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Today’s large computing systems are empowered with high processing capabilities 

and they are often used to run real time applications. But these systems consume huge 
amount of energy while executing these applications. In this paper, we have exploited the 
actual power consumption pattern of a few recent commercial multi-threaded processors 
and derived a simple power model which considers the power consumption at a coarser 
granularity instead of finer granularity like DVFS. We have then proposed an online en-
ergy efficient task scheduling policy namely, smart allocation policy for scheduling ape-
riodic independent real time tasks onto such large systems having multi-threaded feature 
in the processors. We have further added three variations of our proposed policy to effi-
ciently address different situations which can occur at execution time and to further re-
duce energy for some kinds of applications. We have analyzed the instantaneous power 
consumption and the overall energy consumption of four proposed task allocation poli-
cies along with other five baseline policies for a wide variety of synthetic data sets and 
real trace data considering different computation time models and deadline schemes. Ex-
perimental results show that our proposed policies achieve average energy reduction of 
45% (maximum up to 92%) for synthetic data set and 30% (maximum up to 47%) for real 
data sets as compared to baseline policies. All the proposed policies ensure that no task 
misses its deadline.   
 
Keywords: real time tasks, online scheduling, energy efficient, multi-processor systems, 
multi-threaded systems 
 
 

1. INTRODUCTION 
 

Now a day, the number of processors and number of threads per processor have 
increased to a significant number in computing systems. Thus the processing capabilities 
of these systems are sufficient enough to handle most of the recent applications. But the 
major concern in these computing systems is the growing energy consumption; which 
has sought the attention of the research community to a great extent. These compute sys-
tems include battery operated mobile devices, desktops and servers. Though the pro-
cessing capabilities of most of the data centers are sufficient enough, they remain under 
utilized most of the times. This is same with the mobile devices and desktop computers. 
These underutilized systems unnecessarily consume a significant amount of power (or 
energy). The power consumption in servers and workstations increases then heat dissipa-
tion also increases. Thus reducing the power consumption in servers and workstations 
not only reduces the operating electricity cost but also lowers the cooling cost. In many 
computing systems, we require to deal with real time tasks where executing the tasks 
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before their deadline is essential. Scheduling real time tasks in multiprocessor domain is 
a promising research area in recent time. But the traditional multiprocessor real-time 
scheduling algorithms aim to (a) improve utilization bound, (b) reduce approximation 
ratio, (c) reduce resource augmentation and (d) improve some empirical factors, like total 
schedule length, total laxity, number of deadline misses, etc. [1, 2]. But the current re-
search trend is to associate the power consumption of the processors with scheduling and 
the goal is to design scheduling algorithms which reduce the power (or energy) con-
sumption of the processing elements. These algorithms are commonly termed as power 
aware scheduling or energy efficient scheduling [3, 4]. 

Traditional power aware (or energy efficient) scheduling techniques use the dy-
namic voltage and frequency scaling (DVFS) to design their algorithms [5]. They con-
sider the power model as: P  f 3 where P is the power consumption of a processor and f 
is the operating frequency of that processor. DVFS focuses on power consumption be-
havior of the processor at a finer granularity. On the other hand, in large scale computing 
systems, we need to consider the power consumption model at a coarser granularity. In 
the era of dark silicon, power consumption behavior is handled at the higher granularity 
by completely switching off or on a computing region based on the requirements to 
minimize the power consumption [6, 7]. Similar concepts can be seen profoundly in 
cloud systems which manage the virtual machines [8, 9]. In this case, the common idea is 
to run as less physical nodes as possible. 

 

 
Fig. 1. Power consumption of various commercial processors with threads [10, 11]. 

 

Fig. 1 shows a plot of the power consumption of various commercial processors 
with different number of active hardware threads. We can easily observe a relationship 
between the power consumption of a processor and the number of active hardware 
threads of that processor. Processor consumes a significant amount of power when it gets 
started and runs 1 thread; after that the power value increases almost linearly with in-
crease in number of active threads till the thread number reaches processor’s maximum 
capacity. The power consumption of Qualcom Hexa V3 with 1 active thread is 40 watts. 
When it runs two threads, the power consumption value becomes 55 watts. This 15 watts 
(= 55 − 40) is the extra power consumption for the 2nd thread. Similarly, subsequent 
threads consume additional power values as 5 watts (= 60 − 55), 12 watts (= 72 − 60), 10 
watts (= 82 − 72) and 8 watts (= 90 − 82) respectively. Observing this power consump-
tion pattern of the recent processors, we have derived a simple power model for a mul-
ti-threaded single processor as described in Section 3. To the best of our knowledge, no 
scheduling algorithm on real time tasks were proposed considering the thread based 
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power consumption pattern of commercial processors as explained in Fig. 1. We believe 
that our derived power consumption model is well suited for Large Multi-threaded Mul-
tiprocessor Systems (LMTMPS). 

Our contributions in this paper are (i) we have exploited the power consumption 
pattern of the commercial processors and derived a simple power consumption model, (ii) 
we have designed four online energy efficient scheduling policies namely (a) smart al-
location policy; (b) smart Early Dispatch allocation policy; (c) smart  Reserve alloca-
tion policy and (d) smart  Handling Immediate Urgency allocation policy which use the 
derived power model to reduce the overall energy consumption while meeting the dead-
line constraints of all the tasks, and (iii) we have compared and analyzed the perfor-
mance of the proposed policies with five baseline policies and found that the proposed 
policies perform better than others. 

Rest of the paper is organized as follows: Section 2 provides a brief description of 
previous work in the area of power aware or energy efficient scheduling techniques. Sec-
tion 3 describes the problem formulation and system model. Sections 4 and 5 explain 
different existing and proposed scheduling policies. Section 6 contains the experiment 
details and the paper is concluded in Section 7. 

2. PREVIOUS WORK 

In this section, we present a brief overview of the research works done in the con-
text of energy efficient or power-aware scheduling. The work can be classified into 
mainly two categories (a) fine-grained approach; (b) coarse-grained approach. In fine- 
grained approach, research mainly targets to reduce the power consumption of the cores 
by exploiting the DVFS techniques. This approach is driven by the fact that the actual 
computation time of a task is often less than the worst case computation and the algo-
rithms make use of this slack time in different ways. On the other hand, coarse-grained 
approach works at the processor level for the small systems and at the host level or serv-
er level for the large systems (host or server have many processors). Coarse-grained ap-
proach mainly focuses on reducing the number of active hosts and putting the passive 
hosts in low power state or in sleep mode. Weiser et al. [12] was pioneer to start the re-
search in this direction by associating power consumption with scheduling and used 
DVFS technique to study the power consumption of some scheduling techniques. They 
took advantage of CPU idle time and reduced the operating frequency of CPU so that the 
tasks were finished without violating any deadline. Lee and Zomaya [13, 14] have pro-
posed makespan-conservative energy reduction along with simple energy conscious 
scheduling to find a trade-off between the makespan time and energy consumption. Re-
cently, Li and Wu [15-17] have considered execution of various task models by further 
exploiting the DVFS technique for both homogeneous and heterogeneous processor en-
vironments. All of these studies consider the DVFS properties for the processors and do 
not consider the multi-threaded feature of the processors. 

Chase et al. [18] proposed a coarse-grained power management technique for In-
ternet server clusters by dynamically adjusting the list of active servers. Srikantaiah et al. 
[19] studied the relationship between the energy consumption and the performance of the 
system which was determined by the CPU (or processor) utilization and disk utilization. 
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The problem was viewed as a bin packing problem where applications are mapped into 
servers optimally. Verma et al. [20] studied the power consumption pattern of various 
HPC applications and the typical workload behavior of a virtualized server and in [21] 
they developed a framework called pMapper where the applications are placed onto 
different servers for execution based on the utilization values of the servers.  

Our work is similar to the above mentioned research but it differs from others in the 
sense that we have considered the execution of real time tasks in large systems where we 
try to minimize the overall energy consumption with a guarantee of real-time constraints 
in a multi-threaded multiprocessor environment. 

3. PROBLEM FORMULATION AND SYSTEM MODEL 

3.1 Problem Formulation 
 
We wish to design scheduling policies for online aperiodic independent tasks onto 

large multi-threaded multiprocessor systems such that no task misses its deadline and the 
total energy consumption of the system is minimized. In this work, we assume that the 
compute capability of the system is high i.e. the number of processors is taken as suffi-
ciently large. Power consumption in the multi-threaded multiprocessor systems under the 
considered model is not proportional to the utilization of the system (or number of active 
hardware threads on the system) as there is static component in the power. In this work, 
we have utilized this power consumption behavior to minimize the total energy con-
sumption of the system. 
 
3.2 System Model 

 
Fig. 2 shows the block diagram of our considered system which schedules and exe-

cutes a set of online aperiodic real time tasks on large multi-threaded multiprocessor 
system. Tasks arrive to the system dynamically (online) and the scheduler schedules the 
tasks on to the processing system. Our considered processing system consists of M 
number of multi-threaded processors (P0, P1, ..., PM) where M is sufficiently large. It is 
justified to assume a system with such large number of processors, as the modern days 
computing systems like cloud system, promise virtually infinite resources to all the ap-
plications. 

 

 
Fig. 2. Scheduling of online aperiodic tasks on LMTPS. 

 

All the processors are homogeneous, non-DVFS capable and each processor is mul-
ti-threaded having r hardware threads. In this paper, hardware thread of a processor is 
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Fig. 3. Power consumption of LMTMPS C = 100,  = 10 and r = 8. 

also termed as virtual processor. We have also assumed that one task gets allocated to 
exactly one hardware thread of a processor and one thread can execute only one task at a 
time. 

As mentioned in Section 1 of the paper, we have exploited the power consumption 
behavior of a few commercial multithreaded processors and derived a simple power 
model where each processor consumes a significant amount of power as it gets started. 
This significant amount is termed as the base power consumption of the processor. Each 
active thread contributes some amount to power called the thread power consumption. 
The processor power consumption of such large multi-threaded multiprocessor systems 
(LMTMPS) can be modeled as described in Eqs. (1) and (2). 

For a single multi-threaded processor, power consumption can be modeled as: 
 
Ps = C + id    (1) 

 
where, Ps = power consumption of a single processor, C = base power consumption of 
the processor, i = number of active hardware threads and  = thread power consumption. 
In general, the value of C is greater than . Typical values of C is 5 to 10 times of  [12, 
13]. 

Similarly, the power consumption for the whole LMTMPS can be modeled as:    
 
PLMTMPS = L(C + r) + (C + i).  (2) 

 
Here, L = number of switched-on processors which are utilized fully and r is the maxi-
mum number of hardware threads a processor can run. 

The first part of Eq. (2) represents the total power consumption of the fully utilized 
processors and the second part (C+iδ) indicates the total power consumption of the par-
tially filled processor. If there is no partially filled processor, then the second part of the 
equation evaluates to zero. Fully utilized (filled) processor means all the hardware 
threads of the processor are active and executing some tasks, otherwise the state of the 
processor is partially filled or partially utilized. Here we assumed that our task scheduler 
regularly (or frequently) runs through the system and consolidates the running tasks into 
fewer numbers of processors such that (a) only 1 processor or no processor will be par-
tially filled, and (b) other processors will be either completely filled or switched off. Fig. 
3 shows the power consumption behavior of LMTMPS. We can see that there is a sharp 
jump in power consumption value when the number of virtual processors (or active 
hardware threads) is 1, 9 and 17. 
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3.3 Task Model 

In this paper, we have considered scheduling a set of online independent aperiodic 
real time tasks, T = {T1, T2, …, TN} onto a large multi-threaded multiprocessor system. 
Each task Ti is characterized by its arrival time (ai), computation time (ci) and deadline 
(di) where di ≥ (ai + ci). We assume that all the tasks are sequential and it can be run by 
only one hardware thread (virtual processor) at any time instant. In this paper, we have 
considered scheduling of both synthetic real time tasks and real trace data which are de-
scribed in following subsections. 

3.3.1 Synthetic tasks 

We assume that a set of independent aperiodic real time tasks are arriving to the 
system in such a way that the inter-arrival time between any two consecutive tasks fol-
low discretized Gaussian distribution. As the execution (or compute) time of tasks is a 
key factor in scheduling and it has a significant impact on the overall performance of the 
system [22, 23], we have considered a wide variety of task computation time with 
different distributions in order to establish the effectiveness of our work. These distribu-
tions are: Random, Gaussian, Poisson and Gamma. We have further considered com-
putation time as a function of time or task sequence number: INC(i) and DEC(i). In 
INC(i), computation time of tasks increases with task number. INC(i) is taken as k.i, i 
{1, 2, ..., N} and ci ≥ ci − 1. Similarly, in DEC(i), computation time of tasks decreases 
with task number. DEC(i) is taken as k.(N + 1 − i), i{1, 2, ..., N} and ci ≤ ci − 1. In ad-
dition to these variations of computation time, we have considered five different varia-
tions in deadline of tasks. For a task Ti (ai, ci, di), di − (ai + ci) is called the slack time 
(SLK) of the task. Variation in deadline can be achieved by considering variation in SLK. 
Similar to the former case, we considered Random and Gaussian distribution, INC(i) 
and DEC(i) function over SLK. We have also considered a special kind of deadline 
schemes where deadline for all the tasks is same. We name it as common deadline 
scheme. This can be written as di = D; where D is the common deadline for all the tasks 
satisfying the condition D ≥ max{ai + ei}. This is also termed as common due date prob-
lems in literature [24]. 

3.3.2 Real workload traces 

In addition to synthetic real time tasks with many variations, we have also consid-
ered four different real-life workload traces (or logs) [26] in our work. These workload 
traces are generated from TORQUE and PBSpro traces in different times which contain 
the job descriptions of different clusters in Standard Workload Format (SWF). These are 
(i) CERITSC: 17,900 jobs, collected during Jan-Mar 2013, (ii) MetaCentrum-1: 495,299 
jobs, collected during Jan-June 2013, (iii) Zewura: 17,256 jobs, Jan-May 2012, and (iv) 
MetaCentrum-2: 103,656 jobs, collected during Jan-May 2009. These logs and data sets 
are provided by the Czech National Grid Infrastructure MetaCentrum [25]. 

4. STANDARD TASK ALLOCATION POLICIES 

This section contains description of a couple of existing task allocation policies.  
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Utilization based workload consolidation is one of the state of art policy. 
 
 Utilization Based Allocation Policy (UBA) 

In this policy, tasks are allocated to the processors based on their processor utiliza-
tion value and all the tasks finish exactly at their deadline. This policy provides the 
minimum processor share (i.e. utilization) required for a task for all the time instants 
starting from its arrival time till its deadline. Thus the execution of a task Ti spreads for 
the whole duration with minimum processor requirement ui at every time instant between 
ai and di. This policy is mainly of theoretical interest and the assumption made in Section 
3 that one thread can execute exactly one task at a time does not hold here. 

 
 Front Workload Consolidation (FWC) 

In this policy the execution of tasks are consolidated towards beginning of the time 
axis. As soon as a task arrives, it is allocated to a thread of a processor. As all the tasks 
start their execution immediately after they enter the system, the policy can also be 
termed as Immediate Allocation Policy or as soon as possible (ASAP) policy. This policy 
turns out to be a non-preemptive on and there is no migration of tasks. In this policy, 
start time (si) and finish time (fi) of a task Ti(ai,ci,di) become si = ai and fi = ai +

 ci respec-
tively. 

 

 Rear Workload Consolidation (RWC) 
This policy is similar to the front work consolidation policy, but here the tasks are 

consolidated towards the end of the time axis. Every task execution gets consolidated 
towards the deadline of the task. This policy is also non-preemptive and does not require 
migration for system with sufficiently large number of single threaded processor. As the 
tasks enter the system, they are accumulated and remain in the waiting queue as long as 
their deadlines permit them to wait. This policy ensures that all the tasks can finish their 
execution just in time (i.e. on their deadlines). As the execution of all the tasks are de-
layed till their urgent points, the policy can also be termed as Delayed Allocation Policy. 

 
 Utilization Based Workload Consolidation (UBWC) 

In this policy, the scheduler tries to schedule the currently arrived task Ti(ai, ci, di) at 
any time instants (slots) in such a way that the task does not miss its deadline and there is 
minimum number of increase in the active processor count. For the task Ti, the UBWC 
schedules ci units of unit time compute slot between the current time ai and deadline of 
the task di, so that the increase in number of active processors count will be minimum in 
all the time slots between ai and di [19, 26, 27]. Processor count in a time slot increases 
when the total utilization of that time slot crosses a whole number. This scheduling poli-
cy requires preemption and migration of the tasks; but the number of preemptions and 
number of migrations for a task Ti is bounded by (ci – 1) if we assume the time axis is 
discretized in unit time slot. 

 
 Earliest Deadline First Allocation Policy (EDF) 

Earliest deadline first (EDF) is a well-known scheduling policy where tasks are 
considered based on their deadline values. Task with the earliest deadline value is exe-
cuted first [2]. At any point of time t, we consider all the arrived tasks which have not 
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started their execution. Out of these waiting tasks, task with the minimum deadline value 
is chosen for execution. We need to use minimum number of processors at any instant of 
time such that no task misses its deadline.  

5. PROPOSED TASK ALLOCATION POLICIES 

We have proposed four energy efficient online task scheduling policies for execut-
ing a set of aperiodic independent real time tasks onto LMTMPS, where instantaneous 
system power consumption (IPC) is not proportional to instantaneous utilization of the 
system. The power consumption model of LMTPS is described in Section 3.2. Our pro-
posed policies take advantage of this non-proportionality of IPC to the instantaneous 
utilization. In our designed policies, execution of a task is almost continuous. Ignoring 
the migration time, the time difference between the finishing time (fi) and start time (si) of 
any task Ti is same as the execution (or compute) time of the task, that is (fi − si) = ci. But 
in the utilization based work consolidation (UBWC), this difference is more than the 
given computation time for all the tasks, i.e. (fi − si) ≥ ci. 

 
5.1 Smart Allocation Policy (Smart) 

 
We have designed an allocation policy called smart allocation policy which benefits 

of the non-proportionality of IPC to instantaneous utilization of the system. The sched-
uling policy works on two basic ideas: (a) number of active processors should be as less 
as possible (active processors mean the processors which are switched on) and (b) 
whenever a processor is required to switch on, it should be utilized to its maximum ca-
pacity by assigning tasks to all the hardware threads of that processor if sufficient tasks 
are available in the system. When there is no free hardware thread in any active proces-
sor, execution of the tasks should be delayed as much as possible without missing their 
deadlines. 

Pseudo-code of smart allocation policy is shown in Algorithm 1. At every time in-
stant, the policy finds all the urgent tasks and allocates to free hardware threads of active 
processor if exists. Otherwise new processor is switched on and new hardware threads 
are initiated on it to allocate such tasks. On the other hand, if there is no urgent task pre-
sent in the system but there is a partially filled processor, then all the hardware threads of 
active processors are fully utilized by allocating tasks from the waiting queue based on 
some policy (for simplicity we have used FCFS). The scheduler performs a consolidation 
operation in periodic basis. All the active hosts are sorted based their utilization (that is 
number of active threads). Then tasks from the least utilized hosts are migrated to the 
most utilized host which has a free thread. Consolidation operation is repeated such that 
at most one processor remains partially filled. Then all idle processors are switched off 
and removed from the active list. Line number 18 to 22 in the pseudo code reflects the 
same. The parameter consolidation Interval determines the frequency of consolidation 
operation in the scheduling process. 

 
Algorithm 1 Smart allocation policy 
1: timestamp t  0; 
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2: while true do 
3:   if any task arrives, then Add it to Waiting Queue WQ. 
4:   while WQ is NOT Empty do 
5:      while Ti = findUrgentTask() is not NULL do 
6:         if free hardware thread exists in any active processor then 
7:           Allocate task Ti to a free hardware thread. 
8:         else 
9:           Switch on a new processor and initiate a hardware thread. 
10:          Allocate the task Ti to the hardware thread. 
11:       ;i j is t f t c  ;  WQ.remove(Ti);              ⊲ t is current time 
12:    while there is free hardware threads in any processor do 
13:       Choose a task Tj from waiting queue based on the some policy.            
14:       Assign the task Tj to a free hardware thread of that processor. 
15:       ;j j js t f t c   WQ.remove(Ti); 
16:   if any task finishes its execution, then update system information;   t t  1 ; 
17:   if (t % consolidationInterval == 0) then 
18:     Sort the active processors in ascending order of their utilization. 
19:     Migrate tasks from least utilized processor to most utilized processor. 
20:     Repeat step 22 until there is at most one partially filled processor. 
21:     Turn off the idle processors. 

 

procedure findUrgentTask() 
1:  for each task Ti in Waiting Queue do 
2:     if di == ci + t then  return Ti                        ⊲ t is current time 
3:  end for 
4:  return NULL 

 

 
Fig. 4. Extra annotation to Fig. 3 to describe the smart allocation policy. 

 

Fig. 4 shows the plot of total power consumption verses virtual processors similar to 
Fig. 3 with extra annotation to describe our smart allocation policy. In this case, every 
processor has r = 8 hardware threads (virtual processors) and each hardware thread con-
sumes δ = 10 amount of power. Whenever a processor is switched on, it consumes 100 
units and each additional thread consumes 10 units of power. This continues till number 
of active hardware threads reaches r = 8. At this point, the processor is utilized to its 
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maximum capacity and the total power consumption of the system is 180 (=100 + 8 ∗ 10) 
units. The intention of the policy is to keep the system at this point if the deadline con-
straints of the tasks allow it to do so. As soon as the number reaches 9, another processor 
needs to be switched on and the total power consumption of the system increases by 110 
units and reaches a total of 290 (= 180 + 110) units. 

We define two type of points called wait and go as appeared in Fig. 5. At point wait, 
the target of the policy is to delay the ready tasks as much as possible without missing 
any deadline. This is because, whatever processors are there in the system, they are uti-
lized to their maximum capacity. And if another task is to be allocated, we need to switch 
on a new processor and the power consumption will increase and make a sharp jump to 
the next higher level. The other point is called the go point. This indicates the point when 
a new processor is already switched on with only one active hardware thread. The region 
between the go point and wait point is called the Filling Fast region. In this region, the 
system tries to allocate as much tasks as possible either from the waiting queue or the 
newly coming tasks till the wait point is reached Smart is an online scheduling policy 
and it takes scheduling decision dynamically at runtime. Even if the actual execution 
time of the tasks are not known before hand and tasks do not always consume worst case 
execution time, the smart policy can handle this dynamic situation because mapping of 
tasks to the hardware threads of a processor is done irrespective to the execution time of 
the tasks. 
 
5.2 Smart Allocation Policy with Early Dispatch (Smart-ED) 

 
In smart allocation policy, initially, all the arrived tasks wait in the waiting queue 

till the time instant when further waiting will result a deadline miss. At this time instant, 
at least one task becomes urgent. We name this time instant as urgent point. If the urgent 
points for many tasks (>> r) get accumulated to one time instant, then we need to switch 
on many processors and it will create a high jump in the instantaneous power consump-
tion value. To handle such situation we have modified our proposed smart allocation 
policy and the modified policy includes early dispatch along with the smart allocation. 

The basic idea of this policy is that whenever there are tasks in the system, they 
need to be executed. The smart policy would make the tasks wait in the system if their 
deadlines permit them to wait. But this policy does not make the tasks wait till their ur-
gent points. In this smart allocation with early dispatch policy, at any time instant a new 
processor is switched on if the number waiting tasks ≥ r. After switching on the proces-
sor, r number of tasks from waiting queue is selected and are allocated to all the hard-
ware threads of the newly switched on processor. The selection can be done using any 
policy. 

Fig. 5 shows an example of task scheduling system, where 10 tasks (with ci = 4) ar-
rived to the system on or before time 3 and earliest deadline of the tasks is at time 9. So 
the scheduler switches on a new processor (assuming each processor has r = 8 hardware 
threads) and schedules execution of 8 tasks (based on EDF) on to the system at time 3. 
Based on EDF, the selected and scheduled tasks at time 3 are T1, T2, T3, T4, T5, T6, T9 and 
T10 of hardware threads hwt0 to hwt7 of processor P0. In this policy, at all the time in-
stants, the scheduler selects the earliest deadline task and schedules onto an already 
switched-on processor if any hardware thread is free. 
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Fig. 5. Smart allocation policy with Early Dispatch (Smart-ED). 

 

This policy efficiently handles the common deadline scheme where the sharp jump 
in the instantaneous power value near the urgent point is avoided. The policy tries to 
equally distribute the power consumption value across time line. Fig. 6 shows the in-
stantaneous power consumption for both Smart and Smart-ED policy for the common 
deadline scheme. This figure clearly depicts the difference between these two policies. 
Smart policy shows a huge jump in the power consumption value from 0 to 12570 units 
at time 20155. This policy is preferred over the smart policy when the system is not ca-
pable of handling such high value (or a sudden jump) of power consumption. Another 
benefit of this policy is that it reduces the waiting time of the tasks but this is not within 
the scope of the paper and is not discussed here. 
 

 
 (a) Smart policy.                         (b) Smart-ED policy. 

Fig. 6. IPC for common deadline scheme with  = 20,  = 10. 
 

5.3 Smart Allocation Policy with Reserve Slots (Smart-R) 
 

This is a variation of the smart allocation policy where a fraction of the processor 
capacity is reserved for future urgent use. In the filling fast region (as described in Fig. 4), 
all the free hardware threads of the processor was filled with waiting tasks in basic smart 
policy. But in this policy, a few threads (called Reserve Factor ) are kept free such that 
they can execute suddenly occurring urgent tasks (for these tasks slack time (di − (ci + ai)) 
is almost zero). This reduces the number of processors to be switched on (by compulsion) 
for servicing the suddenly occurring urgent tasks. This in turn might reduce the power 
consumption of the system. This policy will be highly beneficial for the applications 
where some critical tasks (having tight deadline) arrive in between regular tasks. 

 
5.4 Smart Allocation Policy with Handling Immediate Urgency (Smart-HIU) 

 
In the baseline smart allocation policy, when there is free hardware threads (repre-
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sented by fast filling region in Fig. 4), the policy selects some tasks from the waiting 
queue using FCFS in order to utilize the free hardware threads. But it might so happen 
that FCFS method selects tasks whose deadlines are relatively far. The near deadline 
tasks will eventually become urgent in near future. This urgency may force the system to 
start a new processor. Again it is already discussed earlier that switching on a processor 
by compulsion generally increases energy consumption and it is always beneficial to 
avoid the compulsion scenario. 

So in this modified smart allocation policy (Smart-handling immediate urgency al-
location policy), the scheduler selects and executes the tasks whose deadlines are com-
paratively near. That is tasks with earliest deadline (immediate urgent) from waiting 
queue is selected to utilize the free hardware threads in fast filling region. This in turn 
results in forming a long time gap between the current time and time of occurrence of 
next urgent point. This long time gap allows the scheduler to avoid switching on a new 
processor and this eventually reduces the instantaneous power consumption of the system. 

6. EXPERIMENTS AND RESULTS 

6.1 Experimental Setup, Machine and Task Parameters and Migration Overhead 
 
We have created a simulation environment to simulate large multi-threaded multi-

processor system for carrying out our experiments where number of processors, number 
of threads per processor, base power consumption of a processor, power consumption 
per thread can be varied. Our simulation environment generates a wide range of output 
statistics, including instantaneous power consumption for all time instants/slots and the 
overall power consumption for different input parameters and task allocation policies. 
Since existing energy efficient scheduling techniques for large systems are not directly 
comparable to our work (to the best our knowledge), the comparison is carried out with 
the standard task allocation policies. 

We have considered the total power consumption of a processor is 100 units and 
each processor can run up to 8 hardware threads, the base power consumption of a pro-
cessor is taken as 70 units (i.e. 70% of 100 as reported in [28]) and per thread power 
consumption is taken as 3.75 units (i.e. (100 − 70)/8). We have performed experiments 
in our simulation environment using both real workload trace data and synthetic data sets 
as described in Section 3. For synthetic data set, we used several pairs of (, ) values 
e.g. (10,5), (20,10), (30,15) and (40,20) for generating the arrival pattern of the tasks. 
The number of tasks generated for each experiment is 1000 and we used 10 such sets for 
all the cases. The parameters for computation time distributions are: for Random, 
Cmax=100, for Gaussian  = 100,  = 20, for Poisson  = 100, for Gamma  = 50,  = 10, 
for Increasing k = 2 and for Decreasing k = 2. We have also considered five different 
types of deadline schemes. In Random, Zmax=1000; in Gaussian,  = 10,  = 5; in In-
creasing, k = 3; in Decreasing, k = 3; and in Common, D = 10205. 

Migration overhead in a system typically depends on various factors like total 
number of migrations, frequency of migrations, migration path, working set size. The 
overhead is expressed in terms of performance degradation of the system (decrease in 
Instruction per cycle), increase in execution time, etc. and the literature reported migra-
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tion overhead as an average of 2 to 3% and context switch overhead as less than 0.1% 
[21, 29]. As the thread executing a task need to run for some additional amount of time, 
we assume an increase of 2.5% in thread power in case of migration and 0.1% in case of 
preemption as the overhead. 

 
6.2 Result and Analysis 

 
Figs. 7 (a)-(f) show the energy consumption of 1000 aperiodic tasks on considered 

large multi-threaded multiprocessor system using different allocation policies for syn-
thetic task set under (a) random distribution; (b) Gaussian distribution; (c) Poisson dis-
tribution; (d) Gamma distribution; (e) increasing; and (f) decreasing computation time 
schemes respectively (random deadline scheme). We observe that the proposed policies 
perform better than all other baseline policies for all the computation time schemes. Sim-
ilarly, Figs. 8 (a)-(e) show the total energy consumption of the system under (a) ran-
domly distributed; (b) Gaussianly distributed; (c) increasing; (d) decreasing; and (e) 
common deadline schemes respectively (random computation time model). We can 
clearly observe that the energy consumption under our proposed policies is significantly 
lesser than all other baseline policies for all kinds of task models. 
 

   
 (a) Random                (b) Gaussian               (c) Poisson 

   
(d) Gamma               (e) Increasing             (f) Decreasing 

Fig. 7. Energy consumption for different computation time schemes. 

 

   
 (a) Randomly                (b) Gaussian                 (c) Increasing 

Fig. 8. Energy consumption for different deadline schemes. 
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(d) Decreasing                (e) Common               (f) Real data sets 

Fig. 8. (Cont’d) Energy consumption for different deadline schemes. 
 

Energy consumption of the system is the summation of IPC over all the time slots. 
A low value of  and  indicates that the inter-arrival time of tasks are less, which 
signifies the system is overloaded or filled with many tasks. In such cases, opportunity to 
take the advantage of the smart allocation policy idea to save energy is thin. Hence the 
benefit is not that significant for low values of  and . As the values of  and  increase, 
the inter-arrival time between tasks increases. Thus the system becomes loosely loaded 
and smart allocation takes the benefit of it. 

 

Table 1. Noumbers of migrations in different allocation policies. 

 

The experimental results also establish our claim that Smart-R and Smart-HIU can 
further reduce the energy consumption of the system almost in all the cases. But the total 
energy consumption for Smart-ED is same or little higher than Smart. This is justified as 
the purpose of the Smart-ED policy is to avoid the sharp jump in the power consumption 
value and this policy distributes the power value across the time axis. The proposed pol-
icy achieves average energy reduction of 37% as compared to others for different com-
putation time schemes and of 55% as compared to others for different deadline schemes. 
Based on this experimental result, we can firmly say that our proposed policies reduce 
energy consumption of the system significantly for all of the cases of synthetic workload. 

Table 1 shows the number of migrations with different task allocation policies both 
for synthetic and real trace data. As already explained earlier, UBA is of theoretical in-
terest and has an unbounded number of migrations. FWC and RWC are of non-preemp- 

          Policy 
Data UBWC Smart Smart-ED Smart-R Smart-HIU 

Random 490 7 2 9 7 
Gaussian 624 17 27 32 15 
Poisson 527 10 16 28 9 
Gamma 37421 142 204 92 97 

Inc 14542 124 102 99 112 
Dec 14221 112 90 87 120 

Random 442 4 0 2 2 
Gaussian 538 9 0 1 1 

Inc 342 3 3 2 8 
Dec 382 12 9 15 17 

Common 702 24 21 19 17 
Real data 29908 240 196 29 24 
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tive nature and do not require any migration. We have considered non preemptive im-
plementation of EDF and thus no migrations happened in this case also. We observe that 
total number of migrations in all our proposed policies is within a reasonable range. 

Fig. 8 (f) shows the energy consumption of real workload traces (CERIT-SC, Met-
aCentrum-1, Zewura and MetaCentrum2) on considered large multi-threaded mul-
ti-processor system using different allocation policies. Our proposed policies outperform 
the rests. Our proposed policies achieve maximum energy reduction up to 44% as com-
pared to all the earlier allocation policies UBA, WFC, RWC, EDF and UBWC. The 
proposed policies achieve average energy reduction of 30% as compared to the baseline 
policies. Experimental results show that the energy reduction in case of real trace data is 
comparatively lesser than that of synthetic data. This is because the inter-arrival time of 
tasks in case of real trace data is less and the smart policy cannot take the benefit of 
completely switching off the processors for longer time. 

Energy consumption in case of UBWC is in general lesser than that of UBA, FWC 
and RWC but this policy incurs significant number of migrations. It can be lucidly seen 
from the experimental data that our proposed policies not only reduces overall energy 
consumption by a significant margin, but also the number of migrations in these policies 
are within reasonable range. Thus it can be concluded that even in case of high migration 
overhead system, the proposed policies will achieve a significant energy reduction. 

7. CONCLUSION AND FUTURE WORK 

Energy aware scheduling at a coarser granularity level has become essential for the 
large multi-threaded multiprocessor systems. In this paper, we have derived a simple 
power consumption model for such large systems and proposed an online energy effi-
cient task allocation policy, namely, smart allocation policy for executing a set of inde-
pendent real time tasks. We have then proposed three variations of this policy to further 
reduce energy consumption (for some applications) and to efficiently handle different 
situations which might occur at runtime. In near future, we will be considering schedul-
ing tasks with dependencies. Efficient scheduling of multiprocessor tasks (tasks requires 
more than one thread for execution) under this power model will be a great extension to 
this work. 
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