
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 24, 1229-1239 (2008)

1229

Short Paper___

Network Intrusion Detection Based on Shift-OR Circuit*

HUANG-CHUN ROAN, WEN-JYI HWANG, WEI-JHIH HUANG AND CHIA-TIEN DAN LO+

Department of Computer Science and Information Engineering
National Taiwan Normal University

Taipei, 117 Taiwan
+Department of Computer Science
University of Texas at San Antonio

San Antonio, TX 78249, U.S.A.

This paper introduces a novel FPGA-based signature match co-processor that can

serve as the core of a hardware-based network intrusion detection system (NIDS). The
key feature of the signature match co-processor is an architecture based on the shift-or
algorithm, which employs simple shift registers, or-gates, and ROMs where patterns are
stored. As compared with related work, experimental results show that the proposed
work achieves higher throughput and less hardware resource in the FPGA implementa-
tions of NIDS systems.

Keywords: network intrusion detection system, FPGA implementation, pattern matching,
shift-or algorithm, string searching

1. INTRODUCTION

Due to increasing number of network worms and virus, network users are vulner-
able to malicious attacks. A network intrusion detection system (NIDS) provides an ef-
fective security solution to the network attacks. It monitors network traffic for suspicious
data patterns and activities, and informs system administrators when malicious traffic is
detected so that proper actions may be taken. Many NIDSs such as SNORT [8] prevent
computer networks from attacks using pattern-matching rules. The computational com-
plexity of NIDSs therefore may be high because of the requirement of the string match-
ing during their detection processes.

The SNORT system running on general purpose processors may only achieve up to
60 Mbps [5] throughput because of the high computational complexity. Since these sys-
tems do not operate at line speed, some malicious traffic can be dropped and thus may
not be detected. To accelerate the speed for intrusion detection, several FPGA-based ap-
proaches have been proposed [2, 3, 5-7]. FPGA-based reconfigurable hardware can be
programmed almost like software, maintaining the most attractive advantage of flexibility
with less cost than traditional ASIC hardware implementations. Moreover, the FPGA

Received July 4, 2006; revised September 26, 2006; accepted October 25, 2006.
Communicated by Tzong-Chen Wu.
* This paper was presented in part at the IEEE International Conference on Field Programmable Logic and

Applications (FPL 2006), Madrid Spain, August 2006. This project was partially supported by the Center for
Infrastructure Assurance and Security at UTSA and US Air Force under grant #26-0200-62.

admin
打字機文字
DOI:10.1688/JISE.2008.24.4.15

HUANG-CHUN ROAN, WEN-JYI HWANG, WEI-JHIH HUANG AND CHIA-TIEN DAN LO

1230

hardware implementation can exploit parallelism for string matching so that the through-
put of NIDSs can be increased.

One popular way for FPGA implementation is based on regular expressions [3, 4],
which results in designs with low area cost and moderate throughput acceleration. In this
approach, a regular expression is generated for every pattern. Each regular expression is
then implemented by a nondeterministic finite automata (NFA) or deterministic finite
automata (DFA). In the finite automata implementations, efficient exploitation of paral-
lelism is difficult because the input stream is scanned one character at a time. Another
alternative for FPGA implementation is to use the content addressable memory (CAM)
[2, 7]. By the employment of multiple comparators in the CAM, the processing of multi-
ple input characters per cycle is possible. This may effectively increase the throughput at
the expense of higher area cost.

The objective of this paper is to present a novel FPGA implementation approach for
NIDSs achieving both high throughput and low area cost. The proposed architecture is
based on the shift-or algorithm for exact string matching [1]. The shift-or algorithm is an
effective software approach for pattern matching because of its simplicity and flexibility.
However, it may not perform well when the pattern size is larger than the computer word
size, which is the case for many SNORT patterns. Accordingly, the software implementa-
tion of shift-or algorithm may not be suited for SNORT systems.

On the other hand, the hardware implementation of shift-or algorithm imposes no
limitation on the pattern size. In our architecture, each SNORT pattern is only associated
with a ROM and a shift register for pattern comparison, which are designed in accor-
dance with the pattern size. Because of its simplicity, the architecture may operate at a
higher clock rate as compared with other implementations. In addition, the number of
logic elements (LEs) for the circuit implementation is reduced significantly when the
ROM is realized by the embedded RAM blocks of the FPGA. The area cost therefore
may be lower than the existing designs [2, 7]. Moreover, although the proposed architec-
ture in its simplest form only processes one character at a time, the architecture can be
extended to further enhance the throughput of the circuit. Multiple characters can be
scanned and processed in one cycle at the expense of slight increase in area cost.

The proposed architecture has been prototyped and simulated by the Altera Stratix
FPGA. Experimental results reveal that the circuit attains the throughput up to 5.14
Gbits/sec with area cost of 1.09 LE per character. The proposed architecture therefore is
an effective solution to high throughput and low area cost NIDS hardware design.

(a) (b)

Fig. 1. An example of shift-or algorithm with pattern P = aab and text T = acaab. (a) The bit vector
Sk associated with each symbol sk ∈ ∑ = {a, b, c} for the pattern P; (b) The bit vector Rj for
the text T, where one occurrence of P is found (encircled).

NETWORK INTRUSION DETECION BASED ON SHIFT-OR CIRCUIT

1231

2. PRELIMINARIES

This section briefly describes the shift-or algorithm for exact string matching. Sup-
pose we are searching for a pattern P = p1p2 … pm inside a large text (or source) T = t1t2 …
tn, where n >> m. Every character of P and T belongs to the same alphabet ∑ = {s1, …, s|∑|}.

Let Rj be a bit vector containing information about all matches of the prefixes of P
that end at j. The vector contains m + 1 elements Rj[i], i = 0, …, m, where Rj[i] = 0 if the
first i characters of the pattern P match exactly the last i characters up to j in the text (i.e.,
p1p2 … pi = tj-i+1tj-i+2 … tj). The transition from Rj to Rj+1 is performed by the recurrence:

1

1

0, if [1] 0 and ,
[]

1, otherwise,
j i j

j

R i p t
R i +

+

− = =⎧⎪= ⎨
⎪⎩

 (1)

where the initial conditions for the recurrence are given by R0[i] = 1, i = 1, …, m, and
Rj[0] = 0, j = 0, …, m. The recurrence can be implemented by the simple shift and OR
operations. To see this fact, we first associate each symbol sk ∈ ∑ a bit vector Sk contain-
ing m elements, where the ith element Sk[i] is given by

0, if ,

[]
1, otherwise.

k i
k

s p
S i

=⎧
= ⎨
⎩

 (2)

Assume tj+1 = sc. Based on Eq. (2), the recurrence shown in Eq. (1) can then be re-

written as

Rj+1[i] = Rj[i − 1] OR Sc[i], i = 1, …, m. (3)

We can clearly see now the transition from Rj to Rj+1 involves to no more than a shift

of Rj and an OR operation with Sc, where tj+1 = sc. Fig. 1 shows an example of the exact
string matching based on the shift-or algorithm, where P = aab and ∑ = {a, b, c}. The bit
vector Sk associated with each sk ∈ ∑, which is determined by Eq. (2), is given in Fig. 1
(a). In this example, T = acaab. Therefore, sc = a, c, a, a and b for j = 1, 2, 3, 4 and 5,
respectively. The Sc associated with sc for each j can be found from the table shown in
Fig. 1 (a). Given Sc and Rj-1, the Rj can be computed by Eq. (3), as shown in Fig. 1 (b).
Note that, when j = 5, it can be found from Fig. 1 (b) that Rj[3] = 0. Therefore, one oc-
currence of P is found when j = 5.

Fig. 2. The basic structure of the proposed circuit, where M is the number of rules implemented by

the circuit.

HUANG-CHUN ROAN, WEN-JYI HWANG, WEI-JHIH HUANG AND CHIA-TIEN DAN LO

1232

3. THE ARCHITECTURE

The proposed architecture for SNORT pattern matching is shown in Fig. 2. The ar-

chitecture contains M modules, where M is the number of SNORT rules for intrusion
detection. The incoming source is first broadcasted to all the modules. Each module is
responsible for the pattern matching of a single rule. The encoder in the architecture re-
ceives the intrusion alarms issued by the modules detecting matched strings, and trans-
fers the alarms to the administrators for proper actions.

 (a) The block diagram of the circuit.

(b) The shift register circuit during clock cycle j + 1.

Fig. 3. The basic circuit of each module for exact pattern matching.

3.1 Basic Module Circuit

Each module uses the shift-or algorithm for exact string matching in hardware. As

shown in Fig. 3, each module contains a ROM and a shift register. There are |∑| entries in
the ROM. The kth entry of the ROM contains the m-bit vector Sk, where m is the size of
the pattern associated with the module. The shift register consists of m − 1 flip-flops (FFs)
and m OR gates. Based on the bit vectors Sk, k = 1, …, |∑|, provided by the ROM, the
objective of the shift register is to perform the shift-or operation shown in Eq. (3).

The module operates by scanning the source string one character at a time. There-
fore, after the clock cycle j, the circuit completes the string matching process up to tj.
Moreover, the character tj+1 is the input character to the module during the clock cycle (j
+ 1). Assume tj+1 = sc. The input character tj+1 is first delivered to the ROM for the re-
trieval of Sc to the OR gates. Each OR gate i has two inputs: one is from the ith output bit
of the ROM (i.e., Sc[i]), and the other is from the output of FF (i − 1), which contains Rj[i
− 1] during the clock cycle j + 1. From Eq. (3), it follows that the OR gate i produces
Rj+1[i], which is then used as the input to the FF i. The Rj+1[i] therefore will become the
output of FF i during the clock j + 2 for the subsequent operations.

Note that, during the clock cycle j + 1, the mth OR gate produces Rj+1[m], which is
identical to 0 when p1p2 … pi = tj-itj-i+1 … tj+1. In this case, the module will issue an intru-
sion alarm to the encoder of the NIDS system. Therefore, the output of the OR gate m is

NETWORK INTRUSION DETECION BASED ON SHIFT-OR CIRCUIT

1233

Fig. 5. The sharing of the same symbol encoder and bitmap encoder by three different Snort rules.
Each character is also assumed to be an ASCII. All the Snort rules use the same alphabet
comprised of 7 symbols.

the check point of exact string matching with pattern size m.
For the FPGA devices with embedded memories, the ROM may be implemented

solely by the memory bits. Hence, the LEs are required only for the implementation of
the shift register. The circuit therefore may have low area cost (in terms of the number of
LEs) for the FPGA implementation of SNORT rules.

To implement the ROM, we first note that each ASCII character in a SNORT rule
contains 8 bits. Therefore, |∑| = 256 and the ROM contains 256 entries for pattern
matching. The ROM size can be reduced by observing the fact that some symbols sk in
the alphabet ∑ may not appear in the pattern P. Accordingly, they have the same bit vec-
tors Sk = 1. These symbols then can share the same entry in the ROM for storage size
reduction. One simple way to accomplish this is to augment a new symbol s0 (with S0 = 1)
in the alphabet ∑. All the symbols sk having Sk = 1 are then mapped to s0 by a symbol
encoder as shown in Fig. 4. These symbols then shared the same entry associated with s0
in the ROM.

Since the LEs are required for the implementation of symbol encoders, the area cost
may be high if each module has its own symbol encoder. We can lower the area cost by
first dividing the SNORT rules into several groups, where the rules in each group use the
same set of symbols. Therefore, all the rules in the same group can share the same sym-
bol encoder, as shown in Fig. 5. The overhead for the realization of symbol encoders then
can be reduced.

Fig. 4. The augment of a symbol encoder for reducing the ROM size. In this example, each input

character is assumed to be an ASCII code (8 bits). We also assume the SNORT rule uses
only 7 symbols in the alphabet. The output of the symbol encoder therefore is 3 bits.

HUANG-CHUN ROAN, WEN-JYI HWANG, WEI-JHIH HUANG AND CHIA-TIEN DAN LO

1234

To partition the SNORT rules, we first note that the number of rules is finite. There-
fore, a simple supervised rule partitioning method is adopted here. In the algorithm, first
we obtain the distribution of each symbol among different rules. Based on the distribu-
tions, the number of rule groups and the set of symbols associated with each group are
then determined by inspection.

3.2 High Throughput Module Circuit

The basic module circuit shown in Fig. 3 only process one character per cycle. The

throughput of the NIDS system can be improved further by processing q characters at a
time. This can be accomplished by grouping q consecutive characters in the source into a
single symbol. Without loss of generality, we consider q = 2. Let Ω = {x1, …, x|Ω|} be the
alphabet for the new symbols, where xi = (y1, y2), and y1, y2 ∈ ∑.

Based on Ω, a pattern P can be rewritten as P = u1u2 … u ⎡m/2⎤, where ui = (p2i-1, p2i).
Note that u⎡m/2⎤ = (pm-1, pm) when m is even. However, when m is odd, u ⎡m/2⎤ = (pm, φ),
where φ denotes “don’t care” and can be any character in ∑. We can then associate a bit
vector Xk containing ⎡m/2⎤ elements for each symbol xk ∈ Ω, where the ith element of Xk
is given by

0, if ,
[]

1, otherwise.
k i

k

x u
X i

=⎧
= ⎨
⎩

 (4)

A ROM containing X1, …, X|Ω| can then be constructed for shift-or operations. In
this case, the ROM contain |Ω| = |∑|2 entries, where each entry has ⎡m/2⎤ bits. It is there-
fore necessary to employ a larger ROM for a module with higher throughput. A symbol
encoder similar to that shown in Fig. 4 can be employed to reduce the ROM size. In this
case we augment a new symbol x0 (with X0 = 1) in the alphabet Ω. All the symbols xk
having Xk = 1 are then mapped to x0 by the symbol encoder.

Note that the string matching operations ending at j over the alphabet Ω is equiva-
lent to the operations ending at either 2j or 2j + 1 (but not both) over the alphabet ∑. It is
necessary to perform the matching process ending at every location of the source over
the alphabet ∑. Therefore, we employ two shift registers in the module as shown in Fig. 6,
where one is for even locations, and the other is for odd locations. Moreover, since each
entry of the ROM contains only ⎡m/2⎤ bits, the shift registers with ⎡m/2⎤ − 1 FFs and
⎡m/2⎤ OR gates are sufficient for the operations. Therefore, the total number of FFs in the
high throughput circuit is 2⎡m/2⎤ − 2, which is less than that in the basic circuit presented
in the previous subsection.

To perform the string matching operations ending at the even locations of the source
over ∑, we convert the source T to the sequence Te = e1e2… over alphabet Ω, where ej =
(t2j-1, t2j). During the clock cycle j + 1, symbol ej+1 is fetched to the ROM. This is equiva-
lent to the scanning of two characters t2j+1 and t2j+2 simultaneously for shift-or operations.

The shift-or operations at the odd locations of the source can be performed in the
similar manner, except that the source T is extracted as To = o1o2…, where oj = (t2j, t2j+1).
During the clock cycle j + 1, we scan the symbol oj. From Fig. 6, we observe that oj can
be obtained from ej and ej+1 via delaying and broadcasting operations. Therefore, the
shift-or operations at even and odd locations share the same input as shown in the figure.

NETWORK INTRUSION DETECION BASED ON SHIFT-OR CIRCUIT

1235

It can be observed from Fig. 6 that two identical ROMs are required for concurrent
reads for each rule. The storage over head may be reduced further by the employment of
a dual-port ROM allowing the same memory block to be shared by two concurrent reads,
as shown in Fig. 7. An example of the embedded memory blocks supporting the realiza-
tion of dual-port ROM is the M4K blocks of Altera Stratix FPGA devices, where a true
dual-port mode supporting any combination of two-port operations (i.e., two reads, two
writes, or one read and one write) is provided. The utilization of these embedded memory
blocks is very helpful for the implementation of the proposed circuits achieving both
high throughput and low area cost.

Fig. 6. The structure of a high throughput module circuit processing two characters at a time (q = 2).

Fig. 7. The structure of a high throughput module circuit processing two characters at a time (q = 2)

with a shared dual-port ROM.

4. EXPERIMENTAL RESULTS AND COMPARISONS

This section presents experimental results of the proposed architecture for NIDS.
All the rules considered here are used for SNORT 2.2. Fig. 8 shows the average number
of LEs per character and operating frequency of the proposed circuit with q = 1 for vari-
ous rule sets with sizes ranging from 500 characters to 8000 characters. In this experi-
ment, the symbol encoder is used to reduce the storage size of the ROM. In addition,
different rules will share the same symbol encoder for reducing the area cost for the
FPGA implementation. We use the Altera Quartus II as the tool for circuit synthesization.
The target FPGA device is Stratix EP1S40.

HUANG-CHUN ROAN, WEN-JYI HWANG, WEI-JHIH HUANG AND CHIA-TIEN DAN LO

1236

 (a) LE per character. (b) Operating frequency.

Fig. 8. The performance of the proposed circuit with q = 1 for various rule sets with sizes ranging
from 500 characters to 8000 characters.

Table 1. Comparisons of the proposed architecture with q = 2 for various configurations.

Configurations
Symbol Encoder

Utilization Sharing
ROM

Sharing

Throughput
(Gb/s) LEs/char Memory

bits

Operating
Frequency

(MHz)

No No No Not available Not available 102,760,448 Not available
Yes No No 3.56 1.74 39,718 222.77
Yes Yes No 5.14 1.09 40,768 321.03
Yes Yes Yes 4.65 1.08 20,826 290.87

From Fig. 8, it can be observed that the operating frequency of the proposed circuit
is stable over a wide range of rule set sizes. Moreover, the average number of LEs per
characters decreases as the size of rule set increases. This is because the area overhead
for implementing the symbol encoder reduces as the number of rules sharing the encoder
increases. In particular, when the rule set size is 8000 characters, the average number of
characters becomes only 0.95 LE/char.

Table 1 compares the throughput, the average number of LEs per character, total
number of memory bits and operating frequency of the proposed circuits for various con-
figurations. Only the circuits processing two characters at a time (i.e., q = 2) are consid-
ered in the table. The rule set size is 1568 characters. In the table, the throughput indi-
cates the maximum number of bits per second the circuit can process.

Because the alphabet size is 216 for q = 2, when the symbol encoder is not utilized,
the ROMs for each rule has 216 entries, resulting in total amount of 102.76M bits for the
rule set size of 1,568 characters. Due to large amount of embedded memory bits required
for pattern storing, it is difficult to implement the circuit using the existing FPGA devices.
As shown in Table 1, the employment of symbol encoder significantly reduce the number
of memory bits for ROM implementation (from 102.76M bits to 40.76K bits). Neverthe-
less, without the sharing of symbol encoder by different rules, the number of LEs con-
sumed by the circuit is 1.74 LEs/char. When the symbol encoder is shared, the area cost is
then reduced to 1.09 LEs/char. Moreover, the circuit with symbol encoder sharing

NETWORK INTRUSION DETECION BASED ON SHIFT-OR CIRCUIT

1237

achieves clock rate up to 321.03MHz, which is significantly higher than that of the cir-
cuit without symbol encoder sharing.

When the ROM is also shared by string matching operations ending at even and odd
locations for each rule, as shown in Fig. 7, the number of memory bits can be reduced
further by half (from 40,768 bits to 20,826 bits). Nevertheless, for the Stratix FPGA de-
vices, the ROM sharing is implemented by true dual-port ROMs, which are supported
only by M4K embedded memory blocks. On the contrary, the implementation of single-
port ROM can be realized by embedded memory blocks with faster speed, such as M512.
Therefore, the proposed circuit with ROM sharing operates at slightly slower clock rate
as compared with its counterpart without ROM sharing, where the ROMs are imple-
mented by M512.

Table 2 compares the FPGA implementations of the proposed architecture with
those of the existing related works. The proposed circuits considered here are imple-
mented with symbol encoder sharing. When q = 2, the circuits with and without ROM
sharing are included. As shown in Table 2, because the circuit with q = 2 processes two
characters for each clock cycle, it has higher throughput than that of the circuit with q = 1,
which processes one character per cycle only. On the other hand, it can also be observed
from Table 2 that the circuit with q = 2 has slighter higher number of LEs per character.
This is because the circuit has more complex address encoder for reducing the storage
size in ROM.

Note that the exact comparisons of the proposed circuits with the related work may
be difficult because they are realized by different FPGA devices. However, it can still be
observed from the table that our circuits have effective throughput-area performance as
compared with existing work. This is because our design is based on the simple shift-or
algorithm. The simplicity of circuit allows the string matching operations to be performed
at high clock rate with small hardware area. In particular, when q = 2 without ROM shar-
ing, our circuit attains the throughput of 5.14 Gbits/sec while requiring only the area cost
of 1.09 LEs per character. These facts demonstrate the effectiveness of our design.

Table 2. Comparisons of various string matching FPGA designs.

Design Device Throughput
(Gb/s)

No.
characters

Logic cells
/char

Proposed architecture (q = 1) Altera Stratix EP1S40 2.25 5004 0.96
Proposed architecture (q = 2)
with ROM sharing

Altera Stratix EP1S40 5.14 1568 1.09

Proposed architecture (q = 2)
with ROM sharing

Altera Stratix EP1S40 4.65 1568 1.08

Gokhale et al. [2] Xilinx VirtexE-1000 2.2 640 15.2
Hutchings et al. [3] Xilinx Vertix-1000 0.248 8003 2.57
Moscola et al. [4] Xilinx VirtexE-2000 1.18 420 19.4
Singaraju et al. [6] Xilinx Virtex2VP30-7 6.41 1021 2.2
Sourdis-Pnevmatikatos [7] Xilinx Spartan33-5000 4.91 1800 3.69

HUANG-CHUN ROAN, WEN-JYI HWANG, WEI-JHIH HUANG AND CHIA-TIEN DAN LO

1238

5. CONCLUSION

A novel FPGA implementation of NIDS systems based on shift-or algorithm is pre-
sented in this paper. The proposed algorithm in the basic form process one character at a
time, and contain only a ROM and a simple shift register for each pattern matching. The
throughput can be further enhanced by processing multiple characters in parallel. Both
the basic form and two-character at a time of the proposed algorithm are implemented in
our experiments. Comparisons with existing work reveal that our design is a cost-effec-
tive solution to the FPGA implementation of packet payload string matching for NIDS
systems.

Note that circuits performing only packet payload string matching may issue false
alarms for some SNORT rules. Future work therefore is desired to incorporate both
header and payload matching for reducing the number of false alarms. It would also be
interesting to realize stateful packet inspection for stateful SNORT rules.

REFERENCES

1. R. Baeza-Tates and G. H. Gonnet, “A new approach to text searching,” Communica-
tions of the ACM, Vol. 35, 1992, pp. 74-82.

2. M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and V. Hogsett, “Granidt:
towards gigabit rate network intrusion detection technology,” in Proceedings of the
International Conference on Field Programmable Logic and Application, 2002, pp.
404-413.

3. B. L. Hutchings, R. Franklin, and D. Carver, “Assisting network intrusion detection
with reconfigurable hardware,” in Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, 2002, pp. 111-120.

4. J. Moscola, J. W. Lockwood, R. P. Loui, and M. Pachos, “Implementation of a con-
tent-scanning module for an internet firewall,” in Proceedings of the IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, 2003, pp. 31-38.

5. T. Ramirez and C. D. Lo, “Rule set decomposition for hardware network intrusion
detection,” in Proceedings of the International Computer Symposium, 2004.

6. J. Singaraju, L. Bu, and J. A. Chandy, “A signature match processor architecture for
network intrusion detection,” in Proceedings of the IEEE Symposium on Field-Pro-
grammable Custom Computing Machines, 2005, pp. 235-242.

7. I. Sourdis and D. N. Pnevmatikatos, “Pre-decoded CAMs for efficient and high-
speed NIDS pattern matching,” in Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, 2004, pp. 258-267.

8. SNORT official, http://www.snort.org.

Huang-Chun Roan (阮煥鈞) received the B.S. degree in Computer Science and

Information Engineering with a Business Administration minor from Tamkang University,
Taipei, Taiwan, in 2004. He received the M.S. degree in Computer Science and Informa-
tion Engineering at National Taiwan Normal University. His research interest is focused
on reconfigurable hardware design.

NETWORK INTRUSION DETECION BASED ON SHIFT-OR CIRCUIT

1239

Wen-Jyi Hwang (黃文吉) received his diploma in Electronics Engineering from
National Taipei Institute of Technology, Taiwan, in 1987, and M.S.E.C.E. and Ph.D. de-
grees from the University of Massachusetts at Amherst in 1990 and 1993, respectively.
From September 1993 until January 2003, he was with the Department of Electrical En-
gineering, Chung Yuan Christian University, Taiwan. In February 2003, he joined the
Department of Computer Science and Information Engineering, National Taiwan Normal
University, where he is now a full Professor and Chairman of the department. Dr. Hwang
is the recipient of the 2000 Outstanding Research Professor Award from Chung Yuan
Christian University, 2002 Outstanding Young Researcher Award from the Asia-Pacific
Board of the IEEE Communication Society, and 2002 Outstanding Young Electrical En-
gineer Award from the Chinese Institute of the Electrical Engineering. His research in-
terests include multimedia communications, VLSI and SoC design, video coding stan-
dards, and medical signal processing.

Wei-Jhih Huang (黃威智) received his B.S. degree in Computer Science from

Aletheia University, Taiwan, in 2005. He is currently pursuiting M.S. degree in the De-
partment of Computer Science and Information Engineering, National Taiwan Normal
University. His research interests include FPGA and VLSI implementations.

Chia-Tien Dan Lo (羅佳田) received a B.S. degree in Applied Mathematics from

National ChungHsing University, Taiwan, in 1990, a master degree of Computer Science
in Electrical Engineering from National Taiwan University, Taiwan, in 1992, and a Ph.D.
degree in Computer Science from Illinois Institute of Technology in 2001. He has been
an instructor of Compute Science since 1999. Courses taught include software engineer-
ing, software validation and quality assurance, assembly language and computer archi-
tecture, processor design using VHDL, operating systems, Java programming, queuing
theory and Unix system programming. He is currently with the Department of Computer
Science, University of Texas at San Antonio as an assistant professor. His research inter-
ests include reconfigurable computing, embedded system design, computer architecture,
concurrent automatic dynamic memory management, multithreaded programming, pro-
gramming languages, and model checking. Recently, he is working on Java high per-
formance computing, hardware assisted network intrusion detection, and memory com-
pression.

