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We compare Milstein and exact coupling methods for the strong approximation of solu-
tions to stochastic differential equations (SDE), which are driven by Brownian motion. Both
of these methods attain an order one convergence under the nondegeneracy assumption of
the diffusion term for the exact coupling method. We also compare their implementation
using MATLAB. A particular two-dimensional SDE is used in the implementation for com-
paring their results. Moreover, the performance of both methods and the amount of time
required to obtain the result are also analyzed. It is interesting to mention that this compari-
son is very important in several areas, such as stochastic analysis, financial mathematics and
some physical applications.

Keywords: Stochastic differential equations (SDE), numerical solution of stochastic differ-
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1. INTRODUCTION

It is observed in the literature that the researches to obtain solutions of stochastic
differential equations (SDEs) are progressing rapidly and attracting the interest of many
researchers working in this field. Recently, numerical solutions to stochastic differential
equations have become popular with the development of computing simulations. The so-
lution of SDEs has potential applications in many fields, such as economics, finance and
physics [1, 2]. Some studies have been done to find the strong solutions of the stochastic
differential equation to obtain approximations of order greater than 1

2 . In [1, 3, 4] anthors
developed new methods and used the truncation of the Fourier series of the Wiener pro-
cess to approximate the double integrals in higher dimension. However, these methods
required significant computational time. In [5], Fournier used the quadratic Wasserstein
metric approach to approximate the Euler scheme. In [6], Davie described the application
of the Wasserstein bound to the solutions of the stochastic differential equation and used
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a version of Komlós, Major, and Tusnády method to obtained order one approximation
under some assumptions. Yang, Chen and Wan [7] used the Itô-Taylor expansion with a
specific condition to approximate the densities of multivariate. Under some conditions,
Alfonsi, Jourdain, and Kohatsu-Higa [9, 10] developed the Wasserstein convergence for
the Euler method and proved an O(h(

2
3−ε)) convergence for a one-dimensional diffusion

process. Gaines and Lyons [11] developed a new method based on rectangle-wedge-
tail for two-dimensional SDEs. A new method for the two dimensional SDEs using the
condition on the endpoints was presented in [12]. The bound of an approximation to a
pathwise solution on a given probability space was established by Gyöngy and Krylov
in [13] using the coupling method. Some simulation methods for the stochastic differ-
ential equation have been studied in [14]. The MATLAB implementation for the Euler
and Milstein methods in one- and two-dimensional SDEs was introduced in [15]. For the
interested reader to know more about the accomplishment of simulation of stochastic dif-
ferential equation, we refer to [16, 17, 18]. In this paper, two numerical methods named
Milstein and exact coupling are used and compared. This is based on the standard order
one Milstein scheme using a Wasserstein matrix with the condition that SDE has invert-
ible diffusion. We show the MATLAB implementation for both methods and compare the
result as well as the computational time. We used (MATLAB ver. R2017b) software to
obtain the implementation and approximation results. The rest of this article is organized
as follows. In Section 2, certain results concerning SDEs are reviewed, and the Davie
method [8] is studied. In the last section, the comparison between Milstein and exact cou-
pling methods is presented, and a numerical implementation is provided to demonstrate
the convergence behavior for 2-dimensional SDEs using invertible diffusion.

2. SCHEMES OF APPROXIMATION OF SDEs

A standard Brownian motion, or standard Wiener process, over an interval [0,T ] is a
random variable W(t), which depends continuously on a time t ∈ [0,T], if the following
conditions are satisfied:

(i) W(0) = 0 (with probability one).
(ii) For 0≤ s < t ≤ T, the random variable given by the increment W(t)−W(s) is nor-

mally distributed with mean zero and variance t− s. Equivalently W(t)−W(s) is
N(0, t− s).

(iii) For 0≤ s < t < u < v≤ T, the increments W(t)−W(s) and W(v)−W(u) are inde-
pendent.

2.1 Definition

Let {W (t)}t≥0 be a d-dimensional standard Brownian motion on a probability space
(Ω,F ,P) equipped with a filtration F = (Ft)t≥0, where a = a(t,x) be a d-dimensional
vector function(called drift coefficient) and b = b(t,x) is a d× d-matrix function(called
diffusion coefficient). The stochastic process X = X(t), which is considered in this work,
can be described by stochastic differential equations

dX(t) = a(t,X(t))dt +b(t,X(t))dW (t), t ∈ [0,T]. (1)
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Let the initial condition X(0) = x be an F0-measurable random vector in Rd . A Ft -
adapted stochastic process X = (X(t))t≥0 is called a solution of Eq. (1), if

X(t) = X(0)+
∫ t

0
a(s,X(s))ds+

∫ t

0
b(s,X(s))dW (s), (2)

holds a, s. The conditions that the integral processes∫ t

0
a(s,X(s))ds,

∫ t

0
b(s,X(s))dW (s),

are well-defined and required for Eq. (2) to hold. For the functions a(s,X(s)) and b(s,
X(s)), we have the following conditions:

E
∫ t

0
b2(s,X(s))ds < ∞, (3)

and almost surely for all t ≥ 0,∫ t

0
|a(s,X(s))|ds < ∞. (4)

One property for the stochastic integral is∫ t

0
W (s)dW (s) =

1
2

∫ t

0
d(W 2(s))− 1

2

∫ t

0
ds =

1
2

W 2(t)− t
2
.

For more details on the stochastic integral, the interested reader is referred to [1].

2.2 Existence and Uniqueness Theorems

Consider the following conditions:

(i) Measurability: Let a :[0,∞)×Rd→Rd and b:[0,∞)×Rd→Rd×d be jointly Borel
measurable in [t0,T]×Rd .

(ii) Lipschitz condition: There is a constant A > 0 such that |a(t,x)−a(t,y)| ≤
A |x− y|, and |b(t,x)−b(t,y)| ≤ A |x− y|, for all t ∈ [t0,T] and x,y ∈ R.

(iii) Growth condition: There is a constant K > 0 such that |a(t,x)|2 ≤ K2(1+ |x|2),
and |b(t,x)|2 ≤ K2(1+ |x|2), for all t ∈ [t0,T] and x,y ∈ R.

The following theorem gives sufficient conditions for the existence and uniqueness of a
solution of a stochastic differential equation.

2.3 Theorem

Under the previous conditions (i)-(iii), the stochastic differential Eq. (1) has a unique
solution X(t) ∈ [t0,T] with

supt0≤t≤T E(|X(t)|2)< ∞.

Proof. See Theorem 4.5.3 [1].
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2.3.1 Approximation schemes

In this subsection, we briefly review the schemes of the Euler-Maruyama, Milstein
and Davie methods. Consider an Itô stochastic differential equation

dXi(t) = ai(t,X(t))dt +
d

∑
k=1

bik(t,X(t))dWk(t), Xi(0) = X (0)
i , (5)

on an interval [0,T ], where i =1,...,d , for a d-dimensional vector X(t), with a d-
dimensional driving Brownian path W (t). If the coefficients bik(t,X(t)) satisfy a global
Lipschitz condition |a(t,x)−a(t,y)| ≤ A |x− y|, and |b(t,x)−b(t,y)| ≤ A |x− y|, for all
t ∈ [t0,T] with x,y ∈ R and A > 0 is a constant. If ai and bi are continuous in t, for
each X , then the Eq. (5) has a unique solution X(t). This is a process adapted to the fil-
tration induced by the Brownian motion. Under these conditions, the solutions satisfies
E(|X(t)|p) < ∞, for each p ∈ [1,∞] and t ∈ [0,T ]. The standard method to the pathwise
approximation of the solution of Eq. (5), is to divide [0,T ] into a finite number N of
equal intervals with length equal to h = T/N. The simplest form of such approximation
for the SDE by using only the linear term in the Taylor expansion, gives the following
Euler-Maruyama scheme

x( j+1)
i = x( j)

i +
d

∑
k=1

bik(x( j))∆W ( j)
k , (6)

where ∆W ( j)
k = Wk(( j+ 1)h)−Wk( jh). Now, we represent a scheme which is proposed

by Milstein and gives an order one strong Taylor scheme.

x( j+1)
i = x( j)

i +ai( jh,x( j))h+
d

∑
k=1

bik( jh,x( j))∆W ( j)
k

+
d

∑
k,l=1

ρikl( jh,x( j))M( j)
kl , (7)

where ∆W ( j)
k =Wk(( j+1)h)−Wk( jh),

M( j)
kl =

∫ ( j+1)h
jh {Wk(t)−Wk( jh)}dWl(t), and ρikl(t,x) = ∑

q
m=1 bmk(t,x)

∂bil
∂xm

(t,x). If
the following condition

ρikl(t,x) = ρilk(t,x), (8)

for all x ∈ Rd , t ∈ [0,T ] and all i,k, l holds, then the Milstein scheme reduces to

x( j+1)
i = x( j)

i +ai( jh,x( j))h+
d

∑
k=1

bik( jh,x( j))∆W ( j)
k

+
d

∑
k,l=1

ρikl( jh,x( j))B( j)
kl . (9)

This depends only on the generation of the Brownian motion ∆W ( j)
k . It can be imple-

mented with a special class of equations for the Milstein method using only the Brownian
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motion ∆W ( j)
k . This comes from the observation that

M( j)
kl +A( j)

lk = 2B( j)
kl where B( j)

kl = 1
2 ∆W ( j)

k ∆W ( j)
l , for k 6= l

and B( j)
kk = 1

2{(∆W ( j)
k )2−h}.

Scheme (9) achieves an order of 1, for d = 1. However, for the dimension d > 1,
we obtain the order 1

2 . According to Davie’s exact coupling method, we could modify
the previous scheme (9). This gives order 1 under invertible diffusion conditions. One
can implement the Milstein method by generating the random variables ∆W ( j)

k and M( j)
kl

separately and then combines them to obtain the RHS of the scheme (9). According to
Davie’s method, we attempt to generate the following:

Y := ∑bik( jh,x( j))∆W ( j)
k +∑ρikl( jh,x( j))M( j)

kl ,

directly. If we have a scheme

x( j+1)
i = x( j)

i +ai( jh,x( j))h+∑bik( jh,x( j))X ( j)
k

+∑ρikl( jh,x( j))(X ( j)
k X ( j)

l −hδkl), (10)

with the increment X ( j)
k being independent and N(0,h) being random variables, then it is

same as scheme (9) by replacing ∆W ( j)
k with X ( j)

k and we do not assume ∆W ( j)
k = X ( j)

k .

2.4 Strong Order of Convergence

A discrete time approximation xh with the step-size h converges strongly with order
γ at time T = Nh to the solution X(t), if

E|xh−X(T )| ≤Chγ , h ∈ (0,1),

where h is the step size, which divides the interval [0,T ] into equal length h = T
N and

X(T ) is the solution to the stochastic differential equation. C is a positive constant and
independent of h.

3. COMPARISON BETWEEN MILSTEIN METHOD
AND THE EXACT COUPLING

In this section, we present a useful comparison between two methods for solving
the stochastic differential equation. Time-consuming and accurate solutions can be an
effective procedure for obtaining the approximate solution for different types of methods.
To give a clear overview of the methodology as a numerical implementation, we consider
a two-dimensional stochastic differential equation with invertible diffusion. We apply the
Milstein and the exact coupling methods on a particular SDE, so that the comparisons are
made numerically. For the Milstein method, we truncate the Fourier series with specific
terms, which is enough to give an accurate result. For the exact coupling method, the
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diffusion is nondegenerate. For comparison purposes, we consider the following two
dimension SDE:

dX(t) = (sin(Y (t)))2dW (t)− 1
1+X2(t)

dV (t),

dY (t) =
1

1+Y 4(t)
dW (t)+(cos(X(t)))2dV (t),

for 0≤ t ≤ 1, with X(0) = 2 and Y (0) = 0.

(11)

W (t) and V (t) are both independent standard Brownian motion. Usually, we do not
know the solutions of a stochastic differential equation explicitly; therefore, we use ap-
proximate solutions to discover and compare two different methods. We calculate the
error of an approximation by using the absolute error for the different number of steps for
each method. We use the same number of simulations for both methods (R = 10,000).
The MATLAB code for the Milstein scheme is in the following listing, which looks like
the order one strong convergence in two-dimensional SDE. We compute (for example,
R = 10,000) different Brownian paths over the interval [0,1] with different step sizes.
The experimental error and the elapsed time for the Milstein method are represented in
the following Table 1.

Table 1. Implementation result of Milstein scheme.
steps step-size absolute error Elapsed time(hour)

1 400 0.0025 0.0691 0.124
2 800 0.0013 0.0352 0.435
3 1600 0.0006 0.0177 21.844
4 3200 0.0003 0.0090 102.797
5 6400 0.00015 0.0045 261.908
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The plotting of Milstein method convergence using the Fourier series

 

 

log(stepzise) against log(error)            
   slope

y = p1*x + p2 

Coefficients:
  p1 = 0.98542
  p2 = 3.2357

Fig. 1. The plotting of the combined method for the Milstein scheme.

The following Fig. 1 is the log plot of the absolute error with respect to the 5 differ-
ent time steps. We can see that the Milstein scheme converges strongly with order one.
We use 5 different step-sizes (0.0025,0.0013,0.0006,0.0003,0.00015) for both methods.
In the following Table 1 the experimental error and the elapsed time for the Milstein
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scheme are represented. It is clear from the Table 1 and plotting result that the strong
approximation error decreases as the step size decreases. The strong convergence for the
exact scheme should be an order one convergence as described in Davie’s paper. We run
the following MATLAB code with different step sizes over a large number of paths R as
follows:

[Error for exact coupling]
S=[400, 800, 1600, 3200, 6400];
Error=zeros(1,length(S));
for i=1:length(S)
Error(1,i)=
log(EXACTCOUPLING(’YA’,[1; 0],1,S(1,i)));
end
h=1./S;
fad1=log(h)
plot(log(h), Error)

This can be approached using a similar method to the previous Milstein method.
Command (Error(1,i)=log(EXACTCOUPLING(’YA’,[1; 0],1,S(1,i)));) calculates the ab-
solute value of the difference between the approximate solution xh and the solution X(T )
of the SDE with different step sizes. Note also that the (bk) matrix is not invertible, but
the matrix (YA) is invertible. The following Table 2 is the experimental error with respect
to the 5 different time steps. The experimental error and the elapsed time for the exact
coupling method are represented in the following Table 2.

Table 2. Implementation result of exact coupling method.
steps step-size absolute error Elapsed time(hour)

1 400 0.0025 0.0028 0.383
2 800 0.0013 0.0014 0.788
3 1600 0.0006 0.00069 1.545
4 3200 0.0003 0.00034 3.281
5 6400 0.00015 0.00017 6.584

The previous Fig. 2 is the log plot of the absolute error with respect to the 5 different
time steps. We can see that the exact coupling method converges strongly with order one.

Comparing the results in Tables 1 and 2, we observe in both methods that the estimate
of the absolute error decreases with decreasing step size. We can also observe in the
previous Tables and plots that the Milstein and exact coupling methods have a strong
order of convergence equal to one. We emphasize that we apply these methods over the
same number of Brownian paths (R = 10,000) for the same step sizes. It can also be seen
that the total computational time can be reduced by using the exact coupling method. We
see from the Tables that there is a significant difference between the elapsed time. The
Milstein code takes more than two weeks to obtain the result, but the exact coupling code
takes a few hours.
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Fig. 2. The plotting of the combined method for the exact coupling.

4. CONCLUSION

Generally, we do not know the solution of the stochastic differential equation explic-
itly. Therefor, we use simulation to find the approximate solution and the convergence
behavior. In this paper, we represented Milstein and the exact coupling methods to find
the approximate solution of the stochastic differential equation. Both of these methods
give an order one convergence. We implemented these schemes to stochastic differential
equation for comparing the Milstein and the exact coupling methods to each other while
illustrating efficiency. Additionally, we calculated error values for the Milstein and the
exact coupling methods to compare the strong order and time-consuming. This article is
based on MATLAB programs to show the convergence of these methods by implemen-
tations. According to our results, we can say that the exact coupling method is faster
for the solution of invertible two dimensional SDE than the Milstein method. This is
a very useful and efficient method for 2-dimensional SDE. However, the disadvantage
of this method is that we should assume the nondegeneracy condition for the diffusion
term. The advantage of the Milstein method is that there is no need for this condition, but
it involves a significant computational cost. Therefore, we may conclude that the exact
coupling method is more effective than the Milstein method for the invertible stochastic
differential equation.
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and Probability Letters, Vol. 88, 2014, pp. 50-55.
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