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Efforts to reduce power consumption of processors have gained much attention re-

cently. Dynamic branch predictor, including BTB, is exercised in every instruction cycle, 
yet branch instructions only constitute a small percentage of instructions during program 
execution. This study proposes a novel method to collect the next branch distances of the 
recent branch instructions at runtime, in order to eliminate unnecessary branch predictor 
lookups. Simulation results show that the proposed design reduces the energy consump-
tion in the dynamic branch predictor by an average of 56.95% without performance deg-
radation. The proposed method is fully compatible with BPP and SEPAS, and saves 
more energy than PPD, Lazy BTB, and EIB does.  
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1. INTRODUCTION 
 

Recently, reducing power consumption for processor has come to constitute one of 
the defining challenges for processor architecture design. Almost all modern processors 
are highly pipelined today. To reduce the number of stall cycles due to branches, most 
processor cores perform dynamic branch prediction at the first pipeline stage. However, 
since the fetched instruction cannot be identified as a branch at this stage, the dynamic 
branch predictor, which includes a branch direction predictor and branch target buffer 
(BTB), is always exercised. Moreover, the dynamic branch predictor is a large array 
structure. Many works have shown that the dynamic branch predictor dissipates a non- 
trivial amount of power – averaging to 5-10% of the total processor power [1-4]. The 
power-hungry nature of the above discourages the portable devices from using the dy-
namic branch prediction. Nevertheless, dynamic branch prediction is still very attractive 
to processors for power-miser applications owing to its success in performance im-
provement. Therefore, low-power issue for dynamic branch prediction becomes a sig-
nificant research topic. 

Because branch instructions constitute only a small portion of all executed instruc-
tions, most dynamic branch predictor lookups are useless. This work focuses mainly on 
eliminating these useless branch predictor lookups. The problem of skipping useless 
branch predictor lookups can be transformed into the problem of locating the next up-
coming branch instruction. This work presents a next branch distance collection mecha-
nism to record the number of non-branch instructions between the two adjacent branch 
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instructions on the execution path of program. These next branch distances can be used 
to locate the next upcoming branch instruction, making the elimination of useless branch 
predictor lookups become trivial. 

The rest of this paper is organized as follows. Section 2 introduces the background 
and the related works in detail. Section 3 presents our design. Section 4 gives the ex-
periments. The last section draws conclusions. 

2. BACKGROUND AND RELATED WORKS 

2.1 Dynamic Branch Prediction 
 
Pipeline stalls due to branch instructions have great impact on processor perform-

ance. Dynamic branch prediction and target address caching can be a great help here. A 
typical dynamic branch predictor is composed of a direction predictor and a BTB. Vari-
ous implementations of the direction predictor record the branch statuses in different 
ways, and use them to predict the branch direction [5-7]. Furthermore, hybrid implemen-
tations integrate several sub-predictors to improve the branch prediction accuracy [8]. 
BTB is used to record the branch target addresses of the recently executed branches. If a 
branch instruction is predicted taken and its target address is found in BTB, then the tar-
get address is used as the next program counter (PC). Otherwise, the next sequential PC 
is used. 
 
2.2 Low-power Branch Prediction 

 
The power consumption of a dynamic branch predictor can be adjusted in two ways: 

 
1. Changing configurations 

Reducing the BTB and direction predictor size can reduce the power consumption 
of branch prediction. However, the extra chip-wide energy due to the insufficient BTB 
and direction predictor size is more expensive than this localized energy saving energy 
[2]. 
 
2. Reducing the number of unnecessary predictor accesses 

Reducing the number of predictor accesses is an obvious way to reduce power. 
Compiler-hinted approaches [3, 9, 10] have some limitations in nature. For example, [3, 
10] could skip unnecessary branch predictor lookups in each hot spot of a program, but 
not the whole program. Moreover, these approaches rely on the compiler to insert ex-
tended instructions, inevitably increasing the program size, and the complexity for the 
instruction decoder. 

 
Architecture-level approaches examine dynamic behaviors of programs to avoid 

unnecessary predictor accesses. BPP [11] and SEPAS [12] have been proposed for hy-
brid branch direction predictors. PPD [2] employs a hardware table to determine whether 
the current accessed L1 I-cache set (the cache lines with the same indexes) is control-free, 
so that the lookup in the branch predictor can be avoided. 



LOW-POWER DYNAMIC BRANCH PREDICTION 

 

1129 

 

The above three approaches [2, 11, 12] use on-chip filter table to determine whether 
the predictor access is performed or not. If the full cycle has insufficient time to allow the 
filter table to be accessed in-series with the branch predictor (serial scenario), then the 
power saving to dynamic branch predictor is limited. It implies that the access to the fil-
ter table can not complete in time to avoid the full branch predictor access, so the ac-
cesses of the filter table and branch predictor must be in parallel (parallel scenario). This 
situation means that only partial predictor access is terminated. 

Lazy BTB [13] dynamically profiles the taken traces to avoid unnecessary predictor 
accesses. The number of instructions between a taken branch and its subsequent taken 
branch are collected into an additional BTB field. This collected information is then used 
to eliminate the predictor lookups. The simulation results in [13] show that Lazy BTB 
reduces the predictor access energy consumption by about 77% on average, with 1.7% 
performance degradations. Unfortunately, the extra chip-wide energy due to the perform- 
ance degradations may be serious, especially in deep pipeline processors. However, no 
discussions about the extra chip-wide energy are found in [13]. 

3. DESIGN FOR ELIMINATING UNNECESSARY BRANCH 
PREDICTOR LOOKUPS 

This section introduces the design for eliminating unnecessary branch predictor 
lookups. We first present the system overview in section 3.1. The function blocks of this 
design are then described in sections 3.2, 3.3 and 3.4. 
 
3.1 System Overview 

 
In this paper, we intend to develop a method for the elimination of the unnecessary 

branch predictor lookups without performance degradation. Through out this paper, the 
distance in terms of the number of non-branch instructions between a branch instruction 
and its subsequent branch instruction on execution path is defined as next branch dis-
tance (NBD). If NBD is revealed to the processor early, then the branch predictor look-
ups for these non-branch instructions can be avoided. Therefore, this work focuses on 
dynamically collecting NBDs and eliminating the unnecessary branch predictor lookups 
using these collected NBDs. 

Fig. 1 displays the function blocks of this design integrated in a typical pipeline 
front-end which is composed of instruction fetch (IF), instruction decode (ID), and exe-
cution (EX) stages. An extra storage, NBD table (NBDT), is used to record the NBDs. 
During EX stage, an NBD counter (NBDC) collects the NBDs of the executed branches 
into NBDT. During IF stage, BTB, direction predictor (Dir-Pred), and NBDT are looked 
up simultaneously, where the BTB and Dir-Pred lookups are for dynamic branch predic-
tion and the NBDT lookups are for NBD probe. If a NBD equal to m is found during 
NBDT lookup, the next lookup filter filters the following m lookups in BTB, Dir-Pred, 
and NBDT. The control bit EN is used for the lookup filtering for each fetched instruc-
tion. If the lookup to Dir-Pred and BTB is allowed, the predicted next PC is determined 
by the typical dynamic branch prediction. Otherwise, the static branch prediction (pre-
dicted not taken) is used. 
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Fig. 1. The function blocks of this design integrated in a typical pipeline front-end. 

3.2 NBD Collection and NBDT Management 
 
NBDT records the NBDs of all branch instructions existing in BTB. Each BTB en-

try has its owned NBDT entry. Each NBDT entry contains two n-bit NBD fields and two 
single-bit valid fields, where tkn_NBD records the NBD of taken path, nt_NBD NBD of 
not taken path, tkn_v indicates if tkn_NBD is valid, and nt_v indicates if nt_NBD is valid. 
Initially, all valid fields are invalid. 
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Fig. 2. NBD collection and NBDT management. 

 

Fig. 2 shows the NBD collection algorithm for a branch instruction and its NBDT 
management, during EX stage. The detailed descriptions are:  
 
• There is no operation if the branch is not taken and does not exist in BTB, since only 

the NBDs of the branch instructions existing in BTB are collected. 
• If the NBD had been already collected, the repetitive collection operations are useless. 
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Therefore, NBD collection operation is performed only while the corresponding NBD 
field in NBDT entry is invalid. 

• The collected NBDs in NBDT should be consistent with the branches in BTB. In other 
words, if a BTB entry is allocated to a new branch or an indirect jump updates its tar-
get address, the corresponding NBD fields should be invalidated. This invalidation pre-
vents the next lookup filter from receiving the NBD of the replaced BTB entry or the 
replaced jump target. After the invalidation, the new NBD starts to be collected. 

 
Fig. 3. The circuits of the NBD calculation and write controls of NBDT. 

 
Fig. 3 shows the circuits of the NBD calculation and write controls of NBDT. The 

detailed descriptions are:  
 
• The NBD calculation is performed using an n-bit saturating counter (NBDC). NBDC 

resets itself after a branch instruction (B1) is executed, and then, starts to increment it-
self for each following non-branch instruction. While the subsequent branch (B2) is 
executed, the value of NBDC is equal to that of B1’s NBD, and then, this value is 
stored into NBDT if the NBD collection of B1 is allowed. Therefore, a last BTB index 
register (L_IDX) and a last branch direction register (L_BDIR) are added to preserve 
the BTB index and branch direction of the branch instruction until the subsequent 
branch is executed. 

• The reset and set signals connected to valid fields of NBDT are used for valid field 
invalidation and validation, respectively. 

 
Table 1 shows an example of the NBD collection process using a trivial loop code. 

During the first iteration, BNE is placed in BTB. During the second iteration, the NBD of 
BNE on taken path (2) is calculated and stored into NBDT.  

Table 1. NBD collection process. 

Executed Instructions NBDC tkn_NBD of BNE tkn_v of BNE 
L: ADD R0, R0, #1 1 X 0 

CMP r0, #10 2 X 0 
BNE L 0 2 1 
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Fig. 4. Next lookup filter and its corresponding lookup filtering controls. 

 
3.3 Filtering the Unnecessary Branch Predictor Lookups 

 
Fig. 4 shows the next lookup filter and its lookup filtering controls. Its output signal 

(Next_en) determines whether the next lookup is filtered or not. In order to control the 
lookup filtering for each fetched instruction, Next_en is latched into EN every instruction 
cycle. In addition, an n-bit enable register (ER) is used to record the number of upcoming 
non-branch instructions before the subsequent branch instruction, on execution path. 
Therefore, with correct management of ER, Next_en can be simply generated by check-
ing if ER is equal to zero. 

The value of the ER is initialized with a default NBD value of zero. In order to find 
the NBD of the fetched branch instruction, NBDT and BTB are probed simultaneously. 
If the BTB lookup result is hit, then the fetched instruction is a branch. Both tkn_NBD 
and nt_NBD are read while NBDT is probed, yet only the one consistent with the pre-
dicted branch direction is selected. If the selected NBD is valid, then it is stored into ER; 
otherwise, ER is reset to the default NBD value of zero. In the non-branch instruction 
cycles, ER is decremented until its value reaches zero. 

Table 2 shows the lookup filtering process using the same code example in Table 1. 
In this example, the NBD of BNE on taken path has already been collected in NBDT. 
While BNE is fetched, NBDT is probed. The NBD value of BNE on taken path (2) is 
selected (assume pred_tkn is 1), and latched into ER. Therefore, if BNE is actually taken, 
the branch predictor lookups of ADD and CMP are successfully eliminated. 
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Table 2. Lookup filtering process. 

Fetched Instructions ER Next_en EN 
L: ADD R0, R0, #1 1 0 0 

CMP r0, #10 0 1 0 
BNE L 2 0 1 

 
3.4 Handling of Incorrect Predictor Accesses 

There are two possible impacts on performance and energy if the value of ER is in-
correct. An insufficient ER value actuates the branch predictor too early and wastes en-
ergy, whereas an over-estimated ER value paralyzes the branch predictor while the next 
branch instruction is being fetched, degrading both performance and energy efficiency. 
Since the over-estimated ER case has more serious impact on energy and performance, it 
should be avoided first. 

According to the proposed NBD collection and NBDT management, the collected 
NBDs in NBDT are consistent with the branches in BTB. In other words, if the predicted 
branch direction and the target address prediction is correct, ER receives a correct NBD 
value, a default NBD value of zero (the corresponding NBDT field is invalid), or an in-
sufficient NBD value (the width of the corresponding NBDT field is insufficient). If a 
branch direction or target address misprediction occurs, then the instruction pipeline 
starts to fetch the new instructions from the correct branch direction or target. In this 
situation, the value of ER is incorrect and should be reset to avoid the performance loss 
due to the over-estimated ER. 

4. EXPERIMENTS 

The objective of these experiments is to evaluate the impacts of the proposed design 
on energy. The simulator and the benchmark are first described. The energy models are 
then defined. The simulation results are then provided. Finally, the proposed method and 
existing schemes are compared. 

4.1 Simulator and Benchmarks 

Simplescalar [14], an execution-driven, cycle-accurate simulator for modern proc-
essor core, is used as the processor and branch predictor simulator. Cacti 4.2 [15], an 
integrated cache access time, cycle time, area, leakage, and dynamic power model, is 
utilized for the power and energy estimation. The benchmark programs, comprising 12 
integer and 13 floating point programs from SPECcpu2000 suite, are evaluated. All these 
programs are compiled using the Compaq Alpha compiler with the SPEC peak settings. 
Most of them could be executed within Simplescalar. The failed test programs are re-
moved from the simulation. The provided reference inputs are used. All benchmarks are 
fast-forwarded past the first half-billion instructions, and full simulation is then per-
formed for another 10-billion instructions. 

Table 3 summarizes the detailed simulation configurations, where the width of tkn_ 
NBD and nt_NBD (n) depends on the dynamic behavior of the benchmark programs.  
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Fig. 5. Total branch distance ratio for each basic block size interval. 

Table 3. Simulation parameters. 
Processor Core 

Instruction Window 
Issue width 
Function Units 
 

RUU = 64; LSQ = 32 
1 insts/cycle 
1 Int ALU, 1 Int mult/div 
1 FP ALU, 1 FP mult/div, 1 mem ports 

Memory Hierarchy 
L1 Instruction/Data Cache 
L2 
 
Memory latency 
I/D TLB 

32KB, 2-way, 32B blocks, 1cycle, wb 
Unified, 2MB, 4-way, 
64B blocks, 11-cycle, wb 
100 cycles 
128-entry, fly assoc. 

Dynamic Branch Prediction 
BTB 
Direction predictor 
Branch Misprediction Penalty (B_MISP) 

512-entry, direct mapped 
Gshare 16K-entry 
6 cycles 

Our Design 
Default NBD  
The width of tkn_NBD and nt_NBD (n) 

0 
9 

Energy Estimations 
Technology 
Clock Cycle Time 

0.18μm 
2ns 

 

Fig. 5 shows the average total branch distance ratio (R_Total_BD) for each basic block 
length interval for SPECcpu2000. Typically, most basic blocks have the lengths shorter 
than 32. The results show that the total R_Total_BD of these short length basic blocks is 
only 66.29%, since a long basic block has more non-branch instructions than a short one. 
For the best tradeoff between the BTB energy reduction and NBDT energy, the value of 
n is determined to be fixed 9-bit. The detailed simulation results are shown in section 
4.3.2. 

4.2 Energy Model 

Eqs. (1)-(11) give the energy models. Eq. (1) models the branch predictor energy 
with all possible impacts of the proposed design (Eour_total). Eour_total includes the branch 
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predictor energy (EPredictor), NBDT energy (ENBDT), extra logics and counters energy 
(Eothers), and the chip-wide energy due to the skipped necessary predictor lookups (Estalls). 
Eqs. (2)-(4) model the branch predictor energy with all possible impacts of PPD [2], 
Lazy BTB [13], and EIB [10], respectively. Since Lazy BTB use an array structure simi-
lar to NBDT, this array structure is denoted as NBDT_lazy here. Branch identification 
unit (BIU), which records the branch distance information of each hot spot, is also an 
array structure proposed in EIB. 

Eq. (5) models EPredictor whose dynamic part can be modeled as the product of access 
counts (both lookups and updates are considered) of the accessed component and its av-
erage energy per access. Eqs. (6)-(10) model ENBDT, EPPD, ENBDT_lazy, EBIU and Eothers, re-
spectively. Since they are modeled in a similar way to EPredictor, we ignore their descrip-
tions here. Eq. (11) models Estalls as the product of extra pipeline stall cycles and chip- 
wide energy per cycle, which is about 20 times of branch predictor access energy, since 
the branch predictor dissipates about 5% of the total processor power [1]. 

Table 4 lists the energy consumptions of single access of BTB, direction predictor, 
NBDT, NBDT_lazy, PPD, and BIU. The last four terms are the main power overhead 
sources of the proposed design, Lazy BTB, PPD, and EIB, respectively. The total energy 
comparisons among these designs are presented in section 4.4. 

 
Eour_total = EPredictor + ENBDT + Eothers + Estalls    (1) 
EPPD_total = EPredictor + EPPD + Estalls    (2) 
Elazy_total = EPredictor + ENBDT_lazy + Eothers + Estalls   (3) 
EEIB_total = EPredictor + EBIU + Eothers + Estalls    (4) 
EPredictor = CountBTB_acs * EBTB_acs + Countdirp_acs * Edirp_acs + EPredictor_static (5) 
ENBDT = CountNBDT_acs * ENBDT_acs + ENBDT_static   (6) 
EPPD = CountPPD_acs * EPPD_acs + EPPD_static      (7) 
ENBDT_lazy = CountNBDT_lazy_acs * ENBDT_lazy_acs + ENBDT_lazy_static    (8) 
EBIU = CountBIU_acs * EBIU_acs + EBIU_static    (9) 
Eothers = Countothers_acs * Eothers_acs + Eothers_static    (10) 
Estalls = Countextra_stalls * 20 * (EBTB_acs + Edirp_acs)  (11) 
 

Table 4. Single access energy (pJ) of the array structures used in this simulation. 
BTB Dir-Pred NBDT NBDT_lazy PPD BIU 
12.43 4.31 5.41 2.50 2.09 4.68 

 
4.3 Simulation Results 

4.3.1 Analysis for the NBD predictions and remained predictor lookups 

Table 5 lists all reasons for NBD mispredictions and the NBD misprediction ratio 
for each reason. The S1 mispredictions are unavoidable in any conservative design. The 
S2 and S3 mispredictions are dependent on the size, structure and replacement policy of 
BTB. In other words, the S1, S2, and S3 mispredictions are regarded as independent of 
our design effort. The energy trade-off between NBDT and the reduction for S4 mispre-
dictions is shown in section 4.3.2. 
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Table 5. The reasons for NBD mispredictions. 
Reasons Descriptions Ratio 

S1 
Upon first encountering of a branch instruction or a branch 
has not entered into BTB, there has been no NBD history in 
NBDT. 

0.00017% 

S2 After a branch instruction is replaced in BTB, it loses its NBD 
information. 22.83% 

S3 
Upon branch misprediction, the enable register is reset. It 
forces the branch predictor lookups for the following non- 
branch instructions. 

6.64% 

S4 The width of NBDT is not wide enough to record the full 
NBD. 0.26% 
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Fig. 6. Branch predictor lookup ratios. 

 
On average, the total NBD misprediction ratio is 29.73%, where 0.00017%, 22.83%, 

6.64%, and 0.26% are for S1, S2, S3, and S4 mispredictions, respectively. Some unnec-
essary branch predictor lookups are still remained due to the NBD mispredictions. Fig. 6 
reports the predictor lookup ratios and their breakdown. The average lookup ratios are 
9.54% and 20.58% for the branch and non-branch instructions, respectively. 
 
4.3.2 Energy analysis 
 

Fig. 7 (a) illustrates Eour_total with different values of n. All the energy numbers are 
normalized to that of a typical branch predictor. According to the evaluation result from 
CACTI, using one extra bit of tkn_NBD and nt_NBD consumes 2.87% more energy. 
This extra energy can be well compensated for by the saved energy in the basic blocks 
with branch distance shorter than 512. Therefore, analytical results show that n = 9 yields 
the largest energy reductions in branch predictor, on average 56.95%. The further parti-
tioning of the Eour_total with n = 9 is shown in Fig. 7 (b). The results are: 
 
• Eour_total is 43.05% on average where EPredictor occupies 31%. 
• ENBDT expends 9.88% on average. This is the main energy overhead of the proposed 

design, since the width of a NBDT entry is 20-bit. 
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Fig. 7. (a) Eour_total with different values of n; (b) Eour_total distributions using n = 9. 

 
• Eothers occupies 2.17% on average due to the frequently set/reset the control registers 

and counters. 
• Estall is zero since the proposed design has no performance degradation. 
 
4.3.3 Timing analysis 

 
This section analyzes the timing effect of this design. As shown in Fig. 4, we sup-

pose that the most time critical paths in the proposed filtering circuit and dynamic branch 
prediction are [NBDT → EN] and [BTB tag RAM → PC], respectively. Table 6 lists the 
delay of each component on the two paths, where the delay time is obtained from Cacti 
4.2 and basic gate level analysis. The results show that the proposed filtering circuit fits 
into the processor pipeline without lengthening the critical paths of branch prediction. 

Table 6. Results of delay analysis. 
Critical path of dynamic branch prediction 

TBTB_hit TAND Tmux  Total 
1.20 ns 0.06 ns 0.12 ns  1.38 ns 

Critical path of lookup filtering circuit 
TNBDT Tmux Teq0 Tmux Total 

0.80 ns 0.12 ns 0.31 ns 0.12 ns 1.35 ns 
Delay Evaluations 

1. TBTB_hit, TNBDT and Teq0 are obtained using Cacti 4.2 
2. Tmux = Teq0 * 2/5 
3. TAND = Tmux * 1/2 

 
4.4 Comparisons of the Existing Methods 
 
4.4.1 High-level comparisons 

 
 Compared to the compiler hinted methods [3, 9, 10], the proposed method is a 

hardware implementation without any software support. The proposed method can easily 
be adopted in processor cores without the need to modify program codes, system soft-
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ware, or ISA. The method proposed in [9] targets on VLIW processors. Therefore, we 
ignore its comparison here. The high-level comparisons between the proposed method 
and the methods in [3, 10] are: 
 
• The methods in [3, 10] filter the unnecessary lookups only in hot spots, not the entire 

program, where the hot spots are identified by static profiling. However, which part of 
a program is hot spot is a runtime behavior which varies according to the program in-
put data or user behavior. Changing the program input data or different user behavior 
may decrease the hot spot identification accuracy in [3, 10], resulting in lowering the 
power efficiency. This drawback does not exist in the proposed method due to its dy-
namic nature.  

• The proposed method uses a runtime NBD collection, whereas [3, 10] uses a static one. 
The static method has the negative effect on program compatibility, compiler com-
plexity, program size, instruction decoder complexity, and the overhead of an extra 
storage to record the NBDs, whereas the proposed design on the power overhead of 
NBDT and NBDC only.  

• The NBD prediction coverage and accuracy of the methods in [3, 10] are mainly de-
pending on the hot spot identification accuracy, whereas that of the proposed method 
on the branch direction predictor accuracy and BTB hit rate. A higher accuracy branch 
direction predictor and BTB benefit the proposed method achieving a better power re-
duction result.  

Table 7. Comparisons of the low-power branch prediction techniques. 

Tech. Low-power schemes Design targets Lookup 
filtering 

BPP Avoid unnecessary sub-predictor accesses Recently executed branches Partial 

SEPAS Avoid unnecessary sub-predictor accesses 
and BTB updates Well-behaved branches Partial 

PPD Avoid unnecessary predictor lookups Non-branches Partial 

Lazy BTB Avoid unnecessary predictor lookups Non-branches and not-taken 
branches Full 

Proposed Avoid unnecessary predictor lookups Non-branches Full 

 
Table 7 lists the comparisons of the proposed method and other hardware methods. 

The proposed method has the following features: 
 
• For the low-power schemes, the proposed design filters the lookups to the entire branch 

predictor, not only to its partial component. 
• The proposed method is fully independent of BPP and SEPAS. BPP and SEPAS target 

useless sub-predictor access filtering for most recently executed branches and well- 
behaved branches respectively, whereas the proposed method targets the predictor 
lookup filtering for non-branch instructions. 
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• The predictor lookup filtering operation (controlled by EN) is independent of the fil-
tering signal generation. If the branch predictor lookup is not allowed, the full predictor 
access is stopped, not only the partial one. 

 
4.4.2 Simulation setups 

 
PPD, Lazy BTB, and EIB are included in our simulation, since their goals are closer 

to those of the proposed method. The simulator includes a PPD table with the number of 
entries exactly identical to the number of I-cache entries and a NBDT-like table with the 
number of entries exactly identical to the number of BTB entries. In order to make a fair 
comparison between the proposed design and Lazy BTB, the width of NBDT_lazy is 
equal to an optimum value of 10 of the in Lazy BTB simulation. The simulation setups 
for EIB are: 
 
• The most x% frequently executed basic blocks of each benchmark program are hot 

spots. According to the fact that 90% of the execution cycles are spent on 10% of the 
code, we use x = 90 as the best case of EIB (EIB_X90). The cases of x = 80, 70, and 60 
(EIB_X80, EIB_X70, and EIB_X60) are also evaluated. 

• In each hot spot, the BTB lookups are performed only for the predicted taken branches, 
whereas the direction predictor lookups are performed after the next branch address is 
calculated by BIU. In the other part of program, the BTB and direction predictor look-
ups are performed for each fetched instruction. 

• We suppose branch distance is D, the number of instructions fetched per cycle is i, the 
latency to access the BIU and calculate the next branch address is t cycles, and the la-
tency to access direction predictor is s cycles. According to the EIB design rule, if the 
time interval D/i − t is shorter than s, a BTB lookup is conditionally performed based 
on the static branch prediction. According to the processor parameters listed in Table 3, 
the value of i is equal to 1. We assume t = 2 and s = 1. Therefore, in each hot spot, 
static branch prediction is used for the branches in the basic blocks with D < 3. A pro-
file-based static branch predictor [16] is included for EIB simulation. 

• The configuration of BIU is determined according to [10]. We assume this storage ca-
pacity of BIU is sufficient to store all the required information of the basic blocks in 
each hot spot. Moreover, we only consider the energy overhead of BIU lookup and the 
extra chip-wide energy due to the static branch prediction. The other energy overheads 
are ignored. 

 
Both Lazy BTB and EIB have extra branch mispredictions. In a deep pipelined 

processor, the extra chip-wide energy due to the extra branch mispredictions is serous, 
since the deep pipelined processor has a heavy branch misprediction penalty (B_MISP). 
We intend to show the total energy effect of the extra mispredictions under different 
B_MISP. The steps to obtain the results of each design are: 
 
1. Extract the number of the extra stall cycles from Simplescalar with various B_MISP. 
2. Use the energy Eq. (6) to evaluate Estalls. 
3. Feed Estalls into the total energy equation to get the results. 
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(a)                                      (b) 

Fig. 8. (a) Energy and (b) Performance comparisons of PPD, Lazy BTB, EIB and the proposed design. 
 

Table 8. Branch predictor lookup ratio of PPD, Lazy BTB, EIB and the proposed design. 
Lazy BTB PPD proposed EIB_X90 EIB_X80 EIB_X70 EIB_X60 

17.1% 73.39% 30.12% 18.59% 27.63% 36.68% 45.72% 

 
4.4.3 Energy comparisons 

Fig. 8 (a) displays Elazy_total, EPPD_total of PPD parallel scenario (PPD_P), EPPD_total of 
PPD serial scenario (PPD_S), EEIB_total and Eour_total. The corresponding branch predictor 
lookup ratios for these schemes are listed in Table 8. In PPD and our design, the energy 
values are independent to B_MISP, since both these two designs have no extra branch 
direction or target mispredictions. The results show that the proposed method out-per- 
forms PPD both on branch predictor energy and lookup ratio, since the proposed method 
targets on all non-branch instructions, whereas PPD on the non-branch instructions in 
branch-free cache lines only.  

Lazy BTB saves more energy on EPredictor than the proposed BTB, since Lazy BTB 
not only skips the lookups that the proposed design does but also the lookups of 
not-taken branches. However, this aggressive design also skips some necessary lookups, 
resulting in an extra payment on chip-wide energy. Therefore, the results show that 
Elazy_total is less than Eour_total only upon B_MISP is insignificant. While B_MISP is larger 
than 3, the proposed design becomes the better choice for low-power due to the charac-
teristic of no performance degradation. 

EEIB_total and the corresponding branch predictor lookup ratio are mainly dependent 
on the ratio of the most frequently executed basic blocks (x) being hot spots and the 
value of B_MISP. Compared to the cases of x ≤ 70, the proposed design has a better en-
ergy efficiency for all B_MISP. Even compared to EIB_X90, the proposed design is 
nevertheless better than EIB for the processors with B_MISP > 4.  

4.4.4 Performance comparisons 

Since both PPD and our method have no performance degradations, we show the 
relative performance loss rate only for Lazy BTB and EIB in Fig. 8 (b). The trends are 
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exactly as we would expect: A heavier B_MISP causes a higher performance loss rate in 
Lazy BTB and EIB. Therefore, both Lazy BTB and EIB are not suitable for deep pipeline 
processors. 

5. CONCLUSIONS 

This study addresses the issue of low-power dynamic branch prediction. A dynamic 
next branch distance generation and collection method is proposed to filter the useless 
branch predictor lookups. This method to reduce branch predictor energy can easily be 
adopted in processor cores without the need to modify program codes, system software, 
or ISA. Moreover, the proposed method is fully compatible with many other low-power 
branch prediction techniques such as banking [2], pipeline gating for low-confidence 
branches [2], BPP [11], and SEPAS [12]. 

High-parallelism computer architectures such as superscalar processor require very 
accurate branch prediction using large, multi-ported branch predictors. The waste of 
branch prediction energy in such systems is much more serious than in single-issue proc-
essors. Since the branches may be resolved out of order in such systems, implementing 
the proposed idea in is more challenging. Research of these topics is currently underway. 
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