
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 36, 513-533 (2020)
DOI: 10.6688/JISE.202005_36(3).0003

513

Detecting Duplicate Actions in a KDT Script
Based on LRS and LCS

CHIEN-HUNG LIU, WOEI-KAE CHEN AND CHEN-YAN LIAO

Department of Computer Science and Information Engineering
National Taipei University of Technology

Taipei, 106 Taiwan
E-mail: {cliu; wkchen; t104598007}@ntut.edu.tw

In keyword-driven testing (KDT), having duplicate actions in the test script is per-

haps the most common bad smell. Once the target user interface is changed, a KDT script
with duplicate actions can be difficult to maintain. Thus, detecting and removing dupli-
cate actions is an important task. However, so far, no KDT testing tools support auto-
mated duplicate detection. This paper proposes a method and tool, called DDT (Duplicate
script Detection Tool), for the tester to quickly identify duplicate actions. Two detection
algorithms based on Longest Repeated Substring (LRS) and Longest Common Subse-
quence (LCS) are presented. In addition, DDT provides a keyword extraction feature that
can automatically remove duplicate actions. Our experimental results show that there are
21-42% of duplicate actions in a typical KDT script, DDT can detect these duplicate ac-
tions in 3-5 seconds, and up to 58-81% of these duplicate actions should be refactored.

Keywords: duplicate detection, keyword extraction, bad smell, KDT scripts, duplicate ac-
tions

1. INTRODUCTION

Duplicate code (i.e., clones) means that the same code structure (i.e., a sequence of
source code) occurs in more than one places within a program maintained by the same
entity [1]. It has been considered the most pervasive bad smell in software programs. In
particular, duplicate code not only increases the code size, but also reduces the readabil-
ity and maintainability of the code. Moreover, it also implies design problems, such as
lacking of procedural abstraction. Thus, detecting and removing duplicate code are very
important for software development and maintenance.

Similarly, duplicate actions can also occur within a keyword-driven testing (KDT)
script, which uses keywords (or action words) to represent a functionality to be tested. A
KDT script is composed of a sequence of keywords with associated parameters, corre-
sponding to a sequence of user actions interacting with the application under test. Spe-
cifically, each keyword can be considered an abstraction of a sequence of user actions
that can be executed automatically by a KDT tool, such as Robot framework [2]. This
allows for the separation of test case design and test execution, and enables testers with
no programming skills to develop KDT scripts.

When a KDT script contains duplicate actions, the script becomes difficult to read
and maintain. Once the target user interface is changed, each of the duplicate actions
related to the change must be modified at the same time. This is not only inefficient but
also error prone. For example, it is essential to develop two different test cases to verify

Received September 17, 2018; revised March 2, 2019; accepted July 4, 2019.
Communicated by Hung-Yu Kao.

CHIEN-HUNG LIU, WOEI-KAE CHEN, CHEN-YAN LIAO

514

the behavior of an application with two different types of users, namely administrators
and regular users. The login actions (entering username and password and clicking on
the “login” button) are however the same for both types of users. Thus, the two different
test cases may contain exactly the same sequence of login actions. If such duplicate ac-
tions can be detected and extracted into a higher level keyword (e.g., a user keyword
called login), the understandability and maintainability of the KDT script can both be
greatly improved.

Although there exist many clone detection studies and tools for software programs
[3-6], so far no KDT testing tools support duplicate detection, and no research related to
the detection of duplicate actions has been reported. In particular, it is not even known
whether typical KDT scripts contain duplicate actions. Thus, this paper proposes an ap-
proach that can detect the duplicate actions in a KDT test script. Particularly, two algo-
rithms based on LRS (Longest Repeated Substring) and LCS (Longest Common Subse-
quence) [7, 8] are proposed to detect two different types of clones, and a tool called DDT
(Duplicate script Detection Tool) is presented. DDT not only supports the proposed du-
plicate detection method, but also enables users to remove duplicate actions by extracting
the specified actions into a new user keyword automatically.

To evaluate the effectiveness of the proposed method and tool, several experiments
have been conducted (Section 5). The experimental results suggest that in a typical KDT
script there are approximately 21-42% of duplicate actions. Thus, detecting and remov-
ing duplicate actions are indeed crucial and can be beneficial. Further, depending on the
size of the KDT test script and the degree of duplicates, the duplicate actions can be effi-
ciently detected by using DDT in 3-5 seconds. In addition, up to 58-81% of the duplicate
actions detected by DDT should be removed.

The rest of this paper is organized as follows. Section 2 briefly describes related
work. Section 3 proposes the detection algorithms and a measure to evaluate the degree
of duplicates. The design and implementation of DDT are described in Section 4. Section
5 reports the results of experiments. The concluding remarks and future work are given
in Section 6.

2. RELATED WORK

Duplicate code detection has been thoroughly studied and various methods have
been proposed [3-6]. According to the report of Roy et al. [5, 6], clone detection tech-
niques can be classified into four categories: textual, lexical, syntactic, and semantic. The
textual approach basically uses the raw source code directly in clone detection process.
The source code is treated as sequences of lines or strings and different techniques are
applied to detect if two code fragments are similar. The lexical approach is also known
as token-based approach. It commonly transforms the source code into a sequence of
lexical tokens and compares the sequence of tokens to find duplicate subsequences of
tokens for clone detection. The syntactic approach mainly converts the source code into a
syntax tree and detect clones by using tree-matching techniques or using structural met-
rics. The semantic approach generally employs static program analysis techniques to
obtain more information, such as program dependency graph (PDG), in addition to syn-
tactic data and use the semantic information to detect similar code fragments.

DETECTING DUPLICATE ACTIONS IN A KDT SCRIPT 515

Table 1 shows the taxonomy of the four different types of clones described in [5, 6].
The classification is based on the similarity of program text or program functionality.
Types 1-3 are based on the textual similarity and Type 4 is based on functional similarity.
Depending on the characteristics of target programs and the types of clones to detect,
different kinds of techniques or hybrid methods can be applied.

Table 1. Types of clones.
Category Description

Type 1
Identical clone (ignoring variations of whitespace, layout and
comments)

Type 2
Syntactical clone (ignoring variations in identifiers, literals,
types, whitespace, layout and comments)

Type 3
Transformed clone (Type 2 clone with modifications such as
changed, added or removed statements)

Type 4
Semantic clone (code with the same computation but different
implementation)

Like duplicate code [1], duplicate test code is generally considered undesirable.
However, despite much effort has been devoted to clone detection for software programs,
there exist very few studies on detecting duplicates for test scripts. V. Deursen et al. [9]
identified a number of bad smells that can occur specifically in test code including Test
Code Duplication. They found that test code may contain undesirable duplication espe-
cially in the same JUnit test class. Such duplicates can be removed by using Extract
Method. Moreover, Meszaros [10] defined a set of test smells (i.e., anti-patterns), which
also included Test Code Duplication, and described the symptoms, impacts, causes and
possible solutions of the smells.

Bavota et al. [11] conducted an empirical investigation to analyze the diffusion of
test smells in 987 JUnit classes of 27 software systems. To detect test smells automati-
cally, a simple rule-based tool was developed. Specifically, the tool used a code clone
detection system called CCFinder [3] for detecting duplicate test code. They found that
Test Code Duplication was quite diffused and occurred in 23 systems and a total of 345
classes. Their results also showed that Test Code Duplication were more diffused in open
source systems than in industrial systems. Further, the results indicated that Test Code
Duplication had a strong negative impact on program comprehension and maintenance.

Palomba et al. [12] conducted a large-scale empirical study on a set of 110 open
source software projects to analyze the characteristics of JUnit test classes automatically
generated by EvoSuite [13]. They used the test smell detection tool developed in [11].
The results showed that 83% of the test classes were affected by at least one test smell
and test smells were highly diffused. Particularly, they also found that Test Code Dupli-
cation occurred frequently in the generated test classes (contained in 33% of the JUnit
classes), often co-occurred with Indirect Testing smell, and had strong correlations with
system size, such as the size and number of classes.

Lavoie et al. [14] presented an experiment on detecting and analyzing the duplicates
in test suites written in TTCN-3, a standardized test scripting language for telecommuni-
cation systems. The duplicates were first identified by computing the syntactical similar-
ity of script fragments using a tool called CLAN (CLone ANalyzer). Then the duplicates

CHIEN-HUNG LIU, WOEI-KAE CHEN, CHEN-YAN LIAO

516

were detected by computing the LCS on the token types and token images of two similar
fragments. The experimental results showed that around 24% of script fragments were
duplicated. Moreover, the distributions of clones were 82.9%, 15.3%, and 1.8% for Type
1, Type 2, and Type 3 clones respectively, which was statistically significant.

Suan [15] proposed an approach to detect duplicates in BDD (Behavior-Driven
Development) specifications, a simple domain-specific language for specifying system
behavior in terms of user stories [16]. In their approach, duplicates were identified by
using text similarity matching based on a set of rules. Specifically, the set of rules can
detect whether two or more entities (e.g., feature, scenario, and steps) are syntactically or
semantically equivalent. An Eclipse IDE plugin called SEED was developed to detect
and mark the duplicates. The experimental results showed that SEED can discover the
duplicates that went undetected by human experts.

Binamungu et al. [17] conducted an industry survey to explore the use of BDD, the
benefits and challenges of using BDD, and specially the challenges of maintaining BDD
specifications. The results indicated that duplicates can make BDD specifications dif-
ficult to understand and extend, and can also reduce execution performance. Particularly,
the results also showed that most BDD practitioners still performed duplicate detection
manually. Thus, they identified that duplicate detection tools and techniques are im-
portant research opportunities in the context of BDD.

Although extensive studies have been reported in the literature for detecting dupli-
cates of software programs, test code, and BDD specifications, there is a lack of investi-
gation aimed at detecting the duplicates of KDT scripts. One of the related researches is
our previous work [18], which identified five different kinds of smells in a KDT script,
including unsuitable naming, duplicate actions, long keyword, long parameter list, and
shotgun surgery. This paper focuses on the detection of duplicate actions and provides
the support of keyword extraction.

Note that the structure of a KDT script is quite different from that of a typical soft-
ware program, test code, or BDD specification. For example, variables, branches, and
loops are pervasive in a program. However, a typical KDT script does not use a lot of
variables, branches, or loops, and contains mostly only sequences of actions. Thus, its
structure is a lot less complicated than a program, and detecting Type 4 duplicate actions
becomes unnecessary. Since detecting Type 1 duplicate actions are trivial (can be done
by exact textual matching), for the clone detection of KDT scripts, we report two algo-
rithms that can detect Type 2 and Type 3 duplicate actions.

3. DUPLICATE DETECTION

This section presents two algorithms, namely DDT‐LRS and DDT‐LCS, that can detect
duplicate actions in a KDT script. We also define duplicate percentage as a measure of
duplicates.

3.1 The Proposed Approach

A KDT script is composed of a list of actions along with the parameters passed to
the actions (e.g., Fig. 1). Each action calls a keyword (a keyword can be either a library

DETECTING DUPLICATE ACTIONS IN A KDT SCRIPT 517

keyword defined by the KDT tool, or a user keyword defined by the tester). When a se-
quence of actions S is structurally identical (or similar) to another sequence S, we say
that S is a duplicate of S (and vice versa) and the set {S, S} is a duplicate group. In
general, a duplicate group may contain two or more duplicates that are possible to be
replaced with a new keyword, which performs the same actions. Since keyword parame-
ters can be substituted (or changed), two pieces of scripts form a duplicate group as long
as they have the same action sequences. For example, in Fig. 1, lines 3-4 and 7-8 are
duplicates. Though, the parameters of the two type actions are not the same, we can cre-
ate a new keyword called typeAndClick (with an email address parameter) to perform
both type and click actions, and thus the new typeAndClick keyword can replace both
lines 3-4 and 7-8.

01
02
03
04
05
06
07
08
09

….
// piece #1
type “email” “a@b.c”
click “enter”
….
// piece #2
type “email” “d@e.f”
click “enter”
…
Fig. 1. Two pieces of script that are duplicates.

In other words, when detecting duplicates, we do not need to consider whether their
parameters match exactly. Therefore, the problem is reduced to detecting whether there
exist two or more pieces of scripts that use the same sequence of actions. More precisely,
we can ignore parameters and think of a script s as a very long string, composed of ac-
tions only. The duplicate detection is thus transformed into the problem of identifying
whether there exist repeated substrings in s. Each set of repeated substrings represents a
duplicate group.

Two of the most famous algorithms that can find the longest repeated or common
substrings are LRS and LCS. LRS and LCS can be used to detect Type 2 and Type 3
duplicates, respectively. We extend both LRS and LCS algorithms to perform duplicate
detection for KDT scripts.

3.2 Longest Repeated Substring (LRS)

Fig. 2 presents the DDT-LRS algorithm, which uses LRS to perform Type 2 dupli-
cate detection. The algorithm first translates the input script s into s to reduce the input
size (line 5). Suppose s uses n actions (keywords), and each keyword has m characters on
average. The input size is n  m. In practice, a keyword can be a lengthy string (e.g., the
keyword DoubleClickSuggestListItem has 26 characters). Thus, m becomes a factor that
affects the efficiency of detection. Note that the number of distinct keywords is a con-
stant. Thus, we can translate and represent each distinct keyword into a special, short
16-bit Unicode character (we use a hash function to do so) so that the keyword length
becomes a constant. Thus, the overall input size is reduced to n.

Line 9 repeatedly uses LRS to find the longest repeated substring in s until the
length of repeated substring d is less than a certain threshold (the threshold is reported in

CHIEN-HUNG LIU, WOEI-KAE CHEN, CHEN-YAN LIAO

518

Section 5). Since d can appear in multiple (more than two) places, the algorithm finds
each repeated d and add it into dGroup (lines 14-19), which stores the entire group of
duplicates for d. Then, dGroup is included into the detection results, duplicateGroups
(line 20). The advantage of using LRS to perform duplicate detection is that every mem-
ber of the same dGroup contains exactly the same sequence of actions. Thus, extracting a
new keyword for each dGroup is always doable. Once d (i.e., the current LRS) is de-
tected, the next iteration removes d from s (line 23) and tries to find the next LRS. By
repeatedly detecting the remaining LRS, all duplicate groups are identified.

Note that the algorithm should not take two consecutive modules (a module is either
a test case or a user keyword) as a single unit for detection. For example, let UK1 (user
keyword 1) and UK2 be two consecutive modules in s. Suppose that the last 2 steps of
UK1 are AB, and the first 2 steps of UK2 are XY. The algorithm should not consider ABXY
as a legal sequence, since both UK1 and UK2 are supposedly executed independently. We
resolve this issue by putting an extra token k in the boundary of every module (line 6).
Such a token prevents ABXY inside a module from being mistakenly matched with ABkXY
across two modules.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// Input: s is the input script
// Output: duplicateGroups containing all duplicates
procedure DDT-LRS(s)
begin
 s = replace each keyword used in s with a hash code char;
 Add a special token k in the boundary of every module in s;
 duplicateGroups = ;
 while (true)
 d = LRS(s);
 if (d’.length <= MIN_DUPLICATE_LENGTH_THRESHOLD)
 break;
 end if
 // Locate and store a group of duplicates
 d = the corresponding source code of d
 dGroup = ;
 for each repeated d in s
 l = the location of d in s;
 dGroup.add(<d, l>);
 end for
 duplicateGroups.add(dGroup)
 // Remove d from s so that the next iteration
 // finds the next LRS
 s= remove all repeated d from s;
 end while
 return duplicateGroups;
end

Fig. 2. DDT-LRS algorithm.

To illustrate DDT‐LRS, Fig. 3 shows an example script s that has two test cases TC‐01
and TC‐02, where TC‐01 contains a sequence of 13 actions that is exactly same as that of
TC‐02 (the duplicates are marked as red). To detect duplicate actions, DDT‐LRS will first
generate a string s by replacing each keyword in s with a hash code char (line 5). It then

DETECTING DUPLICATE ACTIONS IN A KDT SCRIPT 519

Fig. 3. An example of using DDT-LRS.

detects the longest duplicate in s using LRS (line 9). In this case, since both TC‐01 and
TC‐02 are in s, the hash-coded 13 actions (assuming they are the longest) will be detect
ed and stored in d (line 9). The source code of the 13 actions, d, is obtained by reversing
d (line 14) and is used to find all the duplicates in s (line 16), along with their positions
(line 17). Thus, both the 13 actions of TC‐01 and TC‐02 are found and added to dGroup
(line 18). After that, DDT‐LRS removes all appearances of d (the hash-coded 13 actions
in both TC‐01 and TC‐02) from s (line 23) and continues to detect the next longest dupli-
cate in s using LRS iteratively until the length of the detected duplicate is less than or
equal to the threshold.

3.3 Longest Common Subsequence (LCS)

Fig. 4 presents the DDT‐LCS algorithm, which uses LCS to perform Type 3 duplicate
detection. The algorithm also translates the input script s into s to reduce the input size
(line 5). However, an LCS is obtained from two different input strings. Thus, the algo-
rithm takes every pair of modules as the inputs of LCS (line 8) and stores the results in d,
which has three attributes lcs, l1, and l2 (explained in lines 10-12). Note that d.lcs found
from the LCS algorithm is a common subsequence, which is generally not a (consecutive)
substring of the two inputs strings. Thus, d.l1, and d.l2 are used to keep track the posi-
tions of characters of the two input strings that make up d.lcs. All duplicates corre-
sponding to d.lcs are stored in dGroup (lines 17-27), which is included in the result du‐
plicateGroups (line 28).

For the illustration of DDT‐LCS, Fig. 5 shows an example script that has a user key-
word TestSloveAnagram and a test case TC‐02, where both TestSloveAnagram and TC‐02
have a common subsequence of 4 actions (marked as red). To detect these 4 actions, af-
ter replacing each keyword with a hash code char (line 5), DDT‐LCS will use LCS to de-
tect the longest common subsequence between TestSloveAnagram and TC‐02 (line 13
inside the loop of line 8). In this case, the hash-coded 4 actions are detected (assuming
they are the longest) and stored in d. By reversing d (line 16), the source code of the 4
actions, d, is obtained which contains both the source code of the 4 actions (d.lcs) and

CHIEN-HUNG LIU, WOEI-KAE CHEN, CHEN-YAN LIAO

520

their positions in TestSloveAnagram and TC‐02 (d.l1 and d.l2). Then, the two common
action sequences and their positions are added to dGroup.

The advantage of using LCS is that the sequence does not need to be consecutive,
allowing the detection of Type 3 duplicates. However, since the results are not always
consecutive, it is not always possible to extract keywords from the results. Note that both
DDT‐LRS and DDT‐LCS have their own strengths and weaknesses (Table 2). It is up to the
user to choose the right kind of methods to use. In Section 5, we will report the effec-
tiveness of using DDT‐LRS and DDT‐LCS.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

// Input: s is the input script
// Output: duplicateGroups containing all duplicates
procedure DetectDuplicateLCS(s)
begin
 s = replace each keyword in s with a hash code char;
 duplicateGroups = ;
__// A module is either a test case or a user keyword
 for every pair of modules <m1, m2> in s
 // d is an object that contains the following attributes
 // lcs: the LCS string
 // l1: locations of each char in LCS for the first input string
 // l2: locations of each char in LCS for the second input string
 d = LCS(m1, m2);
 if (d.lcs.length >= MIN_DUPLICATE_LENGTH_THRESHOLD)
 // Locate and store a group of duplicates
 d = the corresponding source code of d;
 dGroup = ;
 dGroup.add(<d.lcs, d.l1>);
 dGroup.add(<d.lcs, d.l2>);
 for each module m in s
 if (m != m1 and m != m2)
 d = LCS(m, d.lcs);
 if (d.lcs == d.lcs)
 dGroup.add(<d.lcs, d.l1>);
 end if
 end if
 end for
 duplicateGroups.add(dGroup)
 end if
 end for
end

Fig. 4. DDT-LCS algorithm.

Fig. 5. An example of using DDT-LCS.

DETECTING DUPLICATE ACTIONS IN A KDT SCRIPT 521

Table 2. DDT-LRS vs. DDT-LCS.
Capability DDT-LRS DDT-LCS

Can detect non-consecutive actions No Yes
Can be directly used in conjunction with extract keyword Yes No
Can be used to detect the duplicates inside a module Yes No
Detection capability Type 2 Type 3

3.4 Duplicate Percentage

We use duplicate percentage as the measure of evaluating the degree of duplicates a
particular test script contains. A test script is in general like the source code of a program,
the smaller the better. Thus, we define duplicate percentage as the percentage of space
savings that can be achieved when all duplicates are extracted as keywords. Let a script s
contain some duplicates, and the set dgs contain all the duplicate groups of s. Let dg be a
member of dgs, dg contains n(dg) duplicates, and each duplicate have m(dg) actions
(each action is a line of script). Then, da (duplicate actions) is defined as:

da(dg) = (n(dg)  1)  m(dg). (1)

The definition of da(dg)	 corresponds to the number of actions (or lines of script)
that can be saved, when the entire dg group is replaced by calling a newly created key-
word. For example, suppose dg has 3 duplicates and each duplicate has 6 actions. The
savings is (3  1)  6 = 12 actions.

Taking all duplicate groups into consideration, the total savings of actions tda be-
comes:

(()).
dg dgs

tda da dg


 (2)

Thus, we can define dp (duplicate percentage) as:

tda
dp

total actions
 (3)

where total actions are the total number of actions (or lines of script) in s. Ideally, it
would be best for a script to have a dp = 0 (i.e., no duplicates).

As an example, suppose a script s contains 60 actions in total, and s has 2 duplicate
groups. The first group has 3 duplicates, each with 6 actions; the second group has 2
duplicates, each with 5 actions. By extracting keywords, the first and the second groups
can save (3  1)  6 = 12 and (2  1)  5 = 5 actions, respectively. Thus, dp = (12+5)60 =
28.3%. In Section 5, we will study the duplicate percentage for typical test scripts.

4. THE DESIGN AND IMPLEMENTATION OF DDT

Fig. 6 shows the system architecture of DDT. Particularly, DDT extends RIDE (Ro-
bot framework IDE) [19] for detecting the duplicate actions of KDT scripts. DDT con-
sists of two modules, the Duplicate Detector and the Extract Keyword Helper.

CHIEN-HUNG LIU, WOEI-KAE CHEN, CHEN-YAN LIAO

522

Fig. 6. The system architecture of DDT.

The Duplicate Detector obtains the KDT script from RIDE and is responsible to de-
tect and display the duplicate actions using the proposed algorithms. The Extract Key-
word Helper analyzes the duplicate actions selected by users, extracts those actions into a
new user keyword, and specifies the values of arguments for the new keyword in the test
cases so that the KDT script is refactored into a better structure with less duplicates.

Fig. 7. Selecting the actions for keyword extraction.

Fig. 7 shows a screenshot of using DDT‐LRS to detect the duplicates shown in Fig. 3.
The detected duplicate groups (ordered in decreasing number of duplicate actions) are
shown on the bottom left. Each group contains a list of modules (test cases or user key-
words) that contain the detected duplicates. When the user selects a module in the list,
the corresponding module is shown and the duplicate actions are highlighted (marked as
red). By reviewing these duplicates, the user can determine whether refactoring is nec-
essary. In case that the user modified (or enhanced) some of the modules, the user can
request DDT to perform a new detection. DDT will report the most current duplicates.
The user interface of DDT provides an option for the user to select the detection algo-
rithm, either DDT‐LRS or DDT‐LCS. In addition, based on the user’s personal preference,
he/she can also change the value of MIN_DUPLICATE_LENGTH_THRESHOLD.

To illustrate how a user keyword is extracted automatically with DDT, consider the
duplicate actions (marked as red) in the two test cases, TC-01 and TC-02, shown in Fig.

Test script

RIDE

DDT

Extract Keyword Helper

Duplicate Detector

DETECTING DUPLICATE ACTIONS IN A KDT SCRIPT 523

7. Suppose that the user decides to extract three actions (lines 8~10) into a new user
keyword. The user first selects these three actions and then clicks on the “Show impact”
button in Fig. 7 to review the test cases/user keywords that also have the same duplicate
actions. The results are shown in Fig. 8 where three test cases/user keywords have these
three actions. The user can click each one of them to review the details of the extraction,
including the argument values of each action. The user then clicks the “Extract” button
in Fig. 7 and a dialog box will be displayed (Fig. 9). In the dialog box, the user provides
the name of the new keyword, say UseSuggestWord, and chooses the test cases/user
keywords to be extracted (or simply Extract all). Once the user presses the OK button,
DDT will extract these three actions as a new user keyword and refactor the KDT script
automatically (Fig. 10). Fig. 11 shows the setting of UseSuggestWord keyword where
the arguments are generated by DDT automatically.

Fig. 8. The test cases (TCs) or user keywords (UKs) that contain the selected actions.

Fig. 9. Extracting a new user keyword.

 (a) Refactored TC-01. (b) Refactored TC-02.
Fig. 10. The refactored test cases of Fig. 7 after extracting the keyword by DDT.

CHIEN-HUNG LIU, WOEI-KAE CHEN, CHEN-YAN LIAO

524

Note that RIDE allows users to select and extract a sequence of actions from a test
case into a new user keyword. Nevertheless, the users have to manually identify and de-
fine the arguments (i.e., parameters) of the new keyword, and also specify the argument
values for the caller in the test case. In addition, given a group of n duplicates, RIDE can
only extract the first duplicate, not the rest of the n  1 duplicates. Thus, refactoring du-
plicates usually requires non-trivial efforts and can be time-consuming and error-prone.
To reduce such efforts, DDT integrates duplicate detection and keyword extraction to-
gether, and also automates the process of keyword extraction. The automation includes
computing the needed arguments for the new keyword extracted from two (or more) du-
plicates, setting the arguments for each action within the new keyword, and specifying
the values of arguments for the callers of the extracted keywords in each refactored test
case.

Fig. 11. The setting of extracted keyword generated by DDT.

The arguments of a keyword extracted from any two duplicates x and y can be ob-
tained by examining each parameter of every action in x and y. Suppose that xij and yij are
the jth parameter of the ith action in x and y respectively, where 0  i  m and 0  j  n. If
both xij and yij are variable-type parameters, then the extracted keyword will require a
variable-type argument to represent xij and yij. If both xij and yij are value-type parameters
and xij  yij, the extracted keyword will also require a variable-type argument to represent
xij and yij. If, however, both xij and yij are value-type parameters and xij = yij, the extracted
keyword can simply use xij (or yij) in its corresponding actions and does not need an ar-
gument. If xij is a variable-type parameter and yij is a value-type parameter, or vice versa,
the extracted keyword will need a variable-type argument in order to represent the varia-
ble-type parameter xij (or yij).

For illustration, consider the test cases TC1 and TC2 that have four duplicate ac-
tions shown in Fig. 12. Suppose that the user decides to extract these duplicates into a
new user keyword called ExtractedUK. Let A1…A4 be the duplicate actions in TC1 and
TC2, respectively. Since both A1 actions in TC1 and TC2 have a value-type parameter
with the same value 1, ExtractedUK can simply use this value as the parameter of A1 and
does not need an argument. On the contrary, both A2 actions in TC1 and TC2 have a

DETECTING DUPLICATE ACTIONS IN A KDT SCRIPT 525

value-type parameter with different values 2 and 3, respectively. Thus, a variable-type
argument, say ${arg0}, is needed for A2 in ExtractedUK. The parameters of A3 in TC1
and TC2 are ${a} and ${b}, respectively. Both parameters are variable-types and, hence,
a variable-type argument, say ${arg1}, is therefore required in ExtractedUK. Finally, A4
in TC1 has a value-type parameter with a value 4 and A4 in TC2 has a variable-type pa-
rameter ${c}. Thus, a variable-type argument, say ${arg2}, is needed in ExtractedUK.

Fig. 13 shows the refactored TC1 and TC2 after extracting ExtractedUK. The values
of ${arg0} are 2 and 3 for A2 in TC1 and TC2, respectively. The values of ${arg1} are
${a} and {$b} for A3 in TC1 and TC2, respectively. Similarly, the values of ${arg2} are
4 and {$c} for A4 in TC1 and TC2, respectively.

TC1 TC2

…
Action1 1
Action2 2
Action3 ${a}
Action4 4
…

…
Action1 1
Action2 3
Action3 ${b}
Action4 ${c}
…

Fig. 12. An example of two duplicate KDT test cases.

TC1 TC2 ExtractedUK

…
ExtractedUK 2 ${a} 4
…

…
ExtractedUK 3 ${b} ${c}
…

Action1 1
Action2 ${arg0}
Action3 ${arg1}
Action4 ${arg2}

Fig. 13. The refactored test cases and the setting of extracted keyword.

5. EVALUATION

We conduct experiments to study whether DDT is useful. The following four re-
search questions are addressed:

RQ1 Does a typical KDT script contain duplicate actions? If yes, what is the duplicate

percentage?
RQ2 Is using DDT more efficient than finding duplicate actions manually?
RQ3 Should the duplicate actions detected by DDT‐LRS and DDT‐LCS be extracted as

keywords?
RQ4 Is the extract keyword feature of DDT more efficient than that of RIDE?

We select three open-source applications, ezScrum (EzS) [20], Cloud Testing Plat-

form (CTP) [21], and Crossword Sage (CS) [22], as the subjects of our study. EzS is a
web-based project management tool (Fig. 14) supporting the agile software process
Scrum. CTP is a web-based testing platform supporting Android app compatibility test-
ing in the cloud. Both EzS and CTP have a continuous integration system that performs
automated acceptance testing by running a KDT script developed in Robot framework.
These KDT scripts perform comprehensive testing for the user interface of EzS and CTP,

CHIEN-HUNG LIU, WOEI-KAE CHEN, CHEN-YAN LIAO

526

and have 3820 and 2348 actions, respectively. Thus, they are suitable targets for our stu-
dy on the detection of duplicate actions.

CS is a Java-based rich client application for crossword puzzle creation/resolution,
which has been studied by many GUI testing researches [18, 23-26]. However, CS does
not have a built-in KDT script in its code base. We take the KDT scripts that were de-
veloped for CS previously [23]. As described in [23], five different KDT scripts (called
CS1-CS5) were developed by five different testers, following the same test plan which
contains 9 different test cases and executes a total of 468 actions at run time. CS1-CS5
are good candidates for the study of duplicates, because they perform exactly the same
actions and thus can be directly compared.

Fig. 14. A screenshot of ezScrum.

5.1 Experiment I

The first experiment addresses RQ1. For the evaluation of duplicate percentage, we
use DDT‐LRS to detect duplicates. Such duplicates can always be refactored into key-
words and thus reflect the range of improvements that can be achieved. Note that, in this
experiment, we do not report the results of DDT‐LCS. This is because the Type 3 dupli-
cates detected by DDT‐LCS are not always extractable (explained in Section 3.3) and thus
reporting the results of DDT‐LCS can give an overestimated duplicate percentage.

When the threshold is 3 (i.e., MIN_DUPLICATE_LENGTH_THRESHOLD is 3 and all
duplicates of 3 or more actions are reported as duplicates), the results are shown in Table
3. The script of CTP (called simply CTP hereafter) had 145 groups of duplicates, a total
of 1357 duplicate actions, and a duplicate percentage of 42.1%. In other words, if all the
duplicates are refactored, CTP could be 42.1% smaller. Note that, although CS1-CS5 all
performed exactly the same sequence of actions at run time, they had different imple-
mentations which gave different degrees of duplicates. While CS4 had a duplicate per-
centage of 39.3%, the duplicate percentage of CS2 was 21.8%, indicating that CS2 was
better than CS4 in terms of having less duplicates.

DETECTING DUPLICATE ACTIONS IN A KDT SCRIPT 527

Table 3. The duplicate percentage of CS1-CS5.

Script Total actions Duplicate
groups (|dgs|)

Duplicate
actions (tda)

Duplicate
percentage (dp)

EzS 3820 145 1357 35.5%
CTP 2348 100 988 42.1%
CS1 299 15 72 24.1%
CS2 294 12 64 21.8%
CS3 402 20 135 33.6%
CS4 468 21 184 39.3%
CS5 315 15 79 25.1%

As the threshold was increased, the duplicate percentage dropped significantly (Fig.
15). This was because short duplicates were no longer reported as duplicates. When the
threshold is 12, the duplicate percentage was around 4-13%. Note that one can perform
quite a non-trivial task with 12 consecutive GUI actions. Thus, having duplicates of such
a length does not make sense at all. We will study whether such actions should indeed be
refactored later in RQ3. Note that when the threshold is set too small (e.g., 1 or 2), the
gain of refactoring a detected duplicate group does not necessarily out weight the over-
head of maintaining an extra keyword. Thus, we use 3 as our default threshold. Such a
threshold reports short duplicates by default. The user can however change the default
threshold (by using the user interface of DDT) based on his/her personal preference. For
example, if the user would like to consider refactoring only duplicates of greater than or
equal to 10 actions, the user can simply set the threshold as 10.

Overall, the answer to RQ1 is “yes, typical KDT scripts such as EzS, CTP, and
CS1-CS5 did contain a lot of duplicate actions and the duplicate percentage was around
21.8-42.1%.”

 MIN_DUPLICATE_LENGTH_THRESHOLD.

Fig. 15. The duplicate percentages corresponding to different values of MIN_DUPLICATE_LENGTH_

THRESHOLD.

5.2 Experiment II

The second experiment addresses RQ2. We evaluate the time required for a human
tester to find the duplicates in a test script manually. We invite 10 participants (graduate
students of our department), called P1-P10, to serve as testers. We instruct the partici-

CHIEN-HUNG LIU, WOEI-KAE CHEN, CHEN-YAN LIAO

528

pants so that they become familiar with the operation of RIDE. We then request the par-
ticipants to use RIDE to identify the longest (Type 2) duplicates from CS1. CS1 has 16
user keywords and contains a total of 299 actions (or lines of script). The longest dupli-
cate has 13 actions. In addition to RIDE, the participants are also allowed to use any oth-
er tools that can facilitate finding duplicates (e.g., copy the text script into a text editor
that supports text search or text comparison). We record the time the participants take.
After that, we instruct the participants of the use of DDT‐LRS. We then request the partic-
ipants to use DDT-LRS to find duplicates and record the time the participants spent
finding them. As this experiment concerns only with the required detection efforts, the
participants are not requested to refactor the longest duplicate.

Table 4. The time needed to find the longest duplicate (unit mm:ss).
 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avg.

Manual 21:34 08:55 04:23 06:12 15:06 14:00 08:57 06:28 18:34 26:26 14:04
DDT-LRS 00:04 00:03 00:03 00:03 00:03 00:05 00:05 00:04 00:07 00:05 00:04

The results are shown in Table 4. On average, it took a participant 14 minutes (14:
04) to find the longest duplicate manually. On the other hand, by using DDT-LRS, only
4 seconds were needed (finding the longest as well as the rest of the duplicate groups).
The huge difference points out that having a tool like DDT can help a tester when he/she
needs to maintain a test script in the long run. After all, finding a single duplicate manu-
ally is already time-consuming, let alone finding all the rest of the duplicates. Therefore,
when eliminating duplicates is desirable, with DDT, the tester can save a lot of time on
identifying and locating duplicates. Note that, we did not request the participants to find
the longest Type 3 duplicate, because finding such a duplicate by hand would definitely
require much more time than that reported in Table 4. Since the gap between manual and
DDT‐LRS was already huge, further widening the gap was unnecessary.

Overall, the answer to RQ2 is “yes, using DDT was much more efficient than find-
ing duplicates manually.”

5.3 Experiment III

The third experiment addresses RQ3. Note that having duplicate actions in a script
is a smell, indicating a potential maintenance problem. It does not, however, imply that
all duplicate actions should be refactored into keywords. This experiment attempts to
answer whether the duplicate actions detected by DDT‐LRS and DDT‐LCS should be re-
moved.

We choose CS1 and CS4 as the target of our study. The two scripts perform exactly
the same actions and represent two extremes, one with a higher and the other with a
lower duplicate percentage. Intuitively, a bad script (one with a high duplicate percent-
age) should have a lot of room for improvement. But, what about a good script (CS1)?
Can it be further improved? Our choice of studying CS1 and CS4 allows us to directly
compare the detection results of the two scripts, and study the change of detection preci-
sion under different levels of duplicate percentage.

We invite 10 participants (the same participants described in the previous experi-

DETECTING DUPLICATE ACTIONS IN A KDT SCRIPT 529

ment) to study the longest 10 duplicate groups (called DG1-DG10) detected by DDT-
LRS. The participants are requested to answer whether DG1-DG10 (or a part of DG1-
DG10) should be refactored by extracting a new keyword. A yes answer must satisfy the
condition CEXTRACT, where CEXTRACT is defined as “the duplicate actions represent a
meaningful user operation and are worthy of being extracted as a new keyword so that
the new keyword can be reused later and the resulting test script becomes easier to
read.”

The results of CS4 are shown in Table 5. The participants did not always give the
same answer to the same duplicate group. This is reasonable because while one may
consider that extracting a new keyword for a certain duplicate group gives a better over-
all readability and/or reusability, the other may not. In other words, the decision of
whether to fix a particularly smell is personal. Indeed, this is also the reason that a smell
is called a smell (a potential problem), rather than a problem. In Table 5, while P1 con-
sidered DG5 should be refactored, P4 did not; while all participants considered DG2
should be refactored, only 60% of the participants considered DG5 should be refactored.
Considering that not everyone gives the same answer and there is not a definite right or
wrong to the answer, we choose to take the average as the indication of whether
DG1-DG10 should be refactored. In this way, the overall precision of DDT-LRS was
81%. The results indicate that DDT‐LRS was highly reliable in detecting duplicate actions
for CS4.

The story of DDT‐LCS is however quite different. DDT‐LCS can detect Type 3 dupli-
cates. For example, though the two sequences of actions, ABXC and AYBC, are not ex-
act the same, their common subsequences ABC are considered duplicates. Thus, we are
most interested in whether the Type 3 duplicates detected by DDT‐LCS should be extract-
ed as keywords. We request the participants to study the longest 10 duplicate groups
detected by DDT‐LCS, and then answer whether each of the groups should be refactored.
A yes answer must satisfy the condition CEXTRACT described previously and additionally
the newly extracted keyword must contain a part of the non-consecutive actions (e.g., the
new keyword contains the actions BC from the duplicate actions ABXC). The additional
condition stresses the advantage of DDT‐LCS over DDT‐LRS (without this condition, DDT‐
LCS is not any more useful than DDT‐LRS).

Table 5. The precision of the 10 longest duplicates of CS4 detected by DDT‐LRS.

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
DG1 Y Y Y Y Y Y Y N Y Y 90%
DG2 Y Y Y Y Y Y Y Y Y Y 100%
DG3 N Y Y Y Y Y Y N Y Y 80%
DG4 Y Y Y Y Y Y Y N N Y 80%
DG5 Y Y Y N Y N Y N N Y 60%
DG6 Y Y Y N Y Y Y Y Y Y 90%
DG7 Y Y Y N N Y Y Y Y Y 80%
DG8 N Y Y N Y Y Y N Y Y 70%
DG9 Y Y Y N Y Y Y N Y Y 80%

DG10 Y Y Y N N Y Y Y Y Y 80%
 80% 100% 100% 40% 80% 90% 100% 40% 80% 100% 81%

CHIEN-HUNG LIU, WOEI-KAE CHEN, CHEN-YAN LIAO

530

Table 6. The precision of DDT‐LRS and DDT‐LCS.
 CS1 CS4

DDT-LRS 58% 81%
DDT-LCS 10% 23%

The results are shown in Table 6. For CS4, DDT‐LCS had a precision of 23% (i.e., on
average, the participants considered 23% of the longest 10 duplicate groups detected by
DDT‐LCS should be extracted as keywords). The results indicate that DDT‐LCS was able to
find Type 3 duplicate actions, which was not possible with DDT‐LRS. However, DDT‐LCS
also reported a high percentage of false positives (77%).

A deeper analysis revealed that the reason behind these false positives was related
to the nature of the test script. As an example, suppose ABXC and AYBC are Type 3
duplicate actions. Note that ABXC is a sequence of user interface actions where X di-
rectly follows B. That is, X is likely strongly dependent on the fact that B is being exe-
cuted first, and thus it is likely that ABXC cannot be reordered into some other sequence
like ABCX. In other words, it is unlikely that Type 3 duplicates such as ABXC and
AYBC can be extracted into a new keyword ABC. Therefore, Type 3 duplicate actions
contained a lot of false positives.

For CS1, the results of both DDT‐LRS and DDT‐LCS are shown in Table 6. Although,
CS1 had less duplicates (i.e., less room for improvements), DDT‐LRS and DDT‐LCS were
able to find duplicate actions that should be refactored. The results also reflected that the
precisions were not as high as those of CS4. Overall speaking, both DDT‐LRS and
DDT‐LCS were able to detect duplicate actions that should be refactored. If the tester does
not care about false positives and would like to thoroughly examine the duplicate actions
of a test script, DDT‐LCS can be used. On the other hand, if the tester desires a higher pre-
cision of duplicate detection, DDT‐LRS can be used. The answer to RQ3 is “yes, 58-81%
of duplicate groups detected by DDT‐LRS should be extracted as keywords, and 10-23%
of duplicate groups detected by DDT‐LCS should be extracted as keywords.”

5.4 Experiment IV

The fourth experiment addresses RQ4. We compare the extract keyword feature of
DDT with that of RIDE. With RIDE, the user can select a sequence of consecutive ac-
tions and request RIDE to automatically extract these actions into a new user keyword.
This is fine. But, argument extraction is not supported and when refactoring a group of n
duplicates, RIDE can only help extract the first duplicate into a keyword. No assistance
is offered for the extraction of the rest of the n  1 duplicates. In contrast, when a dupli-
cate group is detected, the user can request DDT to automatically extract all duplicates of
the same group into a keyword at the same time.

We invite 12 participants (also graduate students of our department) to serve as
testers. We evaluate the time needed for a participant to perform keyword extraction with
different tools. We select 5 groups of duplicates from CS1. Each duplicate in the groups
has 3-5 actions to be extracted as a new keyword. For example, the three actions, Click‐
CrosswordCell, ClickSuggestWordButton, and DoubleClickSuggestListItem, are extracted
into a new keyword called UseSuggestWord. We request the participants to extract all
duplicates of the 5 duplicate groups by using 3 different methods: (i) hand, (ii) RIDE
extract keyword, and (iii) DDT extract keyword. To have a fair comparison, we divide

DETECTING DUPLICATE ACTIONS IN A KDT SCRIPT 531

the participants into 3 equal-sized groups. The first group performs extraction in the or-
der of (i), (ii), and (iii); the second group in the order of (ii), (iii), and (i); and the third
group in the order of (iii), (i), and (ii). The results are shown in Table 7. On average, a
participant needed about 36 minutes to extract keywords fully manually. With the help of
RIDE, the keyword extraction time was reduced to around 34 minutes. With DDT, the
extraction required less than 3 minutes, significantly better than RIDE. Thus, we can
conclude that the answer to RQ4 is “the extract keyword feature of DDT is significantly
more efficient than that of RIDE – DDT can improve the efficiency of refactoring dupli-
cates by 11 times.”

Table 7. The time needed to perform keyword extraction.
 Manual (mm:ss) RIDE (mm:ss) DDT (mm:ss)

Average 36:10 34:07 2:52

6. CONCLUSIONS AND FUTURE WORK

This paper proposed an approach to detect duplicate actions in KDT scripts. Two
algorithms DDT‐LRS and DDT‐LCS that detect Type 2 and Type 3 duplicate actions are
reported. To evaluate the degree of duplicates in a KDT script, a measure called dupli-
cate percentage has been presented. Moreover, a tool called DDT has been developed to
support the proposed approach. In addition, DDT can also automate the keyword extrac-
tion for the specified actions among the identified duplicates. The experimental results
suggest that there are 21-42% of duplicate actions in a typical KDT script. Further, DDT
can detect these duplicate actions in 3-5 seconds and up to 58-81% of these duplicate
actions should be refactored.

The current implementation of DDT does not allow the same keyword name to be
used in two (or more) different test suites. In the future, we plan to extend DDT so that
keywords stored in different test suites can be properly distinguished. We also plan to
enhance DDT‐LCS for improving the precision of Type 3 duplicate detection for KDT
scripts.

ACKNOWLEDGMENT

This research was partially supported by the Ministry of Science and Technology,
Taiwan, under contract numbers MOST 107-2221-E-027-032 and MOST 107-2221-E-
027-029, which is gratefully acknowledged.

REFERENCES

1. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving
the Design of Existing Code, Addison-Wesley Professional, Boston, 1999.

2. Robot framework, http://robotframework.org/.
3. T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic token-based

code clone detection system for large scale source code,” IEEE Transactions on
Software Engineering, Vol. 28, 2002, pp. 654-670.

CHIEN-HUNG LIU, WOEI-KAE CHEN, CHEN-YAN LIAO

532

4. S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison and eva-
luation of clone detection tools,” IEEE Transactions on Software Engineering, Vol.
33, 2007, pp. 577-591.

5. C. K. Roy and J. R. Cordy, “A survey on software clone detection research,” Tech-
nical Report No. 2007-541, School of Computing, Queen’s University at Kingston,
Ontario, Canada, 2007.

6. C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach,” Science of Computer Pro-
gramming, Vol. 74, 2009, pp. 470-495.

7. R. Sedgewick and K. Wayne, Algorithms, 4th ed., Addison-Wesley Professional, 2011.
8. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithm,

3rd ed., MIT Press, 2009.
9. A. van Deursen, L. Moonen, A. Bergh, and G. Kok, “Refactoring test code,” in Pro-

ceedings of the 2nd International Conference on Extreme Programming and Flexi-
ble Processes in Software Engineering, 2001, pp. 92-95.

10. G. Meszaros, xUnit Test Patterns: Refactoring Test Code, Addison Wesley, NJ, 2007.
11. G. Bavota, A. Qusef, R. Oliveto, A. de Lucia, and D. Binkley, “Are test smells really

harmful? An empirical study,” Empirical Software Engineering, Vol. 20, 2015, pp.
1052-1094.

12. F. Palomba, D. di Nucci, A. Panichella, R. Oliveto, and A. de Lucia, “On the diffu-
sion of test smells in automatically generated test code: An empirical study,” in Pro-
ceedings of IEEE/ACM 9th International Workshop on Search-Based Software Test-
ing, 2016, pp. 5-14.

13. G. Fraser and A. Arcuri, “Evosuite: Automatic test suite generation for object-orien-
ted software,” in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, 2011, pp. 416-419.

14. T. Lavoie, M. Mérineau, E. Merlo, and P. Potvin, “A case study of TTCN-3 test
scripts clone analysis in an industrial telecommunication setting,” Information and
Software Technology, Vol. 87, 2017, pp. 32-45.

15. S. W. Suan, “An automated assistant for reducing duplication in living documenta-
tion,” Master’s Thesis, School of Computer Science, University of Manchester, Uni-
ted Kingdom, 2015.

16. Behavior-driven development, https://en.wikipedia.org/wiki/Behavior-driven_deve-
lopment.

17. L. P. Binamungu, S. M. Embury, and N. Konstantinou, “Maintaining behaviour dri-
ven development specifications: Challenges and opportunities,” in Proceedings of
IEEE 25th International Conference on Software Analysis, Evolution and Reengi-
neering, 2018, pp. 175-184.

18. W.-K. Chen and J. C. Wang, “Bad smells and refactoring methods for GUI test
scripts,” in Proceedings of the 13th ACIS International Conference on Software En-
gineering, Artificial Intelligence, Networking and Parallel Distributed Computing,
2012, pp. 289-294.

19. RIDE, https://github.com/robotframework/RIDE.
20. ezScrum, https://github.com/ezScrum, 2018.
21. Cloud Testing Platform (CTP), https://www.openfoundry.org/of/projects/2193, 2018.
22. B. Westgarth, Crossword sage, http://crosswordsage.sourceforge.net, 2018.

DETECTING DUPLICATE ACTIONS IN A KDT SCRIPT 533

23. W.-K. Chen, C.-H. Liu, P.-H. Chen, and Y. Wang, “Is low coupling an important
design principle to KDT scripts?” in Proceedings of the 5th International Confer-
ence on Frontier Computing, LNEE No. 422, 2018, pp. 45-56.

24. A. M. Memon, “Automatically repairing event sequence-based GUI test suites for
regression testing,” ACM Transactions on Software Engineering and Methodology,
Vol. 18, 2008.

25. Q. Xie and A. M. Memon, “Using a pilot study to derive a GUI model for automated
testing,” ACM Transactions on Software Engineering and Methodology, Vol. 18,
2008.

26. X. Yuan and A. M. Memon, “Generating event sequence-based test cases using GUI
runtime state feedback,” IEEE Transactions on Software Engineering, Vol. 36, 2010,
pp. 81-95.

Chien-Hung Liu (劉建宏) received his Ph.D. degree in Com-
puter Science and Engineering from the University of Texas at
Arlington in 2002. He is currently an Associate Professor of Com-
puter Science and Information Engineering Department at National
Taipei University of Technology, Taiwan. His research interests
include software testing, software engineering, service engineering,
and cloud computing.

Woei-Kae Chen (陳偉凱) received M.S. and Ph.D. degrees in

Computer Engineering from North Carolina State University in
1988 and 1991, respectively. He is currently a Professor at Depart-
ment of Computer Science and Information Engineering and the
Director of Software Development Research Center of National
Taipei University of Technology, Taiwan. His research interests
include software testing, software engineering, visual program-
ming, and cloud computing.

Chen-Yan Liao (廖振諺) received B.S. and M.S. degrees in
Computer Science and Information Engineering Department from
National Taipei University of Technology, Taiwan in 2015 and
2017, respectively. He is currently a Software Engineer of Com-
puter and Network Center in National Taipei University of Tech-
nology. His research interests include software engineering and
software testing.

