
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 1599-1615 (2018)
DOI: 10.6688/JISE.201811_34(6).0013

1599

Energy Efficient Online Scheduling of Real Time Tasks
on Large Multi-threaded Multiprocessor Systems

MANOJIT GHOSE, ARYABARTTA SAHU AND SUSHANTA KARMAKAR

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

Assam, 781039 India
E-mail: {g.manojit; asahu; sushantak}@iitg.ernet.in

Today’s large computing systems are empowered with high processing capabilities

and they are often used to run real time applications. But these systems consume huge
amount of energy while executing these applications. In this paper, we have exploited the
actual power consumption pattern of a few recent commercial multi-threaded processors
and derived a simple power model which considers the power consumption at a coarser
granularity instead of finer granularity like DVFS. We have then proposed an online en-
ergy efficient task scheduling policy namely, smart allocation policy for scheduling ape-
riodic independent real time tasks onto such large systems having multi-threaded feature
in the processors. We have further added three variations of our proposed policy to effi-
ciently address different situations which can occur at execution time and to further re-
duce energy for some kinds of applications. We have analyzed the instantaneous power
consumption and the overall energy consumption of four proposed task allocation poli-
cies along with other five baseline policies for a wide variety of synthetic data sets and
real trace data considering different computation time models and deadline schemes. Ex-
perimental results show that our proposed policies achieve average energy reduction of
45% (maximum up to 92%) for synthetic data set and 30% (maximum up to 47%) for real
data sets as compared to baseline policies. All the proposed policies ensure that no task
misses its deadline.

Keywords: real time tasks, online scheduling, energy efficient, multi-processor systems,
multi-threaded systems

1. INTRODUCTION

Now a day, the number of processors and number of threads per processor have
increased to a significant number in computing systems. Thus the processing capabilities
of these systems are sufficient enough to handle most of the recent applications. But the
major concern in these computing systems is the growing energy consumption; which
has sought the attention of the research community to a great extent. These compute sys-
tems include battery operated mobile devices, desktops and servers. Though the pro-
cessing capabilities of most of the data centers are sufficient enough, they remain under
utilized most of the times. This is same with the mobile devices and desktop computers.
These underutilized systems unnecessarily consume a significant amount of power (or
energy). The power consumption in servers and workstations increases then heat dissipa-
tion also increases. Thus reducing the power consumption in servers and workstations
not only reduces the operating electricity cost but also lowers the cooling cost. In many
computing systems, we require to deal with real time tasks where executing the tasks

Received March 9, 2017; revised June 11, 2017; accepted October 11, 2017.
Communicated by Ce-Kuen Shieh.

MANOJIT GHOSE, ARYABARTTA SAHU AND SUSHANTA KARMAKAR

1600

before their deadline is essential. Scheduling real time tasks in multiprocessor domain is
a promising research area in recent time. But the traditional multiprocessor real-time
scheduling algorithms aim to (a) improve utilization bound, (b) reduce approximation
ratio, (c) reduce resource augmentation and (d) improve some empirical factors, like total
schedule length, total laxity, number of deadline misses, etc. [1, 2]. But the current re-
search trend is to associate the power consumption of the processors with scheduling and
the goal is to design scheduling algorithms which reduce the power (or energy) con-
sumption of the processing elements. These algorithms are commonly termed as power
aware scheduling or energy efficient scheduling [3, 4].

Traditional power aware (or energy efficient) scheduling techniques use the dy-
namic voltage and frequency scaling (DVFS) to design their algorithms [5]. They con-
sider the power model as: P  f 3 where P is the power consumption of a processor and f
is the operating frequency of that processor. DVFS focuses on power consumption be-
havior of the processor at a finer granularity. On the other hand, in large scale computing
systems, we need to consider the power consumption model at a coarser granularity. In
the era of dark silicon, power consumption behavior is handled at the higher granularity
by completely switching off or on a computing region based on the requirements to
minimize the power consumption [6, 7]. Similar concepts can be seen profoundly in
cloud systems which manage the virtual machines [8, 9]. In this case, the common idea is
to run as less physical nodes as possible.

Fig. 1. Power consumption of various commercial processors with threads [10, 11].

Fig. 1 shows a plot of the power consumption of various commercial processors
with different number of active hardware threads. We can easily observe a relationship
between the power consumption of a processor and the number of active hardware
threads of that processor. Processor consumes a significant amount of power when it gets
started and runs 1 thread; after that the power value increases almost linearly with in-
crease in number of active threads till the thread number reaches processor’s maximum
capacity. The power consumption of Qualcom Hexa V3 with 1 active thread is 40 watts.
When it runs two threads, the power consumption value becomes 55 watts. This 15 watts
(= 55 − 40) is the extra power consumption for the 2nd thread. Similarly, subsequent
threads consume additional power values as 5 watts (= 60 − 55), 12 watts (= 72 − 60), 10
watts (= 82 − 72) and 8 watts (= 90 − 82) respectively. Observing this power consump-
tion pattern of the recent processors, we have derived a simple power model for a mul-
ti-threaded single processor as described in Section 3. To the best of our knowledge, no
scheduling algorithm on real time tasks were proposed considering the thread based

ENERGY EFFICIENT ONLINE SCHEDULING OF REAL TIME TASKS 1601

power consumption pattern of commercial processors as explained in Fig. 1. We believe
that our derived power consumption model is well suited for Large Multi-threaded Mul-
tiprocessor Systems (LMTMPS).

Our contributions in this paper are (i) we have exploited the power consumption
pattern of the commercial processors and derived a simple power consumption model, (ii)
we have designed four online energy efficient scheduling policies namely (a) smart al-
location policy; (b) smart Early Dispatch allocation policy; (c) smart  Reserve alloca-
tion policy and (d) smart  Handling Immediate Urgency allocation policy which use the
derived power model to reduce the overall energy consumption while meeting the dead-
line constraints of all the tasks, and (iii) we have compared and analyzed the perfor-
mance of the proposed policies with five baseline policies and found that the proposed
policies perform better than others.

Rest of the paper is organized as follows: Section 2 provides a brief description of
previous work in the area of power aware or energy efficient scheduling techniques. Sec-
tion 3 describes the problem formulation and system model. Sections 4 and 5 explain
different existing and proposed scheduling policies. Section 6 contains the experiment
details and the paper is concluded in Section 7.

2. PREVIOUS WORK

In this section, we present a brief overview of the research works done in the con-
text of energy efficient or power-aware scheduling. The work can be classified into
mainly two categories (a) fine-grained approach; (b) coarse-grained approach. In fine-
grained approach, research mainly targets to reduce the power consumption of the cores
by exploiting the DVFS techniques. This approach is driven by the fact that the actual
computation time of a task is often less than the worst case computation and the algo-
rithms make use of this slack time in different ways. On the other hand, coarse-grained
approach works at the processor level for the small systems and at the host level or serv-
er level for the large systems (host or server have many processors). Coarse-grained ap-
proach mainly focuses on reducing the number of active hosts and putting the passive
hosts in low power state or in sleep mode. Weiser et al. [12] was pioneer to start the re-
search in this direction by associating power consumption with scheduling and used
DVFS technique to study the power consumption of some scheduling techniques. They
took advantage of CPU idle time and reduced the operating frequency of CPU so that the
tasks were finished without violating any deadline. Lee and Zomaya [13, 14] have pro-
posed makespan-conservative energy reduction along with simple energy conscious
scheduling to find a trade-off between the makespan time and energy consumption. Re-
cently, Li and Wu [15-17] have considered execution of various task models by further
exploiting the DVFS technique for both homogeneous and heterogeneous processor en-
vironments. All of these studies consider the DVFS properties for the processors and do
not consider the multi-threaded feature of the processors.

Chase et al. [18] proposed a coarse-grained power management technique for In-
ternet server clusters by dynamically adjusting the list of active servers. Srikantaiah et al.
[19] studied the relationship between the energy consumption and the performance of the
system which was determined by the CPU (or processor) utilization and disk utilization.

MANOJIT GHOSE, ARYABARTTA SAHU AND SUSHANTA KARMAKAR

1602

The problem was viewed as a bin packing problem where applications are mapped into
servers optimally. Verma et al. [20] studied the power consumption pattern of various
HPC applications and the typical workload behavior of a virtualized server and in [21]
they developed a framework called pMapper where the applications are placed onto
different servers for execution based on the utilization values of the servers.

Our work is similar to the above mentioned research but it differs from others in the
sense that we have considered the execution of real time tasks in large systems where we
try to minimize the overall energy consumption with a guarantee of real-time constraints
in a multi-threaded multiprocessor environment.

3. PROBLEM FORMULATION AND SYSTEM MODEL

3.1 Problem Formulation

We wish to design scheduling policies for online aperiodic independent tasks onto

large multi-threaded multiprocessor systems such that no task misses its deadline and the
total energy consumption of the system is minimized. In this work, we assume that the
compute capability of the system is high i.e. the number of processors is taken as suffi-
ciently large. Power consumption in the multi-threaded multiprocessor systems under the
considered model is not proportional to the utilization of the system (or number of active
hardware threads on the system) as there is static component in the power. In this work,
we have utilized this power consumption behavior to minimize the total energy con-
sumption of the system.

3.2 System Model

Fig. 2 shows the block diagram of our considered system which schedules and exe-

cutes a set of online aperiodic real time tasks on large multi-threaded multiprocessor
system. Tasks arrive to the system dynamically (online) and the scheduler schedules the
tasks on to the processing system. Our considered processing system consists of M
number of multi-threaded processors (P0, P1, ..., PM) where M is sufficiently large. It is
justified to assume a system with such large number of processors, as the modern days
computing systems like cloud system, promise virtually infinite resources to all the ap-
plications.

Fig. 2. Scheduling of online aperiodic tasks on LMTPS.

All the processors are homogeneous, non-DVFS capable and each processor is mul-
ti-threaded having r hardware threads. In this paper, hardware thread of a processor is

ENERGY EFFICIENT ONLINE SCHEDULING OF REAL TIME TASKS 1603

Fig. 3. Power consumption of LMTMPS C = 100,  = 10 and r = 8.

also termed as virtual processor. We have also assumed that one task gets allocated to
exactly one hardware thread of a processor and one thread can execute only one task at a
time.

As mentioned in Section 1 of the paper, we have exploited the power consumption
behavior of a few commercial multithreaded processors and derived a simple power
model where each processor consumes a significant amount of power as it gets started.
This significant amount is termed as the base power consumption of the processor. Each
active thread contributes some amount to power called the thread power consumption.
The processor power consumption of such large multi-threaded multiprocessor systems
(LMTMPS) can be modeled as described in Eqs. (1) and (2).

For a single multi-threaded processor, power consumption can be modeled as:

Ps = C + id (1)

where, Ps = power consumption of a single processor, C = base power consumption of
the processor, i = number of active hardware threads and  = thread power consumption.
In general, the value of C is greater than . Typical values of C is 5 to 10 times of  [12,
13].

Similarly, the power consumption for the whole LMTMPS can be modeled as:

PLMTMPS = L(C + r) + (C + i). (2)

Here, L = number of switched-on processors which are utilized fully and r is the maxi-
mum number of hardware threads a processor can run.

The first part of Eq. (2) represents the total power consumption of the fully utilized
processors and the second part (C+iδ) indicates the total power consumption of the par-
tially filled processor. If there is no partially filled processor, then the second part of the
equation evaluates to zero. Fully utilized (filled) processor means all the hardware
threads of the processor are active and executing some tasks, otherwise the state of the
processor is partially filled or partially utilized. Here we assumed that our task scheduler
regularly (or frequently) runs through the system and consolidates the running tasks into
fewer numbers of processors such that (a) only 1 processor or no processor will be par-
tially filled, and (b) other processors will be either completely filled or switched off. Fig.
3 shows the power consumption behavior of LMTMPS. We can see that there is a sharp
jump in power consumption value when the number of virtual processors (or active
hardware threads) is 1, 9 and 17.

MANOJIT GHOSE, ARYABARTTA SAHU AND SUSHANTA KARMAKAR

1604

3.3 Task Model

In this paper, we have considered scheduling a set of online independent aperiodic
real time tasks, T = {T1, T2, …, TN} onto a large multi-threaded multiprocessor system.
Each task Ti is characterized by its arrival time (ai), computation time (ci) and deadline
(di) where di ≥ (ai + ci). We assume that all the tasks are sequential and it can be run by
only one hardware thread (virtual processor) at any time instant. In this paper, we have
considered scheduling of both synthetic real time tasks and real trace data which are de-
scribed in following subsections.

3.3.1 Synthetic tasks

We assume that a set of independent aperiodic real time tasks are arriving to the
system in such a way that the inter-arrival time between any two consecutive tasks fol-
low discretized Gaussian distribution. As the execution (or compute) time of tasks is a
key factor in scheduling and it has a significant impact on the overall performance of the
system [22, 23], we have considered a wide variety of task computation time with
different distributions in order to establish the effectiveness of our work. These distribu-
tions are: Random, Gaussian, Poisson and Gamma. We have further considered com-
putation time as a function of time or task sequence number: INC(i) and DEC(i). In
INC(i), computation time of tasks increases with task number. INC(i) is taken as k.i, i
{1, 2, ..., N} and ci ≥ ci − 1. Similarly, in DEC(i), computation time of tasks decreases
with task number. DEC(i) is taken as k.(N + 1 − i), i{1, 2, ..., N} and ci ≤ ci − 1. In ad-
dition to these variations of computation time, we have considered five different varia-
tions in deadline of tasks. For a task Ti (ai, ci, di), di − (ai + ci) is called the slack time
(SLK) of the task. Variation in deadline can be achieved by considering variation in SLK.
Similar to the former case, we considered Random and Gaussian distribution, INC(i)
and DEC(i) function over SLK. We have also considered a special kind of deadline
schemes where deadline for all the tasks is same. We name it as common deadline
scheme. This can be written as di = D; where D is the common deadline for all the tasks
satisfying the condition D ≥ max{ai + ei}. This is also termed as common due date prob-
lems in literature [24].

3.3.2 Real workload traces

In addition to synthetic real time tasks with many variations, we have also consid-
ered four different real-life workload traces (or logs) [26] in our work. These workload
traces are generated from TORQUE and PBSpro traces in different times which contain
the job descriptions of different clusters in Standard Workload Format (SWF). These are
(i) CERITSC: 17,900 jobs, collected during Jan-Mar 2013, (ii) MetaCentrum-1: 495,299
jobs, collected during Jan-June 2013, (iii) Zewura: 17,256 jobs, Jan-May 2012, and (iv)
MetaCentrum-2: 103,656 jobs, collected during Jan-May 2009. These logs and data sets
are provided by the Czech National Grid Infrastructure MetaCentrum [25].

4. STANDARD TASK ALLOCATION POLICIES

This section contains description of a couple of existing task allocation policies.

ENERGY EFFICIENT ONLINE SCHEDULING OF REAL TIME TASKS 1605

Utilization based workload consolidation is one of the state of art policy.

 Utilization Based Allocation Policy (UBA)

In this policy, tasks are allocated to the processors based on their processor utiliza-
tion value and all the tasks finish exactly at their deadline. This policy provides the
minimum processor share (i.e. utilization) required for a task for all the time instants
starting from its arrival time till its deadline. Thus the execution of a task Ti spreads for
the whole duration with minimum processor requirement ui at every time instant between
ai and di. This policy is mainly of theoretical interest and the assumption made in Section
3 that one thread can execute exactly one task at a time does not hold here.

 Front Workload Consolidation (FWC)

In this policy the execution of tasks are consolidated towards beginning of the time
axis. As soon as a task arrives, it is allocated to a thread of a processor. As all the tasks
start their execution immediately after they enter the system, the policy can also be
termed as Immediate Allocation Policy or as soon as possible (ASAP) policy. This policy
turns out to be a non-preemptive on and there is no migration of tasks. In this policy,
start time (si) and finish time (fi) of a task Ti(ai,ci,di) become si = ai and fi = ai +

 ci respec-
tively.

 Rear Workload Consolidation (RWC)
This policy is similar to the front work consolidation policy, but here the tasks are

consolidated towards the end of the time axis. Every task execution gets consolidated
towards the deadline of the task. This policy is also non-preemptive and does not require
migration for system with sufficiently large number of single threaded processor. As the
tasks enter the system, they are accumulated and remain in the waiting queue as long as
their deadlines permit them to wait. This policy ensures that all the tasks can finish their
execution just in time (i.e. on their deadlines). As the execution of all the tasks are de-
layed till their urgent points, the policy can also be termed as Delayed Allocation Policy.

 Utilization Based Workload Consolidation (UBWC)

In this policy, the scheduler tries to schedule the currently arrived task Ti(ai, ci, di) at
any time instants (slots) in such a way that the task does not miss its deadline and there is
minimum number of increase in the active processor count. For the task Ti, the UBWC
schedules ci units of unit time compute slot between the current time ai and deadline of
the task di, so that the increase in number of active processors count will be minimum in
all the time slots between ai and di [19, 26, 27]. Processor count in a time slot increases
when the total utilization of that time slot crosses a whole number. This scheduling poli-
cy requires preemption and migration of the tasks; but the number of preemptions and
number of migrations for a task Ti is bounded by (ci – 1) if we assume the time axis is
discretized in unit time slot.

 Earliest Deadline First Allocation Policy (EDF)

Earliest deadline first (EDF) is a well-known scheduling policy where tasks are
considered based on their deadline values. Task with the earliest deadline value is exe-
cuted first [2]. At any point of time t, we consider all the arrived tasks which have not

MANOJIT GHOSE, ARYABARTTA SAHU AND SUSHANTA KARMAKAR

1606

started their execution. Out of these waiting tasks, task with the minimum deadline value
is chosen for execution. We need to use minimum number of processors at any instant of
time such that no task misses its deadline.

5. PROPOSED TASK ALLOCATION POLICIES

We have proposed four energy efficient online task scheduling policies for execut-
ing a set of aperiodic independent real time tasks onto LMTMPS, where instantaneous
system power consumption (IPC) is not proportional to instantaneous utilization of the
system. The power consumption model of LMTPS is described in Section 3.2. Our pro-
posed policies take advantage of this non-proportionality of IPC to the instantaneous
utilization. In our designed policies, execution of a task is almost continuous. Ignoring
the migration time, the time difference between the finishing time (fi) and start time (si) of
any task Ti is same as the execution (or compute) time of the task, that is (fi − si) = ci. But
in the utilization based work consolidation (UBWC), this difference is more than the
given computation time for all the tasks, i.e. (fi − si) ≥ ci.

5.1 Smart Allocation Policy (Smart)

We have designed an allocation policy called smart allocation policy which benefits

of the non-proportionality of IPC to instantaneous utilization of the system. The sched-
uling policy works on two basic ideas: (a) number of active processors should be as less
as possible (active processors mean the processors which are switched on) and (b)
whenever a processor is required to switch on, it should be utilized to its maximum ca-
pacity by assigning tasks to all the hardware threads of that processor if sufficient tasks
are available in the system. When there is no free hardware thread in any active proces-
sor, execution of the tasks should be delayed as much as possible without missing their
deadlines.

Pseudo-code of smart allocation policy is shown in Algorithm 1. At every time in-
stant, the policy finds all the urgent tasks and allocates to free hardware threads of active
processor if exists. Otherwise new processor is switched on and new hardware threads
are initiated on it to allocate such tasks. On the other hand, if there is no urgent task pre-
sent in the system but there is a partially filled processor, then all the hardware threads of
active processors are fully utilized by allocating tasks from the waiting queue based on
some policy (for simplicity we have used FCFS). The scheduler performs a consolidation
operation in periodic basis. All the active hosts are sorted based their utilization (that is
number of active threads). Then tasks from the least utilized hosts are migrated to the
most utilized host which has a free thread. Consolidation operation is repeated such that
at most one processor remains partially filled. Then all idle processors are switched off
and removed from the active list. Line number 18 to 22 in the pseudo code reflects the
same. The parameter consolidation Interval determines the frequency of consolidation
operation in the scheduling process.

Algorithm 1 Smart allocation policy
1: timestamp t  0;

ENERGY EFFICIENT ONLINE SCHEDULING OF REAL TIME TASKS 1607

2: while true do
3: if any task arrives, then Add it to Waiting Queue WQ.
4: while WQ is NOT Empty do
5: while Ti = findUrgentTask() is not NULL do
6: if free hardware thread exists in any active processor then
7: Allocate task Ti to a free hardware thread.
8: else
9: Switch on a new processor and initiate a hardware thread.
10: Allocate the task Ti to the hardware thread.
11: ;i j is t f t c  ; WQ.remove(Ti); ⊲ t is current time
12: while there is free hardware threads in any processor do
13: Choose a task Tj from waiting queue based on the some policy.
14: Assign the task Tj to a free hardware thread of that processor.
15: ;j j js t f t c  WQ.remove(Ti);
16: if any task finishes its execution, then update system information; t t  1 ;
17: if (t % consolidationInterval == 0) then
18: Sort the active processors in ascending order of their utilization.
19: Migrate tasks from least utilized processor to most utilized processor.
20: Repeat step 22 until there is at most one partially filled processor.
21: Turn off the idle processors.

procedure findUrgentTask()
1: for each task Ti in Waiting Queue do
2: if di == ci + t then return Ti ⊲ t is current time
3: end for
4: return NULL

Fig. 4. Extra annotation to Fig. 3 to describe the smart allocation policy.

Fig. 4 shows the plot of total power consumption verses virtual processors similar to
Fig. 3 with extra annotation to describe our smart allocation policy. In this case, every
processor has r = 8 hardware threads (virtual processors) and each hardware thread con-
sumes δ = 10 amount of power. Whenever a processor is switched on, it consumes 100
units and each additional thread consumes 10 units of power. This continues till number
of active hardware threads reaches r = 8. At this point, the processor is utilized to its

MANOJIT GHOSE, ARYABARTTA SAHU AND SUSHANTA KARMAKAR

1608

maximum capacity and the total power consumption of the system is 180 (=100 + 8 ∗ 10)
units. The intention of the policy is to keep the system at this point if the deadline con-
straints of the tasks allow it to do so. As soon as the number reaches 9, another processor
needs to be switched on and the total power consumption of the system increases by 110
units and reaches a total of 290 (= 180 + 110) units.

We define two type of points called wait and go as appeared in Fig. 5. At point wait,
the target of the policy is to delay the ready tasks as much as possible without missing
any deadline. This is because, whatever processors are there in the system, they are uti-
lized to their maximum capacity. And if another task is to be allocated, we need to switch
on a new processor and the power consumption will increase and make a sharp jump to
the next higher level. The other point is called the go point. This indicates the point when
a new processor is already switched on with only one active hardware thread. The region
between the go point and wait point is called the Filling Fast region. In this region, the
system tries to allocate as much tasks as possible either from the waiting queue or the
newly coming tasks till the wait point is reached Smart is an online scheduling policy
and it takes scheduling decision dynamically at runtime. Even if the actual execution
time of the tasks are not known before hand and tasks do not always consume worst case
execution time, the smart policy can handle this dynamic situation because mapping of
tasks to the hardware threads of a processor is done irrespective to the execution time of
the tasks.

5.2 Smart Allocation Policy with Early Dispatch (Smart-ED)

In smart allocation policy, initially, all the arrived tasks wait in the waiting queue

till the time instant when further waiting will result a deadline miss. At this time instant,
at least one task becomes urgent. We name this time instant as urgent point. If the urgent
points for many tasks (>> r) get accumulated to one time instant, then we need to switch
on many processors and it will create a high jump in the instantaneous power consump-
tion value. To handle such situation we have modified our proposed smart allocation
policy and the modified policy includes early dispatch along with the smart allocation.

The basic idea of this policy is that whenever there are tasks in the system, they
need to be executed. The smart policy would make the tasks wait in the system if their
deadlines permit them to wait. But this policy does not make the tasks wait till their ur-
gent points. In this smart allocation with early dispatch policy, at any time instant a new
processor is switched on if the number waiting tasks ≥ r. After switching on the proces-
sor, r number of tasks from waiting queue is selected and are allocated to all the hard-
ware threads of the newly switched on processor. The selection can be done using any
policy.

Fig. 5 shows an example of task scheduling system, where 10 tasks (with ci = 4) ar-
rived to the system on or before time 3 and earliest deadline of the tasks is at time 9. So
the scheduler switches on a new processor (assuming each processor has r = 8 hardware
threads) and schedules execution of 8 tasks (based on EDF) on to the system at time 3.
Based on EDF, the selected and scheduled tasks at time 3 are T1, T2, T3, T4, T5, T6, T9 and
T10 of hardware threads hwt0 to hwt7 of processor P0. In this policy, at all the time in-
stants, the scheduler selects the earliest deadline task and schedules onto an already
switched-on processor if any hardware thread is free.

ENERGY EFFICIENT ONLINE SCHEDULING OF REAL TIME TASKS 1609

Fig. 5. Smart allocation policy with Early Dispatch (Smart-ED).

This policy efficiently handles the common deadline scheme where the sharp jump
in the instantaneous power value near the urgent point is avoided. The policy tries to
equally distribute the power consumption value across time line. Fig. 6 shows the in-
stantaneous power consumption for both Smart and Smart-ED policy for the common
deadline scheme. This figure clearly depicts the difference between these two policies.
Smart policy shows a huge jump in the power consumption value from 0 to 12570 units
at time 20155. This policy is preferred over the smart policy when the system is not ca-
pable of handling such high value (or a sudden jump) of power consumption. Another
benefit of this policy is that it reduces the waiting time of the tasks but this is not within
the scope of the paper and is not discussed here.

 (a) Smart policy. (b) Smart-ED policy.

Fig. 6. IPC for common deadline scheme with  = 20,  = 10.

5.3 Smart Allocation Policy with Reserve Slots (Smart-R)

This is a variation of the smart allocation policy where a fraction of the processor
capacity is reserved for future urgent use. In the filling fast region (as described in Fig. 4),
all the free hardware threads of the processor was filled with waiting tasks in basic smart
policy. But in this policy, a few threads (called Reserve Factor) are kept free such that
they can execute suddenly occurring urgent tasks (for these tasks slack time (di − (ci + ai))
is almost zero). This reduces the number of processors to be switched on (by compulsion)
for servicing the suddenly occurring urgent tasks. This in turn might reduce the power
consumption of the system. This policy will be highly beneficial for the applications
where some critical tasks (having tight deadline) arrive in between regular tasks.

5.4 Smart Allocation Policy with Handling Immediate Urgency (Smart-HIU)

In the baseline smart allocation policy, when there is free hardware threads (repre-

MANOJIT GHOSE, ARYABARTTA SAHU AND SUSHANTA KARMAKAR

1610

sented by fast filling region in Fig. 4), the policy selects some tasks from the waiting
queue using FCFS in order to utilize the free hardware threads. But it might so happen
that FCFS method selects tasks whose deadlines are relatively far. The near deadline
tasks will eventually become urgent in near future. This urgency may force the system to
start a new processor. Again it is already discussed earlier that switching on a processor
by compulsion generally increases energy consumption and it is always beneficial to
avoid the compulsion scenario.

So in this modified smart allocation policy (Smart-handling immediate urgency al-
location policy), the scheduler selects and executes the tasks whose deadlines are com-
paratively near. That is tasks with earliest deadline (immediate urgent) from waiting
queue is selected to utilize the free hardware threads in fast filling region. This in turn
results in forming a long time gap between the current time and time of occurrence of
next urgent point. This long time gap allows the scheduler to avoid switching on a new
processor and this eventually reduces the instantaneous power consumption of the system.

6. EXPERIMENTS AND RESULTS

6.1 Experimental Setup, Machine and Task Parameters and Migration Overhead

We have created a simulation environment to simulate large multi-threaded multi-

processor system for carrying out our experiments where number of processors, number
of threads per processor, base power consumption of a processor, power consumption
per thread can be varied. Our simulation environment generates a wide range of output
statistics, including instantaneous power consumption for all time instants/slots and the
overall power consumption for different input parameters and task allocation policies.
Since existing energy efficient scheduling techniques for large systems are not directly
comparable to our work (to the best our knowledge), the comparison is carried out with
the standard task allocation policies.

We have considered the total power consumption of a processor is 100 units and
each processor can run up to 8 hardware threads, the base power consumption of a pro-
cessor is taken as 70 units (i.e. 70% of 100 as reported in [28]) and per thread power
consumption is taken as 3.75 units (i.e. (100 − 70)/8). We have performed experiments
in our simulation environment using both real workload trace data and synthetic data sets
as described in Section 3. For synthetic data set, we used several pairs of (, ) values
e.g. (10,5), (20,10), (30,15) and (40,20) for generating the arrival pattern of the tasks.
The number of tasks generated for each experiment is 1000 and we used 10 such sets for
all the cases. The parameters for computation time distributions are: for Random,
Cmax=100, for Gaussian  = 100,  = 20, for Poisson  = 100, for Gamma  = 50,  = 10,
for Increasing k = 2 and for Decreasing k = 2. We have also considered five different
types of deadline schemes. In Random, Zmax=1000; in Gaussian,  = 10,  = 5; in In-
creasing, k = 3; in Decreasing, k = 3; and in Common, D = 10205.

Migration overhead in a system typically depends on various factors like total
number of migrations, frequency of migrations, migration path, working set size. The
overhead is expressed in terms of performance degradation of the system (decrease in
Instruction per cycle), increase in execution time, etc. and the literature reported migra-

ENERGY EFFICIENT ONLINE SCHEDULING OF REAL TIME TASKS 1611

tion overhead as an average of 2 to 3% and context switch overhead as less than 0.1%
[21, 29]. As the thread executing a task need to run for some additional amount of time,
we assume an increase of 2.5% in thread power in case of migration and 0.1% in case of
preemption as the overhead.

6.2 Result and Analysis

Figs. 7 (a)-(f) show the energy consumption of 1000 aperiodic tasks on considered

large multi-threaded multiprocessor system using different allocation policies for syn-
thetic task set under (a) random distribution; (b) Gaussian distribution; (c) Poisson dis-
tribution; (d) Gamma distribution; (e) increasing; and (f) decreasing computation time
schemes respectively (random deadline scheme). We observe that the proposed policies
perform better than all other baseline policies for all the computation time schemes. Sim-
ilarly, Figs. 8 (a)-(e) show the total energy consumption of the system under (a) ran-
domly distributed; (b) Gaussianly distributed; (c) increasing; (d) decreasing; and (e)
common deadline schemes respectively (random computation time model). We can
clearly observe that the energy consumption under our proposed policies is significantly
lesser than all other baseline policies for all kinds of task models.

 (a) Random (b) Gaussian (c) Poisson

(d) Gamma (e) Increasing (f) Decreasing

Fig. 7. Energy consumption for different computation time schemes.

 (a) Randomly (b) Gaussian (c) Increasing

Fig. 8. Energy consumption for different deadline schemes.

MANOJIT GHOSE, ARYABARTTA SAHU AND SUSHANTA KARMAKAR

1612

(d) Decreasing (e) Common (f) Real data sets

Fig. 8. (Cont’d) Energy consumption for different deadline schemes.

Energy consumption of the system is the summation of IPC over all the time slots.
A low value of  and  indicates that the inter-arrival time of tasks are less, which
signifies the system is overloaded or filled with many tasks. In such cases, opportunity to
take the advantage of the smart allocation policy idea to save energy is thin. Hence the
benefit is not that significant for low values of  and . As the values of  and  increase,
the inter-arrival time between tasks increases. Thus the system becomes loosely loaded
and smart allocation takes the benefit of it.

Table 1. Noumbers of migrations in different allocation policies.

The experimental results also establish our claim that Smart-R and Smart-HIU can
further reduce the energy consumption of the system almost in all the cases. But the total
energy consumption for Smart-ED is same or little higher than Smart. This is justified as
the purpose of the Smart-ED policy is to avoid the sharp jump in the power consumption
value and this policy distributes the power value across the time axis. The proposed pol-
icy achieves average energy reduction of 37% as compared to others for different com-
putation time schemes and of 55% as compared to others for different deadline schemes.
Based on this experimental result, we can firmly say that our proposed policies reduce
energy consumption of the system significantly for all of the cases of synthetic workload.

Table 1 shows the number of migrations with different task allocation policies both
for synthetic and real trace data. As already explained earlier, UBA is of theoretical in-
terest and has an unbounded number of migrations. FWC and RWC are of non-preemp-

 Policy
Data UBWC Smart Smart-ED Smart-R Smart-HIU

Random 490 7 2 9 7
Gaussian 624 17 27 32 15
Poisson 527 10 16 28 9
Gamma 37421 142 204 92 97

Inc 14542 124 102 99 112
Dec 14221 112 90 87 120

Random 442 4 0 2 2
Gaussian 538 9 0 1 1

Inc 342 3 3 2 8
Dec 382 12 9 15 17

Common 702 24 21 19 17
Real data 29908 240 196 29 24

ENERGY EFFICIENT ONLINE SCHEDULING OF REAL TIME TASKS 1613

tive nature and do not require any migration. We have considered non preemptive im-
plementation of EDF and thus no migrations happened in this case also. We observe that
total number of migrations in all our proposed policies is within a reasonable range.

Fig. 8 (f) shows the energy consumption of real workload traces (CERIT-SC, Met-
aCentrum-1, Zewura and MetaCentrum2) on considered large multi-threaded mul-
ti-processor system using different allocation policies. Our proposed policies outperform
the rests. Our proposed policies achieve maximum energy reduction up to 44% as com-
pared to all the earlier allocation policies UBA, WFC, RWC, EDF and UBWC. The
proposed policies achieve average energy reduction of 30% as compared to the baseline
policies. Experimental results show that the energy reduction in case of real trace data is
comparatively lesser than that of synthetic data. This is because the inter-arrival time of
tasks in case of real trace data is less and the smart policy cannot take the benefit of
completely switching off the processors for longer time.

Energy consumption in case of UBWC is in general lesser than that of UBA, FWC
and RWC but this policy incurs significant number of migrations. It can be lucidly seen
from the experimental data that our proposed policies not only reduces overall energy
consumption by a significant margin, but also the number of migrations in these policies
are within reasonable range. Thus it can be concluded that even in case of high migration
overhead system, the proposed policies will achieve a significant energy reduction.

7. CONCLUSION AND FUTURE WORK

Energy aware scheduling at a coarser granularity level has become essential for the
large multi-threaded multiprocessor systems. In this paper, we have derived a simple
power consumption model for such large systems and proposed an online energy effi-
cient task allocation policy, namely, smart allocation policy for executing a set of inde-
pendent real time tasks. We have then proposed three variations of this policy to further
reduce energy consumption (for some applications) and to efficiently handle different
situations which might occur at runtime. In near future, we will be considering schedul-
ing tasks with dependencies. Efficient scheduling of multiprocessor tasks (tasks requires
more than one thread for execution) under this power model will be a great extension to
this work.

REFERENCES

1. R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor
systems,” ACM Computing Survey, Vol. 43, 2011, Article 35.

2. G. C. Buttazzo, Hard Real-time Computing Systems: Predictable Scheduling Algo-
rithms and Applications, Springer, Berlin, 2011.

3. W. Y. Lee, “Energy-efficient scheduling of periodic real-time tasks on lightly loaded
multicore processors,” IEEE Transactions on Parallel and Distributed Systems, Vol.
23, 2012, pp. 530-537.

4. S. Zhuravlev et al., “Survey of energy-cognizant scheduling techniques,” IEEE
Transactions on Parallel and Distributed System, Vol. 24, 2013, pp. 1447-1464.

5. T. D. Burd and R. W. Brodersen, “Energy efficient CMOS microprocessor design,”

MANOJIT GHOSE, ARYABARTTA SAHU AND SUSHANTA KARMAKAR

1614

in Proceedings of the 28th Hawaii International Conference on System Sciences,
1995.

6. M. B. Taylor, “A landscape of the new dark silicon design regime,” IEEE/ACM
MICRO Third Berkeley Symposium on Energy Efficient Electronic Systems, Vol. 33,
2013, pp. 8-19.

7. J. M. Allred et al., “Dark silicon aware multicore systems: Employing design auto-
mation with architectural insight,” IEEE Transactions on VLSI Systems, Vol. 22,
2014, pp. 1192-1196.

8. X. Zhu, L. T. Yang et al., “Real-time tasks oriented energy-aware scheduling in virtu-
alized clouds,” IEEE Transactions on Cloud Computing, Vol. 2, 2014, pp. 168-180.

9. J. K. Dong, H. B. Wang, Y. Y. Li, and S. D. Cheng, “Virtual machine scheduling for
improving energy efficiency in IaaS cloud,” Communications, Vol. 2, 2014, pp. 1-
12.

10. Power consumption tests, http://www.xbitlabs.com/.
11. Power consumption qualcom hexagon v3, http://www.bdti.com/.
12. M. Weiser et al., “Scheduling for reduced CPU energy,” in Proceedings of the 1st

USENIX Conference on Operating Systems Design and Implementation, 1994, Arti-
cle No. 2.

13. Y. C. Lee and A. Y. Zomaya, “Minimizing energy consumption for prece-
dence-constrained applications using dynamic voltage scaling,” in Proceedings of
the 9th IEEE/ACM International Symposium on CCGrid, 2009, pp. 92-99.

14. Y. C. Lee and A. Y. Zomaya, “Energy conscious scheduling for distributed compu-
ting systems under different operating conditions,” IEEE Transactions on Parallel
and Distributed Systems, Vol. 22, 2011, pp. 1374-1381.

15. D. W. Li and J. Wu, “Energy-aware scheduling for aperiodic tasks on multi-core
processors,” in Proceedings of the 43rd International Conference on Parallel Pro-
cessing, 2014, pp. 361-370.

16. D. W. Li and J. Wu, “Minimizing energy consumption for frame-based tasks on het-
erogeneous multiprocessor platforms,” IEEE Transactions on Parallel and Distrib-
uted Systems, Vol. 26, 2015, pp. 810-823.

17. D. W. Li and J. Wu, “Energy-aware scheduling for frame-based tasks on heteroge-
neous multiprocessor platforms,” in Proceedings of the 41st International Confer-
ence on Parallel Processing, 2012, pp. 430-439.

18. J. S. Chase and R. P. Doyle, “Balance of power: Energy management for server
clusters,” in Proceedings of the 8th Workshop on Hot Topics in Operating Systems,
2001, pp. 165.

19. S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation for cloud
computing,” in Proceedings of Conference on Power Aware Computing and Systems,
HotPower, 2008, pp. 10.

20. A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic placement of HPC ap-
plications,” in Proceedings of the 22nd Annual International Conference on Super-
Computing, 2008, pp. 175-184.

21. A. Verma, et al., “pMapper: Power and migration cost aware application placement
in virtualized systems,” in Proceedings of ACM/IFIP/USENIX Conference on Mid-
dleware, 2008, pp. 243-264.

22. S. Ali, et al., “Task execution time modeling for heterogeneous computing systems,”

ENERGY EFFICIENT ONLINE SCHEDULING OF REAL TIME TASKS 1615

in Proceedings of Heterogeneous Computing Workshop, 2000, pp. 185-199.
23. J. Kim and K. G. Shin, “Execution time analysis of communicating tasks in distrib-

uted systems,” IEEE Transaction on Computers, Vol. 45, 1996, pp. 572-579.
24. P. Brucker, Scheduling Algorithms, 5th ed., Springer, Berlin, 2010.
25. Metacentrum data sets, https://www.fi.muni.cz/ xklusac/index.php?page=meta2009.
26. J. Choi et al., “Power consumption prediction and power-aware packing in consoli-

dated environments,” IEEE Transactions on Computers, Vol. 59, 2010, pp. 1640-
1654.

27. A. Beloglazov et al., “Energy-aware resource allocation heuristics for efficient ma-
nagement of data centers for cloud computing,” Future Generation Computer Sys-
tems, Vol. 28, 2012, pp. 755-768.

28. Y. Ma, B. Gong, R. Sugihara, and R. Gupta “Energy-efficient deadline scheduling
for heterogeneous systems,” Journal of Parallel and Distributed Computing, Vol. 72,
2012, pp. 1725-1740.

29. S. Holmbacka et al., “Task migration for dynamic power and performance charac-
teristics on many-core distributed operating systems,” in Proceedings of the 21st Con-
ference on Parallel, Distributed and Network-Based Processing, 2013, pp. 310-317.

Manojit Ghose completed his B.E. degree in CSE from Jor-
hat Engineering College, Assam in 2007. He has received M. Tech.
degree in CSE from IIT Guwahati in 2013. Currently, he is pursu-
ing his Ph.D. from IIT Guwahati. His research interests include
cloud computing, multiprocessor scheduling, memory hierarchy
for multi-processor architecture.

Aryabartta Sahu received B.Sc. Physics and M.Sc. Electro-
nics degree from Sambalpur University, M. Tech CS from Utkal
University and Ph.D. CSE from IIT Delhi. He is currently working
as an Associate Professor in the department of CSE at IIT Gu-
wahati. His research interests include multiprocessor, scheduling,
cloud computing and high performance computing.

Sushanta Karmakar received his B.E. and M.E. degrees in
CSE from Jadavpur University in 2001 and 2004 respectively. He
did his Ph.D. from IIT Kharagpur in 2009. He is currently working
as an Associate Professor in the department of CSE at IIT Gu-
wahati. His research interests include distributed algorithms, fault-
tolerant distributed algorithms.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

