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In the separability problem of bichromatic point sets, given two sets of points colored
as blue and red, we want to put a special geometric shape in a manner that includes the blue
points while avoiding the red ones. This problem has various applications in data mining
and other fields. Separability by various shapes, including L-shaped polygons, has been
studied in the literature. In this paper, the separability of bichromatic point sets by C-shaped
polygons, which are more general than L-shaped polygons, is studied and an O(n logn)-time
algorithm is presented, where n is the total number of points.

Keywords: computational geometry, separability, bichromatic point sets, C-shaped polygon,
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1. INTRODUCTION

The covering problem is one of the important and widely used problems in the field
of computational geometry, which has a great variety. In this problem, n fixed points
on the plane and a geometric object is given. The goal is to put the geometric object
on the plane that covers all the given points. According to optimization factors, such as
minimizing the area or the perimeter of the covering shapes, different variations of the
problem such as complete covering and optimal covering are raised. Due to the variety
of geometric shapes (covering objects), such as convex hulls [13], circles [10], strips [7],
triangles [3,14], rectangles [19] and L-shaped polygons [2] various covering problems are
proposed and solved. Another variation of the covering problem is covering bichromatic
points, which is also known as separability or separation, in which the given points are
divided into two categories of desirable and undesirable points. Usually the desirable
points are shown in blue and the undesirable points in red. In this problem, the goal
is to cover the desired (blue) points by the given geometric shape (separating object)
such that none of the undesirable (red) points are covered. Optimization factors such as
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minimizing the perimeter and the area may also be considered for the separating object.
In the following, some related works are mentioned.

One of the first separating problems is the separation of points by a line, in which
the goal is to find a line with blue points on one side and red points on the other side. To
determine the separability of points by a line, an algorithm with O(n) time presented [10].
Also finding all the separating lines in O(n) time is possible [16]. Separation of points by
separating strips is another important separation problem. In this problem, the goal is to
find two parallel lines (a strip) such that all the blue points lie between the two lines and the
red points lie outside them. An algorithm with time complexity O(n logn) was proposed
to solve this problem [8] and then it was proved that this time is optimal [1]. If the set of
points are separable by a strip, reporting the angles of inclination of the separating strips
in O(n logn) time is possible. If all the possible angles are computed before, then it is
possible to find the strip of the minimum width and the strip of the maximum width, in
times O(n) and O(n logn), respectively [8, 16]. As one of the other variations we can
mention the separating by wedges [8, 16]. Separability by a circle can be checked in
O(n) time [15]. The separation of points by convex polygons of the minimum number of
edges is another problem raised in this field. Reporting a convex polygon of the minimum
number of edges or reporting its absence is possible at the optimal time O(n logn) [5, 8].
In 2009, Kreveld et al. proposed the separation of points by a rectangle, and proved
that reporting angles for which there is a separating rectangle is possible in O(n logn)
time [9]. They also asked to investigate the problem when the separating object is a non-
convex geometric shape. The separability of points by L-shaped polygons studied in [17].
Then, it was followed by some variations of the problem [17, 18]. The separability by
two disjoint parallel rectangles is investigated in two cases, when they are parallel to the
coordinate axes and when they are not, and two algorithms of time complexity O(n logn)
and O(n2 logn) are presented, respectively [11]. Some algorithms with O(n logn) time
are proposed to separate red and blue points by triangles with a fixed angle [12].

The separability problem has many applications in image processing, pattern recog-
nition, statistical calculations and data mining [6]. For example, in the classification prob-
lem, which is a well-known problem in data mining field, the points with different prop-
erties must be separated and categorized into different classes. Separability by different
shapes including triangles, circles, rectangles, and L-shaped polygons has studied in the
literature. In this paper, the problem of separating bichromatic point sets by axis-parallel
C-shaped polygons, which are more general than L-shaped polygons, is studied and an
algorithm with O(n logn) time is presented, where n is the total number of points.

The structure of the paper is as follows. Some definitions are given in Section 2.
In Section 3, the necessary and sufficient conditions for separating of the points by a
C-shaped polygon are given. The conclusion is given in Section 4.

2. PRELIMINARIES

In this section, we provide some definitions that will be used throughout this paper.
As mentioned in the introduction, in the separability problem there are two sets of desir-
able and undesirable points, which are colored by blue and red, respectively. Let the set
of blue points be denoted by Q and the set of red points be denoted by P. Throughout
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the paper, we assume that no two points (blue and red) have equal x or y coordinates. A
90-degree wedge (or quarter) is defined by the intersection of two half-planes such that its
supporting lines are axis-aligned and form a 90-degree angle. If there is no point of set Q
inside this quarter, then it is called an empty quarter of Q. The orthogonal convex hull is
defined as RCH(Q) = R2 −

⋃
q, where q is an empty quarter of Q [2, 4]. Let R(Q) be the

minimum area axis-parallel rectangle containing the blue points Q. Clearly, there is a blue
point on each edge of R(Q), note that a blue point may be shared by two edges of R(Q).
Consider the vertical line passing through the highest point of R(Q), u1 in Fig. 1 (a), and
the horizontal line passing through the rightmost point of R(Q), u2 in Fig. 1 (a). In the
figures, the red points are shown by black color, and the blue points are shown by gray
color. The intersection area of the top half plane of this horizontal line and the right half
plane of this vertical line is called the first quarter of R(Q). The second, third, and fourth
quarters of R(Q) are defined similarly.

(a)

R(Q)

u1
u5

u4

u3

u2
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hu4
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Fig. 1. (a) The four quarters of R(Q) and the staircase of the first quarter and (b) RCH(Q), S0(Q),
S π

2
(Q), Sπ (Q), and S 3π

2
(Q), and the red rectangles of the corners of R(Q).

Let p ∈ Q be in the first quarter of R(Q) and xp and yp be the coordinates x and y of
the point p, respectively. The point p is a dominating point if there is no point q ∈ Q in the
first quarter of R(Q) such that xq > xp and yq > yp. In Fig. 1 (a), the points u1, u2, u3, u4,
and u5 are the dominating points. Clearly based on the x or y coordinates of the points, we
can define a total order δ on the dominating points. This definition is defined similarly
for the second, third, and fourth quarters of R(Q). In the following, the definitions are
presented for the first quarter and can be extended to the other quarters.

Two dominating points a and b are adjacent if they are consecutive and there is no
point between them in the total order δ . In Fig. 1 (a), u1 is adjacent to u5, u5 is adjacent
to u4, u4 is adjacent to u3, and u3 is adjacent to u2. Suppose u4 and u5 are two adjacent
dominating points, where xu5 < xu4 . Consider the vertical line passing through u5 and the
horizontal line passing through u4. As shown in Fig. 1 (a), these two lines intersect at
a point o. The vertical line segment (u5,o) and the horizontal line segment (u4,o) form
a step. If we draw the vertical and the horizontal line segments of each pair of adjacent
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dominating points, then a chain is formed which we call a staircase (Fig. 1 (a)). The chain
(u1,u5,u4,u3,u2) is the staircase of the first quarter. Similarly, the staircases of the other
quarters are specified.

Assume that S0(Q), S π
2
(Q), Sπ(Q), and S 3π

2
(Q) are the staircases corresponding to

the dominating points of the first, second, third, and fourth quarters of R(Q), respectively.
In addition to the previous definition of the orthogonal convex hull RCH(Q), it is also
defined by the four staircases S0(Q), S π

2
(Q), Sπ(Q), and S 3π

2
(Q). See Fig. 1 (b). Consider

the red points within the first quarter of R(Q). From these points, imagine the ones that are
outside of RCH(Q). Consider the minimum area axis-parallel rectangle MAR0 covering
these points. Let R0(P) be an axis-parallel rectangle whose top-right corner is the same
as the top-right corner of R(Q) and whose bottom-left corner is the same as the bottom-
left corner of MAR0 (the red rectangle on the top-right corner of R(Q), see Fig. 1 (b)).
Similarly, the rectangles R π

2
(P), Rπ(P), and R 3π

2
(P) are defined in the second, third and

fourth quarters of R(Q), respectively. These rectangles, i.e. R0(P), R π
2
(P), Rπ(P), and

R 3π
2
(P), are called the red rectangles of the corners of R(Q).

knee

(a) (b)

b1 b1

b2 b2

3π
2

b3 b3

Fig. 2. L-shaped and C-shaped polygons.

An L-shaped polygon is a polygon that resembles the letter L. Fig. 2 (a) shows an
L-shaped polygon. In an L-shaped polygon, the angle opposite to the interior angle of
3π

2 is called the knee, see Fig. 2 (a). A C-shaped polygon is a polygon that resembles
the letter C. Fig. 2 (b) shows a C-shaped polygon. Note that we may have b1 = b2 or
b1 ̸= b2 (b1 > b3 and b2 > b3). In the following, let C(Q) denote the separating C-shaped
polygon, which contains all the blue points of Q and excludes all the red points of P. The
edges of a C-shaped polygon, in general, may not be axis-parallel, but we only consider
axis-parallel C-shaped polygons.

3. COMPUTING THE SEPARATING C-SHAPED POLYGON

In this section, we give the necessary and sufficient conditions for separability of
the given bichromatic points by an axis-parallel C-shaped polygon. The general idea of
the proposed method is to compute the bounding rectangle R(Q) of the blue points and
cover the red points inside it by a rectangle R or an L-shaped polygon L. Then R(Q) \R
or R(Q)\L is the separating C-shaped polygon. Suppose RCH(Q), R(Q), R0(P), R π

2
(P),

Rπ(P), and R 3π
2
(P) have been already computed. Even if RCH(Q) is bichromatic, the

points may be separable by a C-shaped polygon. But it is clear that for separability by
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a C-shaped polygon, red points cannot be anywhere freely inside RCH(Q) and some
conditions must hold on their positions.

Lemma 3.1 A necessary condition for separability by a C-shaped polygon C(Q) is that
at least three of the four red rectangles of the corners of R(Q) be empty.

α

β γ

θ

(a)

C(Q)

(b)

R(Q) R(Q)

C(Q)

R0(P )

α

β γ

θ

Fig. 3. Separability by a C-shaped polygon.

Proof : As mentioned before, there is at least one blue point on each edge of R(Q). Note
that a blue point may be shared between two incident edges of R(Q). The blue points on
the edge of R(Q) must be covered by C(Q), so C(Q) should be in one of the two forms
as shown in Fig. 3. As can be seen in Fig. 3, this C-shaped polygon has at most four
corners in common with R(Q), the top-right corner θ , the bottom-right corner γ , the top-
left corner α , and the bottom-left corner β . From these four corners of C(Q), the three
corners α , β , and γ have blue points on their both edges and there is exactly one corner θ

that may have no blue point on one of its edges. Therefore, this edge has the freedom to
move. This freedom means that because there is no blue point on this edge and it is not
fixed by any blue point, it can move in parallel to itself (see Fig. 3 (b)). If some red points
are in a corner of R(Q), then that corner must be the θ corner of C(Q). Hence, at least
three of the four corners of R(Q) must be empty of red points. ■

(a) (b)

RS(P )
RCH(Q)

R(Q)

RCH(Q)

R(Q)

RS(P)

Fig. 4. (a) A monochromatic RS(P) and (b) a bichromatic RS(P).

Let RS(P) denote a rectangle containing all the red points inside RCH(Q) that is
tangent to exactly one edge of the rectangle R(Q) (see Fig. 4). By the length of an axis-
parallel rectangle we mean the length of its horizontal edges.

Lemma 3.2 If there is a separating C-shaped polygon C(Q), then a monochromatic rect-
angle RS(P) (containing only red points) there exists. Also when exactly one of the red
rectangles of the corners of R(Q), say R0(P), is non-empty then a monochromatic L-
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shaped polygon L(P) that contains R0(P) and the rectangle RS(P) there exists. In this
case, R0(P) and RS(P) are both tangent to the same edge of R(Q), say the right edge of
R(Q). Also the length of RS(P) is greater than the length of R0(P).

(a) (b)

R
′

(c)

R(Q)

R
′

R(Q)

R
′′

R(Q)
R

′′

C(Q)C(Q)

Fig. 5. Existence of a monochromatic rectangle RS(P), when the given points are C-shaped separa-
ble.

Proof : We know that there is a blue point on every edge of the rectangle R(Q). Also,
according to Lemma 3.1, R(Q) can have at most one non-empty corner red rectangle.
Therefore, if there is a separating C-shaped polygon C(Q), it may have been constructed
in one of the two ways as shown in Figs. 5 (a) and (b). In way (i), see Fig. 5 (a), there
is no non-empty red rectangle at the corners of R(Q). Let R

′
= R(Q) \C(Q), which is

a rectangle that has no blue points. In way (ii), see Fig. 5 (b), there is exactly one non-
empty red rectangle at a corner of R(Q), say R0(P). Let L(P) = R(Q)\C(Q), which is an
L-shaped that has no blue points. By a cut, we partition this L-shaped into two rectangles
R

′
and R

′′
. If the knee of the L-shaped is on the horizontal (resp. vertical) edge of R(Q),

then we make a vertical (resp. horizontal) cut. The rectangle that intersects the corner
of R(Q) is called R

′′
and the other one is called R

′
(see Fig. 5 (b)). By the definition

of RCH(Q), R
′′

can have nothing in common with RCH(Q), otherwise a blue point lies
inside R

′′
(5 (c)). While we know that R

′′
, which is a part of the L-shaped, is empty of blue

points. Therefore, all the red points inside RCH(Q) that are separated by the C-shaped
polygon from the blue points, are all inside R

′
. By the definition of R

′
, there is no blue

point inside it, and has exactly on one edge tangent to R(Q). So we can set RS(P) = R
′
.

Hence a monochromatic RS(P) there exists. In way (ii), as can be seen in Fig. 5 (b), the L-
shaped polygon L(P) contains R0(P) and RS(P). Also, R0(P) and RS(P) are both tangent
to the right edge of R(Q). Further, in polygon L(P), the rectangle R0(P) is included in R

′′
.

So, the length of rectangle RS(P) = R
′

is greater than the length of rectangle R0(P). ■

Theorem 3.3 If the necessary conditions for separability by a C-shaped polygon C(Q)
mentioned in Lemmas 3.1–3.2 hold, then there is a separating C-shaped polygon C(Q),
which means that these conditions are sufficient.

Proof : If the four red rectangles at the corners of R(Q) are empty, according to Lemma
3.2 there is a monochromatic rectangle RS(P), then it is clear that C(Q) = R(Q)\RS(P) is
a separating C-shaped polygon. If exactly one of the four red rectangles at the corners of
R(Q) is not empty, according to Lemma 3.2 there is a monochromatic L-shaped polygon
L(P), then it is clear that C(Q) = R(Q)\L(P) is a separating C-shaped polygon. ■

For an axis-parallel rectangle R, then by ymin(R) and ymax(R) we mean y coordinates
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Algorithm 3.1: The algorithm for computing a separating C-shaped polygon
Input: bichromatic point sets P and Q
Output: an axis-parallel separating C-shaped polygon C(Q)

1: Compute the min and the max of x and y coordinates of the points of Q, then
compute R(Q)

2: Use the min and the max x and y of Q to compute the four quarters of blue points of
Q

3: For each quarter of Q compute the related staircase Sθ (Q), θ = 0, π

2 ,π,
3π

2 as
mentioned in Section 2, then compute the RCH(Q). Staircases are stored in sorted
arrays.

4: Remove the red points outside R(Q)
5: Compute Rθ (P), θ = 0, π

2 ,π,
3π

2
6: Compute all candidates for RS(P)
7: if all Rθ (P) are empty then
8: if there is a monochromatic RS(P) then
9: return C(Q) = R(Q)\RS(P)

10: end if
11: end if
12: if only one of Rθ (P), say R0(P), is not empty then
13: Compute all candidates for L(P)
14: if there is a monochromatic L(P) then
15: return C(Q) = R(Q)\L(P)
16: end if
17: end if
18: return NULL

of the bottom-edge and the top-edge of R, respectively. Algorithm 3.1 shows the pseudo
code for computing an axis-parallel separating C-shaped polygon. In the following, the
steps of the algorithm and the time-complexity of each step are mentioned. First, in line
1 of Algorithm 3.1, in O(n) time, the blue points of the minimum and the maximum
x and y coordinates are found. Because we have computed the top, bottom, left, and
right points of R(Q) at the beginning, then R(Q) can be computed in a constant time.
In line 2 of Algorithm 3.1, the blue points inside each quarter of R(Q) in O(n) time are
specified by comparing their coordinates to x and y coordinates of the four points top,
bottom, left and right of R(Q). In line 3 of Algorithm 3.1, we sort the blue points of each
quarter according to y coordinates in O(n logn) time. Then by traversing this sorted list
and comparing x coordinates of each point and its previous point, in O(1) time for each
point will determine whether this point is dominating. Therefore, in total in O(n logn)
time the dominating points of each quarter are specified. We store the dominating points
of each quarter in a sorted array. We also save the beginning and end points of each
staircase separately in memory. Clearly, by specifying the above four staircases, RCH(Q)
is obtained.

In line 4 of Algorithm 3.1, the red points outside R(Q) are removed in O(n) time. To
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do this, all points are compared to the four edges of R(Q) and it is determined whether
they are inside R(Q) or not, which takes O(1) time for each point. So, in total, for at
most n red points, it is done in O(n) time. In line 5 of Algorithm 3.1, we find all the
red points outside RCH(Q) and inside the first quarter in O(n logn) time. To determine
if the points in the quarter are outside or inside RCH(Q), they must be compared to the
staircases of the quarter. The best time is obtained by a binary search on the sorted arrays
of the staircase, which is O(logn) time for each point and O(n logn) time for the points of
the quarter. Among these red points, the lowest point and the leftmost point indicate the
bottom and left edges of the corner red rectangle R0(P), respectively. These two points
are obtained in O(n) time. Similarly, the other three corner red rectangles of R(Q) are
computed.

In line 6 of Algorithm 3.1 to compute RS(P), first the red points inside RCH(Q) are
computed in O(n logn) time using arrays containing the first to fourth quarter staircase
points. Then from the red points inside RCH(Q), we compute the points with the mini-
mum x and y coordinates in O(n) time. Then the minimum rectangle containing the red
points inside RCH(Q), i.e. MR(P), is computed in O(1) time. By this rectangle, four
candidate rectangles for RS(P) are computed, which rises along the edges of the MR(P)
rectangle in four different directions top, bottom, left, and right. These four candidates
are computed in O(1) time.

In line 7 of Algorithm 3.1, checking whether these rectangles are empty (there exist
or not) is done in O(1) time. If the condition of line 7 of Algorithm holds, then in line 8 the
checking monochromaticity of each of the four candidates for RS(P) is computed in O(n)
time. If in line 8 of Algorithm 3.1 RS(P) is monochromatic, then C(Q) = R(Q)\RS(P),
otherwise returns NULL. Clearly C(Q) is computed in O(1) time. If the condition of
line 7 of Algorithm 3.1 is not true, then in line 15 of the algorithm, if exactly one of the
corner red rectangles of R(Q) is not empty (say R0(P)), then in line 16 of the algorithm
we have to compute L(P). From the four candidates for RS(P), that candidate is selected
to make L(P) that is monochromatic and tangent to an edge of R(Q) to which R0(P) is
also tangent. It is possible to check these conditions for four candidates of RS(P) in O(1)
time. For each candidates of RS(P), there are three possible cases for constructing L(P).

Case 1: If ymin(RS(P)) ⩽ ymin(R0(P)) ⩽ ymax(RS(P)), then RS(P) and R0(P) do not
change.

Case 2: If ymax(RS(P)) < ymin(R0(P)) (see Fig. 6 (a)), then the bottom edge of R0(P)
extends (see Fig. 6 (b)).

Case 3: If ymin(RS(P)) > ymin(R0(P)) (see Fig. 7 (a)), then bottom edge RS(P) extends
(see Fig. 7 (b)).

It is easy to see, if the length of RS(P) is less than the length of R0(P) then the mono-
choromatic L-shaped L(P) does not exist, and extension of the length of RS(P) does not
help. In all the three cases, L(P) is formed by the union of the final RS(P) and R0(P)
(see Figs. 6 and 7). In this way, L(P) is constructed in O(1) time. Then in line 17 of
Algorithm 3.1, the monochromaticity of L(P) is checked in O(n) time. If the condition of
line 17 of the algorithm is true (L(P) is monochromatic), then C(Q) = R(Q) \L(P) and
it is returned, otherwise NULL is returned. If the condition of line 15 of the algorithm
is not true, i.e. there exist more than one non-empty corner red rectangles, then NULL is
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ymin(R0(P ))

R0(P )

ymax(RS(P ))

RS(P ) RS(P )

R
′

0(P )

R
′
0(P ) ∪RS(P ) = L(P )

(a) (b)
Fig. 6. (a) ymax(RS(P)) < ymin(R0(P)) and (b) display the expansion R0(P) to the top edge of
RS(P).

ymin(R0(P ))ymin(RS(P )) R0(P ) ∪RS
′
(P ) = L(P )

R0(P )

RS(P )

R0(P )

RS
′
(P )

(a) (b)
Fig. 7. (a) ymin(RS(P)) > ymin(R0(P)) and (b) display the expansion RS(P) to the bottom edge of
R0(P).

returned. Clearly, C(Q) is computed in O(1) time-complexity. Therefore, the total time
of the algorithm is O(n logn). Therefore, the following theorem is concluded.

Theorem 3.4 Deciding whether two sets of points P and Q are C-separable can be de-
cided in O(n logn) time. Moreover a C-separating polygon of P and Q can be computed
in O(n logn) time and O(n) space

The given algorithm computes separating C-shaped polygon, which does not have neces-
sarily the minimum area. To compute the minimum-area separating C-shaped polygon we
should modify the algorithm. This can be done simply by extending the monochoromatic
rectangle RS(P) and L-shaped polygon L(P) until their boundary touch the blue points.
The number of separating C-shaped polygons may be unlimited in general. But the num-
ber of minimum-area separating C-shaped polygons is limited and we can enumerate all
of them. This can be done by considering all the possible candidate monochoromatic
rectangles RS(P) and L-shaped polygons L(P).



874 FATEMEH KESHAVARZ-KOHJERDI, ANITA SHEYBANI, ALIREZA BAGHERI

4. CONCLUSION AND FUTURE WORK

The set of blue points on the plane may not be separated from the red points by shapes
that have been studied so far, such as a rectangle, two rectangles, or an L-shaped polygon,
so it is necessary to use other shapes for separating. In this paper, the separability problem
of bichromatic point sets by axis-parallel C-shaped polygons, which is more general than
L-shaped polygons, is studied and an algorithm with a time complexity of O(n logn) is
presented. As future work, we can consider more colors for the points.
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