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The objective of this paper is aimed to estimate the actual shortest distance between 

links and obstacles which are represented by maximal Lowner-John (L-J) ellipses enclosed 
by the objects. But due to the elliptical inlay, there will be a case where the link is exposed 
outside the ellipse. This paper designs a method based on compensation method. Firstly, 
links are modeled by inner ellipses and related data tables and graphs are established. Then 
Gaussian function is used to obtain the compensated data graph about the shortest distance. 
Finally, the shortest distance of links and obstacles is estimated by interpolation method. 
Three experimental scenarios are designed in this paper, and compares inner ellipse method 
with circumscribed ellipse method to verify the effect of the proposed collision detection 
method.      
 
Keywords: L-J ellipse, Gaussian compensation function, internal difference method, colli-
sion avoidance, robot manipulators 
 
 

1. INTRODUCTION 

In the field of robotics, acquiring the imminent distance between a robot arm and a 
restricted environment is the key to the collision-free motion [1]. In general, the link and 
related objects are represented by primitive geographical models for distance estimation 
such as with polyhedron modeling, the distance detection between polyhedrons can be 
hence easily derived. Some methods use simple polyhedron approximations to simplify 
the modeling procedure [2-4]. But using polyhedral models to describe complex shapes 
often requires many planes and edges [5-7]. The computational complexity limits the real 
time control of robot arms. Therefore, it is essential to use a simple model unlike polyhe-
dral one for application [8, 9]. Later, Rimon [10] proposed a method to simplify the shape 
by using a minimum volume closed ellipsoid and to estimate distance effectively. 

An ellipsoid with the smallest volume containing an object is called the L-J ellipsoid, 
and the corresponding one is L-J ellipse in the two dimensions [11]. For a particular object 
modeled by an L-J ellipse, its complex geometry is simplified into a flat graph and the 
calculation is a convex optimization process [12, 15]. In this paper, to simplify the process 
of generating the elliptic model of a link, the boundary polyhedron of links is defined. The 
vertex of the polyhedron is used as the input to generate a minimal area ellipse that can 
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cover the link. Suppose a basic L-J ellipse is (x/a)2 + (y/b)2 = 1, it can be transformed into 

matrix form 

21 0

20 1

T
x a x

y yb

                 
 = 1. Equivalently,  xTCx = 1. Where central coordinates 

is (0, 0) and characteristic matrix is C, and the major and minor axes of the ellipse follow 
the directions of the two eigenvectors of matrix C , and the two corresponding eigenvalues 
are the reciprocal of the square of the length of the semimajor axis and the semiminor axis 
respectively. If the radius of both axes is equal, the ellipse is a circle. 

Suppose a common L-J ellipse y
d(y, Y) where d is dimension, y is central coordinates, 

and Y is characteristic matrix. Computing the shortest distance between two ellipses a
2(a, 

A) and b
2(b, B) is an optimization problem [10]. The circumscribed ellipse is represented 

by a three-dimensional feature matrix, which is beneficial to reduce the complexity and 
increase the speed of estimating distance, but the larger the ratio of the width to the length 
of a link, the larger the volume of an ellipse required, which results in estimated distance 
being more than actual distance. 

This paper improves the accuracy of the distance estimation for the L-J ellipse mod-
eling method, instead of using the circumscribed ellipse, but using the shortest distance of 
inner ellipses to estimate the actual distance of links. Although it is inevitable that part of 
a link falls outside the ellipse, it causes an error in the distance estimation. In order to solve 
the problem, a compensation function in the form of Gaussian function is adopted. Alt-
hough the inner ellipse method is improved with the compensation mechanism and inter-
polation method, the stability and reliability of the method are unchanged.   

Although it is convenient to use circumscribed ellipses to model links, it will cause 
overestimation and waste the working space of the manipulator. Using inner ellipse to cal-
culate the distance between a link and an obstacle, combined with compensation mecha-
nism, can not only solve the problem of underestimation, but also the problem of overes-
timation. Compared with the circumscribed ellipse method, the inner ellipse method makes 
robot arms closer to other robot arms or obstacles without collision and improves the uti-
lization rate of working space. Using the circumscribed ellipse method to model links, it 
will cause overestimation and low accuracy of distance estimation. However, estimating 
distance with the proposed method is more accurate than the circumscribed ellipse method, 
and the experimental results demonstrate the effectiveness. 

The remainder of this paper is organized as follows. In Section 2, the algorithm flow 
of the proposed fast collision detection method for robotic links molded by ellipses inner 
ellipse are introduced, including using the L-J ellipse to build a three-dimensional data 
table, constructing the compensation function of Gaussian function from data graph, and 
using linear interpolation to find the estimated distance. In Section 3, this paper builds an 
elliptical simulation environment and compares the inner method with the circumscribed 
ellipse to verify the proposed method. Finally, the conclusion is given in Section 4. 

2. COLLISION DETECTION METHOD 

This paper refers to the method of wrapping robotic links and obstacles with circum-
scribed ellipsoids, and estimating the shortest distance between a link and an obstacle by 
calculating the shortest distance between two ellipsoids [12-14]. The difference is that the 
distance is estimated and the data table is constructed by using L-J ellipses. Then links or 
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obstacles are modeled by inner ellipses to estimate the shortest distance in two-dimensional 
space. In order to solve the distance error caused by the overestimation or underestimation 
about actual distance, a compensation function based on Gaussian function is used to re-
duce the estimated distance error. Finally, according to the data table and graph generated 
after compensation, the linear interpolation method is used to estimate the shortest distance 
in the whole motion.  

Underestimation mentioned above means that when links collide, there is still a seg-
ment distance between two ellipses. Overestimation means that when two ellipses collide, 
the distance of the link is still far. 

2.1 Create Data Table Based on the L-J Ellipse 

The data of Robot Manipulators is shown in Table 1. The L-J ellipse designed accord-
ing to Table 1 is shown in Fig. 1, where L is the actual distance of the two links, E is the 
shortest distance of the two ellipses. Fig. 1 shows the underestimation. In order to reduce 
the distance error, two variables e1, e2 are designed. e1 represents the distance from the 
vertex of the link A (red wire rectangle box) to its inner ellipse. e2 represents the distance 
from the vertex of the link B (red wire rectangle box) to its inner ellipse. They are expected 
to satisfy the Eq. (1). 

E  e1  e2  L    (1) 

The 1 2E e e  is used to estimate the actual distance, and L  (E  e1  e2) is used to 
calculate the distance error. Links’s data is shown in Table.1, and it is assumed that dis-
tance of the two ellipses are separated by 50 cm. Then the influence of each angle on the 
estimated distance is calculated and verified, that is, whether it can satisfy Eq. (1), when 
the angle between two ellipses is different. As is shown in Fig. 2 (a), ellipse A remains 
stationary, ellipse B revolves around A, while ellipse B rotates by itself. Due to the sym-
metry of revolution, the maximum revolution angle is 180°. Finally, the result about the 
influence mentioned above is integrated into a 60  60 data graph, as shown in Fig. 2 (b), 
where 180° of revolution is equally divided into 60 parts, 360° of revolution is equally 
divided into 60 parts.   

 

Table 1. The links data of the robot manipulators. 
Link Length (cm) Width (cm) Distance between the center points of two links (cm) 

A 40 20
                           50 

B 30 20

 

 
Fig. 1. The diagram of variables E, e1, e2 and L. 
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2.2 Compensation Based on Gaussian Function 

Fig. 2 (b) shows the underestimation and overestimation about distance estimated by 
inner ellipse method, where blue regions represent underestimation, i.e. L  (E  e1  e2) 
< 0, the red regions represent overestimation, i.e. L  (E  e1  e2) > 0. The white block 
indicates that the distance error is 0 cm. In this paper, two one-dimensional Gaussian func-
tion [16] are multiplied to compensate for overestimation and underestimation, and the 
purpose is to make the color close to white blocks, as shown in Fig. 3.  

 

            
Fig. 2. (a) Revolution and rotation.                   Fig. 2. (b) Distance error. 

 
Fig. 3. Multiplication of two one-dimensional Gaussian functions. 

 

In the environment, the data table of motion state is calculated according to the way 
that the motion of the rectangle and its inner ellipse. The compensation formula is Eq. (2). 

f(x) f(y)a    (2) 

Where f(x) = exp
 20

22 x

x x



   
 

and f(y) = exp
 20

22 y

y y



   
 

  
are Gaussian functions, the 

corresponding expectation is x0, y0, which are position parameters, and determine the po-
sition of Gaussian function, and are the positions of the lowest distance error point. The 
standard deviations x, y are the long and short axis of ellipses. x is the rotation angle, y

is the revolution angle. a is a parameter which is used to adjust the distance error of Gauss-
ian function. 
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The compensation process for blue blocks is similar to that for red blocks. First, blue 
blocks are processed. After the data graph is cut, three lowest points is found respectively 
to set the expectations of Gaussian functions in the three blue blocks. Fig. 4 shows how to 
find the long and short axis is to rotate the ellipse by 25° and use the lowest point as the 
reference. Then find the distance farthest from the lowest point along the 25° direction in 
the blue block as the first standard deviation, and then use the same way to find the lowest 
point in the same block at 115° and the lowest distance is set as the second standard devi-
ation. The ellipse form of each block is obtained by multiplying two Gaussian functions 
with the same expectation and different standard deviations, and finally multiplying pa-
rameter . 

It is essential to design parameter . There are three blue blocks in the upper right 
corner in Fig. 4, and three sets of Gaussian functions need to be designed. Since the pro-
cesses are similar, the middle blue block is used as an example to design the Gaussian 
function. The Gaussian function is applied to compensate the value of the lowest point of 
the distance error, but the maximum value is 1, so parameter  is needed to adjust the 
maximum value to compensate the lowest point of the distance error. In the paper, the 
distance between the two elliptical centers is 50 cm to150 cm and a set of parameters  are 
designed, as shown in Table 2.  

 

 
Fig. 4. Cutting blue blocks and the angle to find the longest and shortest axes. 

Table 2. The data of parameter  and polynomial approximation. 

R  
Quadratic 

polynomial 
Error 

Cubic 
polynomial

error 
Quartic  

polynomial 
error 

50 4.6512 4.6600 0.0114 4.66 0.00749 4.97 0.31689 
60 3.1151 5.3974 2.2823 5.22424 2.20914 4.89 1.77684 
70 5.1785 6.044 0.8655 5.80187 0.62337 5.22 0.03739 
80 5.293 6.6024 1.3094 6.368 1.075 5.78 0.48314 
90 6.0451 7.0726 1.0275 6.89905 0.85395 6.44 0.38995 

100 6.1409 7.4546 1.3137 7.37144 1.23054 7.08 0.94024 
110 6.4195 7.7481 1.3289 7.76159 1.34209 7.63 1.20959 
120 7.9387 7.954 0.0153 8.04592 0.10722 8.02 0.08104 
130 7.9737 8.0714 0.0977 8.20085 0.20715 8.22 0.24639 
140 8.0028 8.1006 0.0978 8.2028 0.2 8.22 0.2205 
150 8.0273 8.0273 0.0143 8.02819 0.00089 8.05 0.02139 

R(cm) is the distance between the center points of two ellipses. 
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Polynomial functions with different powers are used to approximate the values of  
in Table 2 and the results are in Fig. 5. In the whole motion, the distance errors between 
several functions and the real curve is shown in Fig. 6. The value of original  is adjusted 
every 10 cm starting from the distance (50 cm) between the center points of the two ellipses. 
It is determined that the distance error in Fig. 5 will be greater than zero with the designed 
variables. However, the  values are connected in a linear way, and the more approximate 
this curve is, the overfitting situation where the distance error of the quartic polynomial 
function is less than 0 may occur in Fig. 6. The total error of the cubic polynomial is less 
than twice polynomial, so the blue block is designed by using a cubic polynomial, as shown 
in Eq. (3). Other blue blocks are designed in the same way to find the most appropriate 
polynomial function. 

     3 2( 50) ( 50) ( 50)
10 10 100.00393 1 0.02962 1 0.2042 1 4.1288R R R               (3) 

(a) Quadratic polynomial function.   (b) Cubic polynomial function.  (c) Quadric polynomial function. 
Fig. 5. The curve of parameter  and polynomial approximation curve. Where the red line is a curve 
of parameter , and the blue line is a curve of polynomial function. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. The distance error between polynomial function and real curve; (a) Quadratic polynomial 
function; (b) Cubic polynomial function; (c) Quadric polynomial function. 
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Next, dealing with the red blocks. According to the red blocks in Fig. 2. Like the 
compensation way of blue blocks, two one-dimensional Gaussian functions are multiplied 
to compensate the distance error and make the red color close to the white area in the data 
graph. The environment of red block is the same as that of blue block, the expectation is 
the parameter that determines the position of the Gaussian function, but unlike the blue 
block previously processed, here is the position of the highest distance error point, and the 
standard deviation is the long and short axis of the ellipse. As shown in Fig. 7, in the 6 red 
blocks after the data graph is cut. The upper 3 red blocks are treated in the same way as 
the 3 blocks below, and the three highest points are to be found respectively as the expec-
tation of the Gaussian function. The standard deviation is the position farthest from the 
highest point in the direction of 180° degree and 90°. 

For the design of parameter , the red blocks are also divided into three groups. Sim-
ilar to the previous operation of blue blocks, the Gaussian function is also used to compen-
sate the value of distance error in the highest point, and then the parameter  is designed 
to adjust the maximum of Gaussian functions so that it can subtract the value of the dis-
tance error in the highest point. Then polynomial functions are used to approximate the 
curve of parameter , and finally choosing the polynomial function with the smallest error. 

In summary, after compensating the blue blocks and suppressing the red blocks. As 
shown in Fig. 8, the horizontal axis is the distance between two ellipses and the vertical 
axis is the distance error. It reveals that the distance errors from 50 cm to 150 cm are 
calculated according to the distances between the two elliptical center points. Fig. 8 shows 
that in this motion space, when the distance between two ellipse centers is fixed, the esti-
mated distance of each state falls within the maximum and minimum error intervals, which 
neither underestimates nor restrains the overestimated area. 

 

   
Fig. 7. The way to cut red blocks.   

 

 
Fig. 8. Maximum and minimum error. The blue line represents the minimum distance error, and the 
orange line is the maximum distance error. 
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2.4 Linear Interpolation Method 
 
Linear interpolation [17] is an approximate method for calculating the values of 

known or unknown functions by using the ratio relationship based on the values of a set of 
known independent variables of unknown functions and their corresponding function val-
ues.  

In the simulated environment, the cutting angle is not enough to simulate all angles 
and distances such as rotation angles, revolution angles and center points, but the linear 
interpolation method is used to solve this problem. The interpolation formula is Eq. (4). 

Y = inserttf(x, y, X, method)    (4) 

Where insertf is interpolation function, the vector x is the coordinate (input value) of 
the data point, the vector y is the coordinate of the data point (output value), X is the inter-
polation point, Y is the fitting function of the output after interpolation, and the method 
represents the way of linear interpolation. 

3. SIMULATION AND EXPERIMENT 

The experiment aims to verify the effectiveness of the collision detection method with 
inner ellipses proposed in estimating the actual distance between links and obstacles. At 
the same time, compared with the circumscribed ellipse method, the accuracy of distance 
estimation is verified. The circumscribed ellipse method has the problem of overestimation, 
which can also lead to the problem of underestimation when the shape of obstacles or links 
is special. The same problems exist when inner ellipses without compensation are used to 
model links or obstacles. Therefore, in each scenario, the minimal distance between two 
ellipses is calculated by the inner ellipse method and the circumscribed ellipse method 
respectively. Then, the result is used to calculate the distance error and to compare the 
accuracy of the distance estimated by the two methods. 

According to the working environment of manipulators, three scenarios are designed. 
The scenario 1 is simple, it simulates the situation that two robot arms close to each other. 
On the basis of scenario 1, in the scenario 2, it simulates the situation that the robot link B 
rotates around link A and moves to link A. In the scenario 3, the motion between a two-
axis manipulator and an obstacle is simulated. In the three experiments, the data of the two 
links are shown in the Table 1. 

3.1 Scenario 1 

In this experiment, as shown in Fig. 9, link A and link B move towards to each other 
by translational motion. In the Fig. 9 (a), each red rectangle represents link A on the left, 
each red rectangle represents link A on the right, and each rectangle contains its inner 
ellipse. At the beginning, link A and link B are 10 cm apart. As two links close to each other, 
the distance between them gradually decreases. Similarly, in the Fig. 9 (b), each red rectangle 
represents link A on the left, each red rectangle rep-resents link A on the right, and each 
rectangle is contained by its circumscribed ellipse.  
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(a) Inner ellipses method.               (b) Circumscribed ellipses method. 

Fig. 9. The motion of links.  
 

Furthermore, the changes of distances between two links calculated by the inner el-
lipse method and the circumscribed ellipse method are shown in Fig. 10. It can be seen the 
distance calculated by the inner compensation ellipse is 10 cm more than that estimated by 
the circumscribed ellipse, and the distance error is 2 cm between the distance of the inner 
compensation ellipse and the actual distance during the whole motion. In Step 1, the dis-
tance calculated by the inner ellipse method is about 5 cm smaller than the actual distance. 
As the actual distance drops to 10 cm, the distance error of the inner ellipse method de-
creases. After 30 steps, the distance error is close to 0 cm. However, the distance between 
the distance estimated by circumscribed ellipse method and the actual distance is always 
about 15 cm. After 49 steps, the distance of the circumscribed ellipses is less than 0 cm, 
indicating that the links have collided, but there is still 10 cm available in practice. As 
whole the inner ellipse method is better than the circumscribed ellipse method in scenario 
1.  

 
Fig. 10. The distance calculated by the inner ellipse and the circumscribed ellipse methods. The 
orange line represents the actual distance of the two links, the blue line represents the distance cal-
culated by the inner ellipse method, and the red line represents the distance calculated by the circum-
scribed ellipse. 

3.2 Scenario 2 

Based on scenario 1, in this experiment, as shown in Fig. 11, link A remains stationary, 
link B rotates around link A, and move toward link A at the same time. In the Fig. 11 (a), 
the link B is located on the left and the left half represents its trajectory and posture of 
rotation and translation. The link A is located in the upper right corner, and they are 60 cm 
apart at the beginning. Then, the link B rotates and translates simultaneously close to A, 
and the distance between two links decreases, until it drops to about 14 cm. Similarly, in 
the Fig. 11 (b), each red rectangle represents link B on the left, the red rectangle rep-resents 
link A on the right, but each rectangle is contained by its circumscribed ellipse.  
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        (a) Inner ellipse method.            (b) Circumscribed ellipse method. 

Fig. 11. The motion of links. 
 

Further, the changes of distances calculated by two methods are shown in Fig. 12. 
Because of the rotational movement, the distance is reduced in a wave-like manner. From 
Steps 1-20, it shows that the blue line represented by the inner ellipse method is closer to 
the orange line represented by the actual distance. The distance error calculated by the 
inner ellipse is about 1 cm during the whole motion. The distance error is 0 cm when the 
step is 5, 6 or 17, and the error is obviously less than that calculated by the circumscribed 
ellipse method. From Steps 23-26, and Steps 30-41, the result is similar to the situation in 
the Fig. 10, the distance error calculated by inner ellipse is less than 1 cm, but the distance 
error of the circumscribed ellipses is about 3 cm. Although from Steps 20-22, Steps 27-29, 
the estimated distance of the circumscribed ellipses is closer to the actual distance. The 
reason is that when making the elliptical area minimize in the circumscribed ellipse method, 
the tangent point of the ellipse will fall on each vertex, so that the shortest distance of the 
ellipses is almost equal to the shortest distance of the links, and the distance error is 0 cm. 
However, in terms of overall performance, the inner compensation ellipse method is supe-
rior to the circumscribed ellipse method. 

 

 
Fig. 12. The calculated distances. 

3.3 Scenario 3 

In scenario 3, the changes of the distance between the two-axis robotic arm and the 
obstacle is analyzed. The motion posture of robotic arms and obstacles is shown in Fig. 13. 
The two rectangles in the middle represent the two link A and act as the two-axis manipu-
lator, the rectangle in the upper and the rectangle in the bottom represent link B, act as 
obstacles. In Fig. 13 (a), each rectangle contains its inner ellipse. In Fig. 13 (b), each rec-
tangle is covered by its circumscribed ellipse. 
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In Fig. 13. The two obstacles remain stationary, and the coordinate point is established 
with the end of the robotic arm, that is, the end of the second link A, and the robotic arms 
move horizontally to the left. At the same time, the two links A can rotate, just like a real 
two-axis robot arm. Note that the center coordinates of two links A are obtained by using 
the forward kinematics [18], and the angle of two rotational axes and the posture infor-
mation of the arms are obtained by using the inverse kinematics [19].  

Now analyzing the influence of different obstacles on the distance estimation of two 
links. Firstly, the influence of the bottom obstacles on the distance estimation of the first 
link is analyzed. The actual distance changes between the obstacle and the first link A, the 
changes of distances calculated by the inner ellipse method and the circumscribed ellipse 
method are shown in Fig. 14 (a). From Steps 1-15, it can be seen that the actual distance is 
about 10 cm, and the distance error calculated by two methods is 0 cm. But after Step 15, 
as the actual distance increases, until it is 37 cm, the blue line is located between the orange 
line and the red line. Specially, the distance error calculated by the inner ellipse method is 
about 3 cm, and the distance error calculated by the circumscribed ellipse method is about 
5 cm. During the whole motion process, the inner compensation ellipse method is superior 
to the circumscribed ellipse method. 

Then, the influence of obstacles at the bottom on the distance of the second link A is 
analyzed. The changes of distances are shown in Fig. 14 (b). During the whole motion, 
from Steps 1-69, the distance calculated by the inner ellipse is closer to the actual distance, 
the average distance error is 1 cm, while the distance error calculated by the circumscribed 
ellipse method is about 5 cm. Obviously, the inner ellipse method is better than the cir-
cumscribed ellipse method. 

 

       
                    (a) Inner ellipse.          (b) Circumscribed ellipse. 

Fig. 13. motion posture of obstacles and robotic arms. 
 

Then, the influence of obstacles at the top on the distance of the first link A is analyzed. 
The changes of distances calculated by two method are shown in Fig. 14 (c). Similar to the 
previous results, from Steps 1-40, the distance error is less than 1 cm. After Step 40, the 
maximal distance error calculated by the inner ellipse method is about 3 cm. However, the 
distance error estimated by the circumscribed ellipse method is about 6 cm, and the dis-
tance error is about 10 cm from Steps 50-59. On the whole, the inner ellipse method is 
better than the circumscribed ellipse method. 

Finally, the influence of obstacles at the top on the distance of the second link A is 
analyzed. The changes of distances calculated by two methods are shown in Fig. 14 (d). 
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From Steps 1-13, the distance calculated by the circumscribed ellipse method is less than 
0 cm, indicating that the top obstacle collides with the second link A, but the actual distance 
between them is greater than 8 cm. From Steps 13-26, the distance error calculated by the 
circumscribed ellipse method is reduced from 8 cm to 2 cm. From Steps 26-67, the distance 
error is 7 cm on average. However, the distance error between the distance of inner ellipses 
and the actual distance is 0 cm to 3 cm, and the accuracy of distance estimated is higher. 
Although from Steps 68 and 69, the distance error calculated by the circumscribed ellipse 
method is smaller. In terms of overall performance, the inner ellipse method is superior to 
the circumscribed ellipse method in distance estimation. 

In conclusion, the experiment shows that the best distance estimated by the circum-
scribed ellipse method falls near the corners of each other, while the worst situation is 
where the long axis is opposite to the long axis. Under these two postures, when the cir-
cumscribed ellipses have collided, the inner compensation ellipse has 5-7 cm to be left, 
and when the distance estimated by circumscribed ellipse estimates method is closest to 
actual distance, the error between two methods is about 1 cm. It can be proved that the 
proposed inner compensation ellipse method can estimate the distance accurately at the 
worst estimation of the circumscribed ellipse. And under the best estimation of the circum-
scribed ellipse, the distance estimated by the method proposed in this paper is not bad. 

 

    
(a)                                      (b) 

      
(c)                                      (d) 

Fig. 14. The distance changes between the obstacle and the link; (a) The influence of the bottom 
obstacle on the first link; (b) The influence of the bottom obstacle on the second link; (c) The influ-
ence of the top obstacle on the first link; (d) The influence of the top obstacle on the second link. 

4. CONCLUSIONS 

In this paper, a compensation method is proposed to estimate the actual shortest dis-
tance between links and obstacles modeled by inner ellipses. Firstly, Lowner-John ellipse 
is used to build three-dimensional data table about the motion of links. Then the method 
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introduces a way to compensate the data graph by Gaussian function to solve the problem 
of overestimation and underestimation. Three experimental scenarios demonstrate the ef-
fectiveness of the proposed method in estimating the actual distance between links and 
obstacles. However, the method used in this paper adopts a fixed structure, where the com-
pensation method needs to adjust the parameters accordingly. A highly prospective devel-
opment direction in the future is to extend to a higher degree-of-freedom, and hopefully 
applied machine learning to generating the data tables to achieve more effective compen-
sation and estimate distance more accurately. 
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