attendance in any of the frame even with 
the support of sliding window filtering. Additionally, the results also consistently show 
one to two false attendees throughout the whole video sequence, which are unable to be 
removed by the sliding window filtering. 

 

                  (a)                 (b) 
Fig. 11. Frame-based student analysis (a) no sliding window; (b) with sliding window. 

 
Fig. 12 shows the result of the proposed statistical multiframe analysis with sliding 

window filtering and majority voting. The true attendance rate was able to converge from 
6 to 40 students after 50 seconds of convergence time. For false attendance rate, it takes 
slightly longer (i.e. 110 seconds) to minimize it to zero.   
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Fig. 13 shows the status of the attendance marking tool according to their seating 
position after 110 seconds of convergence time. With the proposed statistical multiframe 
accuracy methodology, the system is able recognize 45 out of 48 students correctly within 
2 minutes (i.e. the accuracy of 93.75%) by inferencing the same rate as the video rate. The 
other 3 unrecognized students (Id = 88, 84 & 79) suffer from low-resolution and severe 
occlusion, therefore, the statistical multiframe approach cannot improve in such conditions.  

Furthermore, we evaluated the three thresholding methods, namely fixed, adaptive 
and mean threshold. All three thresholding methods were combined with the statistical 
multiframe methodology for the attendance marking accuracy. A fixed threshold of 0.43 
was used, as this value was estimated over a set of test videos to achieve best balance 
between the positive and negative cases using the conventional frame-based accuracy met-
ric. The adaptive threshold was calculated based on the proposed method in [5], and the 
mean threshold was calculated based on the proposed method in this paper.  

 

 
Fig. 14. Thresholding comparison using with different classroom videos at different inference rate FPS.  

 
Fig. 14 shows the comparison of thresholding with different classroom videos. Un-

fortunately, the adaptive threshold was the worst among all the cases. Although adaptive 
threshold outperforms fixed threshold on LFW test cases [5], it underperforms under an 
unconstrained classroom environment. We found that the faces with the stringent threshold 
have the hard time for recognizing them especially for those who sit in the last few rows 
of the classroom while the faces with the lenient threshold introduce more FP than TP. 
Thus, adaptive threshold is not suitable for classroom types of use case.  

Overall, the mean threshold gives the best attendance marking accuracy among the 
three different thresholding methods. It shows its capability to achieve a good balance TP 
and FP during the majority calculation so that more genuine faces could be recognized. 
The results also show that the mean threshold can maximize the accuracy level in the class-
room even with a lower inference rate as low as 3 FPS. On the other hand, fixed threshold 
is comparable to mean threshold, but it requires some efforts to estimate an optimum 
threshold point.  

5. CONCLUSIONS 

The evaluation results show that the conventional frame-based accuracy metric can-
not address the issue for attendance marking due to the occlusion and variation of students’ 
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poses in an uncooperative manner. The proposed statistical multiframe with sliding win- 
dow filtering and majority voting show the improvement of attendance marking accuracy 
after a convergence time (i.e. 110 seconds). On the other hand, the proposed mean thresh-
olding is more realistic and systematic approach for calculating threshold value based on 
the prior knowledge of a specific classroom facial database. When the proposed threshold-
ing scheme is combined with the statistical multiframe methodology, the system is able to 
reduce the inference rate to as low as 3 FPS while achieving the same attendance accuracy 
at full inference rate (i.e. 30 FPS). This drives away the need to invest an expensive hard-
ware to maintain the same accuracy with a higher inference rate.  
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