
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 37, 123-138 (2021)
DOI: 10.6688/JISE.202101_37(1).0009

123

Cache-Enabled and Context-Aware Approach
to Building Composite Mobile Apps*

SHANG-PIN MA1, CHI-CHIA LI1, SHIN-JIE LEE2, HSI-MIN CHEN3 AND WEN-TIN LEE4

1Department of Computer Science and Engineering
National Taiwan Ocean University

Keelung, 202 Taiwan
E-mail: albert@ntou.edu.tw

2Department of Information Engineering and Computer Science
National Cheng Kung University

Tainan, 701 Taiwan
3Department of Information Engineering and Computer Science

Feng Chia University
Taichung, 407 Taiwan

4Department of Software Engineering and Management
National Kaohsiung Normal University

Kaohsiung, 802 Taiwan

Mobile Applications (Mobile Apps or Apps) are an important software delivery

model for the composition of front-end user interfaces (UIs) and back-end services in the
cloud. However, variations in wireless network conditions can undermine the stability of
Mobile Apps. Furthermore, developers face numerous difficulties in customizing Apps
based on user preferences. In this paper, we propose the MASA (Mobile Application Slice
Architecture), to address the above issues from the viewpoint of reusable software compo-
nents. MASA includes three main features: (1) a programming model (called MAS) for
building cross-platform UI components to facilitate the creation of Mobile Apps; (2) a
broadcast mechanism to facilitate the exchange of data among MAS components; and (3)
a rule-based and context-aware service prefetch and caching mechanism to ensure unin-
terrupted and partial offline access to RESTful services. A web-based software tool,
MASA Portal, was also developed to assist users in the publication, discovery, composi-
tion, and consumption of composite MAS. Quantitative experiment results demonstrate
that MASA is able to shorten service response times when using the proposed service
prefetch function in various contexts.

Keywords: mobile application, mobile service composition, service cache, service prefetch,
mobile application slice architecture

1. INTRODUCTION

Mobile Applications (Mobile Apps or Apps) are an important software delivery
model [1] for the composition of front-end user interfaces (UIs) and back-end RESTful
services (REST: Representational State Transfer) in the cloud [2]. Millions of Mobile Apps
are currently available; however, there are few reusable composable models for the crea-
tion of Mobile Apps [3]. Developers face numerous difficulties when seeking to combine
existing Apps, and users are unable to customize Apps due to differences among mobile
platforms [4]. The challenge in overcoming these difficulties is the development of a com-

Received November 20, 2018; revised March 2, 2019; accepted June 4, 2019.
Communicated by Hung-Yu Kao.
* This research was sponsored by the Ministry of Science and Technology in Taiwan under grants MOST 105-

2221-E-019-054-MY3 and 108-2221-E-019-026-MY3.

SHANG-PIN MA, CHI-CHIA LI, SHIN-JIE LEE, HSI-MIN CHEN, WEN-TIN LEE

124

ponent architecture suitable for the creation of cross-platform Mobile Apps. Meanwhile,
the stability of Mobile Apps can also be affected by wireless network conditions. Service
caching, a technology of service-oriented computing (SOC) [5], can be used to enhance
the availability and usability of services [6]; however, developing the means to apply ser-
vice caching under varying network conditions poses additional challenges. Several soft-
ware frameworks [7, 8] have been proposed for the development of Mobile Apps; however,
none of these systems provide a mechanism by which to build composable units, or they
do not support the invocation and caching required for RESTful services in the cloud.

In this paper, we propose a component architecture, referred to as MASA (Mobile
Application Slice Architecture), for the creation of Apps based on MAS (Mobile Applica-
tion Slice) components. MASA focuses on three important issues: (1) cross-platform com-
patibility; (2) automatic component integration; and (3) efficient service caching to shorten
response time and allow offline use. Accordingly, MASA offers three main features: (1) a
cross-platform programming model for building MAS components based on hybrid mobile
web techniques. MASA leverages Cordova1 to produce installable Mobile Apps [9]; (2) a
channel-based “Broadcast” mechanism with associated APIs to facilitate the exchange of
data among multiple MAS components to integrate MAS components as a composite
(Composite MAS, or CMAS shortly); and (3) a relational and context-aware service pre-
fetching and caching mechanism with associated APIs to allow quick online and uninter-
rupted offline access to RESTful services under unstable connections. Based on the con-
cept of SOA (service-oriented architecture), we also developed a web-based software tool,
called MASA Portal, to assist MAS providers and CMAS users in the publication, discov-
ery, and composition of MAS components, as well as the consumption of CMAS applica-
tions. Fig. 1 illustrates the conceptual architecture of the proposed MASA system.

Fig. 1. Overview of the MASA approach.

The remainder of this paper is organized as follows: Section 2 introduces the back-
ground of MASA, as well as a review of extant research related to the software architec-
tures used in mobile computing. Section 3 outlines the details of our approach. Section 4
presents the implementation of a MASA prototype system, called MASA Portal. Section
5 presents the experiment results. Conclusions are drawn in the final section.

1 https://cordova.apache.org/

CACHE-ENABLED AND CONTEXT-AWARE APPROACH TO BUILDING APPS 125

2. RELATED WORK

2.1 Service Cache and Prefetch

Fernandez et al. [10] developed a service caching system for SOAP services. The
system uses two types of caching: strong and weak. Strong caching takes the freshest re-
sponse message from the service provider to ensure that the cache is always fresh. Weak
caching allows the client-side to decide how long cached data remains alive by designating
an expiry point. In our work, we allow the developers to select the cache lifetime for ser-
vices associated with a Mobile App. Papageorgiou [11] reported that SOAP services are
unsuitable for mobile devices due to their heavy XML payload. They presented a cache
model called PCV (Proxied Call with Validity check) to reduce the amount of data trans-
mitted wirelessly between the client-side and the service-side. Liu and Deters [12] devel-
oped a dual-caching system for PDAs to enable caching on the client-side as well as the
provider-side, both of which have a prefetching component. The client-side predicts which
responses may be used, and set up is based on the BPEL (Business Process Execution Lan-
guage). The server-side decides which cached data should be kept. Liyanaarachchi and
Weerawaranl [13] proposed an end-to-end caching scheme based on the work of Fernandez.
They devised a set of SOAP headers to realize cache functionality for SOAP services. The
above systems and models were designed only for SOAP services, whereas our approach
concentrates on popular RESTful services.

For the service caching and prefetch of RESTful services, Spillner et al. [14] proposed
a service invocation method called RAFT-REST. RAFT-REST uses the cache mechanism
to respond to the service request, tests the condition of network to reduce the unnecessary
service invocations, and utilizes the request queue to collect all outgoing but failed request
and to re-invoke these services. Ollite and Mohamudally [15] devised a 2-tier caching
proxy system with one component implemented on the client device (mobile devices) and
a server component to be used by the RESTful service provider. The performance evalua-
tion showed a performance (response time) gain of up to 59% could be achieved. The
above two methods did not consider the various context of mobile devices.

2.2 Software Architectures in Mobile Computing

Sanaei et al. [4] sought to define Mobile Cloud Computing (MCC) and discuss heter-

ogeneity in convergent computing; i.e., mobile computing and cloud computing. They re-
ported that the issue of application fragmentation differs in web, online, and native appli-
cations. They suggested that designers use industrial toolkits, such as PhoneGap, Marma-
lade, Appcelerator, or Titanium to auto-generate cross-platform Mobile Apps to alleviate
the problem of fragmentation. Heitkötter et al. [9] proposed several criteria for the devel-
opment of mobile applications: (1) license and costs; (2) supported platforms; (3) access
to advanced device-specific features; (4) long-term feasibility; (5) look and feel; (6) appli-
cation speed; and (7) distribution. They identified four types of application (web, native,
PhoneGap and Titanium) to enable comparisons under the proposed criteria. They reported
that PhoneGap is able to build Mobile Apps with a look and feel similar to their native
counterparts. In our work, we applied Cordova to transform web applications into native
applications.

SHANG-PIN MA, CHI-CHIA LI, SHIN-JIE LEE, HSI-MIN CHEN, WEN-TIN LEE

126

Nestler et al. [16] presented an authoring tool called ServFace Builder to help typical
users (lacking programming skills) in the design and creation of service-based interactive
applications via a graphical interface. Users can link data from two service components by
clicking their inputs and outputs. Unlike ServFace, MASA focuses on the development of
Mobile Apps, and provides a Broadcast mechanism to perform data exchange in a more
flexible manner. Francese et al. [7] proposed a novel approach to the sharing and reusing
of user-generated Mobile Apps, called MicroApp Generator (MAG). MAG automatically
creates Mobile Apps (called MicroApps) on a smartphone. The MicroApps can be de-
signed visually by reusing services available in the MicroApp Store. Our approach is sim-
ilar to MAG; however, we provide additional features, such as service caching, service
prefetching, and broadcast for messages. Bouras et al. [8] presented a software framework
for the development of Mobile Apps using various state-of-the-art web technologies for
cross-platform functionality. Their framework provides three main components: UI Helper,
Core Helper and Third-party Services Helper, to help designers in the creation of web
applications for mobile devices. They provide several of the features found on MASA;
however, the notion of composable units and data exchange mechanisms are missing.
CARSB (Composite App with RESTful service and Service Bricks) [17] is our previous
research result. CARSB is able to create Web-based or Android-based Mobile Apps based
on Service Bricks, rectangular UI components used for the display of specific information,
and RESTful services. MASA is devised based on similar basic design concepts of CARSB,
but additionally provide the functionality of Broadcast as well as service caching and prefetch.

3. MASA: MOBILE APPLICATION SLICE ARCHITECTURE

In this section, we detail the proposed Mobile Application Slice Architecture (MASA),
including the system requirements, system architecture, schemes used for service invoca-
tion and caching, the proposed service prefetch method, and the channel-based broadcast
mechanism.

3.1 System Requirements

Our objective in this research was to facilitate the composition of multiple UIs and

information sources by and for smartphone users. Based on the above research goal, we
identified the following key requirements:

1. A mechanism to allow communication between components
2. A component architecture capable of performing a range of actions involving RESTful

services under various wireless network conditions
3. The ability to publish, search for, compose, and utilize mobile components
4. A cross-platform component architecture suitable for Android and iOS platforms

3.2 System Architecture

Based on the identified requirements, we designed MASA as shown in Fig. 2. The

building blocks of MASA are MAS, which operate as page-style components in Mobile

CACHE-ENABLED AND CONTEXT-AWARE APPROACH TO BUILDING APPS 127

Apps. MAS includes a view function to assume the role of a user interface, and several
MAS APIs, which provide the core functionality of MAS components. MAS APIs include
Service Invoker, Cache Manager, Context Manager, and Broadcast. Service Invoker in-
vokes RESTful services in the cloud, and performs service prefetch actions based on des-
ignated prefetch rules. Cache Manager stores cached service data, and monitors cache TTL
(time to live), to determine whether the cached data has expired. Context Manager main-
tains the MAS configuration file and provides contextual information retrieved from the
user’s smartphone. Broadcast furnishes a data exchange mechanism (called Channel), to
allow MAS components to communicate with one another.

Fig. 2. MASA system architecture.

Fig. 3. Controller in MASA.

Using MASA to construct an app involves composing multiple MAS components.

This raises the following two issues: (1) How can we compose a user interface with inte-
grated views for multiple MAS components; and (2) How can we enable the movement of
data among multiple MAS components. We dealt with the first issue by applying the mech-
anism found in SPA (single page applications) [18], and used the React router plugin to
switch among multiple MAS components, as shown in Fig. 3. The user can trigger the
router when swiping the screen or clicking on items representing a MAS on the menu bar.
The second issue is dealt with in Section 3.5.

SHANG-PIN MA, CHI-CHIA LI, SHIN-JIE LEE, HSI-MIN CHEN, WEN-TIN LEE

128

3.3 Cache Manager

Cache Manager is a component of the MAS API, which controls all of the cached
data in MASA. We define two types of cached data in Cache Manager: service cache and
user action cache. The service cache stores responses received from RESTful services.
These are verified and stored when the service is invoked, and then retrieved when the
same request is repeated. The user action cache is for temporary data, which is verified,
stored, and retrieved by the MAS designers, as in programming scenarios. All of the cached
data are given TTL (Time-to-Live) attributes to record how long the cache has been alive
and valid [11]. It should be noted that we adopted the web storage mechanism in HTML5
for our service cache mechanism.

As mentioned, the Cache Manager stores service responses within the cache when
they are verified as valid. A valid response means that the status code is successful (HTTP
code 200) and the response includes expected tokens. The expected tokens are set by the
MAS developer and checked using JSONPath [19]. For example, the developer could as-
sert that the response of the Stock service should contain a “stock list” token. Thus, any
response that does not contain the token “stock list” is deemed invalid.

When a new service request arrives, the Cache Manager checks whether any of the
cached data matches the request, in order to determine whether the cached data could serve
as a response. In other words, the Cache Manager fetches cached data with the same URL,
service method, and parameters as the service request. It also checks whether the retrieved
cached data is alive (not expired), based on its TTL.

Success in the above process depends on properties of linked RESTful services spec-
ified in the MAS configuration: (1) service name; (2) service method; (3) service parame-
ters; (4) expected tokens in the service response; and (5) TTL (time to live). As for the user
action cache, designers are free to stipulate the data to be cached as well as its TTL. Com-
pared with the service cache, the user action cache can be any variable in the app. It should
not be the response of RESTful services. It is usually the output of a time-consuming task,
such as mathematical computation procedures on the client side.

3.4 Service Prefetching and Invoker

Prefetch is crucial to the efficiency of service-based systems, and particularly for mo-
bile service systems with limited resources and unstable network connectivity. We inte-
grated prefetch within the Service Invoker module of MASA. The Service Invoker is di-
vided into two parts: (1) Service Manager: responsible for invoking RESTful services, and
(2) Prefetch Manager: responsible for handling the prefetch for RESTful services. In other
words, Service Invoker can actually invoke RESTful services and prefetch responses of
selected services. Furthermore, the Context Manager is able to retrieve current contextual
information from the user’s smartphone.

As mentioned previously, we propose two methods, identification of prefetchable ser-
vices and the context-aware service prefetch, to enable predictions and pre-invocations for
commonly used services in appropriate occasions.

3.4.1 Identification of prefetchable services (IPS)

The basic idea of the method for the identification of prefetchable services is as fo-

CACHE-ENABLED AND CONTEXT-AWARE APPROACH TO BUILDING APPS 129

llows: When a base service is invoked by a user-triggered command, relational services
that are related to the base service can also be invoked in advance, thereby enabling the
caching of responses of pre-invoked services for further use. In this research, a relational
service is defined as any service that accepts part of the responses of the base service as
input arguments to produce subsequent data. Afterwards, access to the prefetched service
data is monitored to determine whether these data are actually useful for the user. When
prefetched service data is not used regularly (i.e., the user tends not to browse prefetched
or cached data), the linkage between the base service and the relational one is temporarily
canceled. The unlinked relational service is not prefetched again until the rules of re-link-
ing are triggered.

Multiple user-given parameters for relational services must be designated in the MAS
configuration, including a brief description of the base service and its related services. Note
that the description of each relational service contains the rules for the retrieval of input
data from the output of the base service using JSONPath to invoke the designated relational
service. For example, address information retrieved from the output of the base service for
finding nearby tourist attractions is used as the input of the map service specified as a
relational service.

We formulated a pattern (referred to as the Consume and Prefetch Pattern) to retrieve
candidate prefetchable services in order to determine whether the linkage between a base
service and its relational service(s) is strong enough and whether the prefetch of a relational
service must be canceled or resumed. A relational service is deemed “consumed” if the
user browses the prefetched data of a relational service after triggering the base service. A
relational service is deemed “unconsumed” if the user does not browse the prefetched data
of a relational service in either of two invocations of the base service. Consumption is
checked by using Eq. (1) to determine whether the relational service needs to be pre-in-
voked, as follows:

PS(s) =  + ꞏm  ꞏn   (1)

where  is the given threshold,  is a given initial value,  is the increment value when a
“consumed” event occurs,  is the decrement value when an “unconsumed” event occurs,
m is the number of “consumed” events, n is the number of “unconsumed” events, and PS(s)
is a score (called the prefetch score), which is used to determine whether the service can
be prefetched.

For any specified relational service, MASA monitors the cached service data and
computes the prefetch score continuously. When a given base service is invoked again, its
relational service is identified as prefetchable only if its prefetch score is equal to or ex-
ceeds threshold .

3.4.2 Context-aware service prefetch (CASP)

Due to the limited resources of mobile devices, arbitrarily invoking all services in

advance is inappropriate. Although we have reduced the number of services that may be
prefetched by using the IPS method, the prefetch task should be conducted only if the
current context of the smartphone is suitable for additional service invocation. In other
words, one must consider the current context, such as network bandwidth and battery

SHANG-PIN MA, CHI-CHIA LI, SHIN-JIE LEE, HSI-MIN CHEN, WEN-TIN LEE

130

capacity to determine whether to perform a prefetch operation in a rule-based way. MASA
mainly focuses on the remaining battery capacity and the current wireless network condi-
tions as contextual data of whether to perform context-aware service prefetch. We also
formulated another concept called “Long Response Time First”, to decide whether a ser-
vice should actually be prefetched in a rule-based way. The key points of the proposed
context-aware service prefetch method include the following:

1. MASA divides services into LRT (long response time) and SRT (short response time),

according to the threshold , which is specified in the MAS configuration file. A ser-
vice is identified as LRT if its response time exceeds , whereas it is identified as SRT
if the response time is equal or less than . MASA attempts to prefetch LRT services
first because users tend to spend more time-consuming LRT services, particularly un-
der slow or unstable network conditions. The default  in this study was set to 2 seconds.

2. Three categories are specified for wireless network conditions: (a) 4G/Wifi with high
bandwidth; (b) 3G with medium/low bandwidth; and (c) other conditions with no net-
work access or unidentified bandwidth. The current network conditions are detected
automatically by MASA.

3. Battery capacity is categorized in the same manner: (1) high: for the capacity exceeding
70%; (2) low: for the capacity of less than 30%; and (3) medium: for the remaining
cases. The current battery capacity is also detected automatically by MASA.

4. CASP is essentially naïve, in that services are pre-invoked when the resources available
to the user’s smartphone are enough, whereas service prefetch is avoided when the
available resources are insufficient. The rules for service prefetching are listed in Table
1. For example, when the remaining battery capacity is high and the network type is
4G/Wifi, MASA conducts service prefetch for both LRT and SRT services. However,
when the remaining battery capacity is low, service prefetch is skipped to conserve en-
ergy.

Table 1. Rules for context-aware prefetching.

Battery Capacity
Wireless Network Condition

4G/Wifi 3G Others

High
LRT true LRT true LRT false
SRT true SRT false SRT false

Medium
LRT true LRT true LRT false
SRT false SRT false SRT false

Low
LRT false LRT false LRT false
SRT false SRT false SRT false

3.5 Broadcast

As mentioned above, dealing with the movement of data between MAS components

is crucial to the underlying architecture. There are several common ways to enable the
exchange of data between components: (1) specifying the interfaces for each component,
and integrating components based on interface requirements; and (2) preparing a universal
memory to allow components to exchange messages. The first strategy tends to increase
complexity in composition; therefore, we adopted the second strategy and devised a cor-
responding Broadcast mechanism utilizing HTML5 web storage APIs to allow MAS com-

CACHE-ENABLED AND CONTEXT-AWARE APPROACH TO BUILDING APPS 131

ponents to publish and subscribe to messages.
Similar to the Broadcast mechanism on the Android platform, Broadcast in MASA

allows MAS components to communicate with one another. In formulating Broadcast, we
followed the publish-subscribe pattern in the design of objects (called channels) to be
shared among multiple MAS components. From the perspective of implementation, a
channel is a group of items in the local storage whose names have the same prefix. A
channel can be used to publish and subscribe to messages through the MAS API.

Fig. 4 presents the architecture of the proposed Broadcast mechanism. MAS compo-
nents can freely publish and subscribe messages to and from a designate channel. Broad-
cast monitors all channels when MAS publishes any message to any channel and notifies
all MAS components subscribing to the same channel in order to obtain newly published
messages. From the perspective of App development, designers can use Broadcast to inte-
grate MAS components, as follows: (1) Assign the channel where the message populates;
(2) Assign a message name; (3) Add the channel name to the MAS configuration file; and
(4) Call the message publish/subscribe APIs in the MAS code.

Fig. 4. Architecture for the broadcast mechanism.

4. SYSTEM PROTOTYPE

In this section, we implement a prototype of the MASA system. First, we introduce the
MAS APIs. Second, we illustrate the design of the MASA Portal. Third, we present a Mo-
bile App that is composed of three MAS components to demonstrate the features of MASA.

4.1 MAS API

To assist developers in the creation of MAS components, we developed a suite of

MAS APIs in JavaScript to provide functionalities for service invocation, service cache,
service prefetch, and broadcast. The specifications of MAS APIs are described in Table 2.

SHANG-PIN MA, CHI-CHIA LI, SHIN-JIE LEE, HSI-MIN CHEN, WEN-TIN LEE

132

Table 2. MAS APIs.
Return data API descriptions

void

invokeService (serviceName, callback, parameter)
Designers can use this API to invoke RESTful services with the support of service
caching. MASA invokes the designate service based on the parameters.
Note that other service information, such as service URL and supported HTTP
method, is already specified in the MAS configuration file and therefore does not
have to be provided again. The callback is the developer-provided JavaScript
function, which is triggered when a service response is returned.

void
prefetchService (serviceName, parameter)
Designers can use this API to start performing service prefetch (IPS and CASP).

object
subscribeByBroadcast (channel)
Enables designers to proactively obtain messages in the designate channel.

void
publishByBroadcast (channel, data)
Designers can use this API to push messages to the designated channel.

void
setCache (cacheName, data, TTL)
Provides the functionality required to store data in a user action cache with a spec-
ified cache name and TTL (Time-To-Live).

object
getCache (cacheName)
Used to retrieve data from the designated user action cache. Note that only unex-
pired cached data is retrieved using this API.

4.2 MASA Portal

MASA Portal is a web-based tool for MAS designers as well as App designers that
seek to build a composite MAS. The interface of MASA Portal is used to compose a MAS
for assembly by different MAS designers. Fig. 5 presents the user interfaces used to design
a composite MAS based on searched MAS components. The composite MAS is automat-
ically transformed into an installable App by MASA Portal. The transformation process is
realized by NPM (Node Package Manager) and the Cordova command-line manager to
download the necessary libraries from various sources and wrap the composite MAS as an
App. At present, MASA allows the creation of Android Apps; however, other platforms
(such as iOS and Windows Phone), could easily be supported because MASA is based on
cross-platform HTML5 technology.

Fig. 5. MASA portal: Design of composite MAS.

CACHE-ENABLED AND CONTEXT-AWARE APPROACH TO BUILDING APPS 133

4.3 MASA Applications

Fig. 6 demonstrates an example of a mobile app built via the MASA portal. This

CMAS is assembled by three different MAS components, namely, MoneyManager MAS,
ETC (Electronic Toll Collection) MAS and CreditCard MAS. All three MAS components
are published in the MASA portal. In the generated CMAS, the data produced by
CreditCard MAS and ETC MAS are transmitted to MoneyManager MAS via the proposed
Broadcast mechanism for data aggregation and information presentation. Fig. 6 (a) shows
the ETC MAS that retrieves the ETC payment records for a user. Fig. 6 (b) displays the
CreditCard MAS that mainly lists records of credit card expenditure and gained bonus for
the same user. Fig. 6 (c) is the MoneyManager MAS that stores the expenditure filled in
by the user, receives the data transmitted by two other MASs via the Broadcast, and renders
the aggregate expenditure information (ETC, CreditCard, and user-provided data). Three
MAS pages can be switched by swiping the screen or clicking on items of the menu bar.
We also used this App to be the testbed to evaluate the efficacy of the proposed IPS and
CASP prefetch methods. Details of experiments are shown in Section 5.

(a) (b) (c)

Fig. 6. Example of a MASA app.

5. EXPERIMENTAL EVALUATIONS

To demonstrate the feasibility of the proposed MASA system, four requirements pre-
sented in Section 3.1 should be satisfied. We discuss how MASA realizes these require-
ments are as follows.

1. Communication mechanisms: the proposed Broadcast mechanism obviously realizes

this requirement.
2. Supporting actions under various wireless network conditions: the proposed IPS and

CASP caching and prefetch methods could meet this requirement. To further evaluate
the efficacy of these two methods, we conducted two quantitative experiments. Details
are shown in the following subsections.

3. Publish, find, compose, and utilize components: the MASA portal is able to provide
these features via Web user interfaces.

4. Cross-platform: since MASA is based on Cordova and HTML5, this requirement is
sufficiently satisfied.

SHANG-PIN MA, CHI-CHIA LI, SHIN-JIE LEE, HSI-MIN CHEN, WEN-TIN LEE

134

5.1 Experimental Setup

The hardware and software configurations for experiments were as follows: (1) Desk-

top PC (hosting the RESTful services): Intel Core™ i7-2600 CPU 3.4GHz with 8G RAM
and 150G hard disk running Windows 7 (64 bit); and (2) Android virtual device (emulator):
ARM (armeabi-v7a) with 1G RAM running under the Android 6.0 OS.

5.2 Performance Testing of the IPS (Identification of Prefetch Services) Mechanism

In the first experiment, we evaluated system performance when various numbers of

relational services are prefetched for a base service. The performance was evaluated by
conducting a comparison with normal service invocation (without a prefetch mechanism).
We used the CreditCardRecords service (base service) and Bonus service (relational ser-
vice) used in CreditCard MAS (described in Section 4.3) to conduct this experiment. The
performance was evaluated in terms of response time; i.e., the delay time (in seconds)
between the moment the service request is issued and the moment a service response is
received. The total response time was calculated by summing up all of the response times
for a given base service and its relational services. The number of relational services was
increased by five each time.

Fig. 7 shows the total service response times of base services and relational services.
It is clear that MASA shortens the response time by pre-invoking relational services and
storing service responses in advance. Conventional service invocation resulted in very long
response times when the base service was associated with a large number of relational
services. For example, the invocation of the base service with 50 relational services re-
quired 126 seconds, which would be unacceptable to most end users.

Fig. 7. Total response time with various numbers of relational services.

5.3 Performance Tests for the CASP (Context-Aware Service Prefetch) Mechanism

The performance of the proposed service prefetch mechanism was evaluated using

the CreditCardRecord service used in the mentioned CreditCard MAS. We implemented
one version with prefetch (WP) and one version without prefetch (WOP), and conducted
experiments in three contexts under high battery capacity: 4G network, 3G network, and
no network access. To simplify the experiment, we assumed that the CreditCardRecord

5 10 15 20 25 30 35 40 45 50

without prefetch 3.38 9.82 15.53 30.39 33.70 49.82 61.47 97.63 92.64 125.98

with prefetch 0.64 0.99 1.12 1.66 1.62 1.92 1.98 2.75 2.39 2.90

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

re
sp
o
n
se
 t
im

e
 (
se
c)

number of relational services

CACHE-ENABLED AND CONTEXT-AWARE APPROACH TO BUILDING APPS 135

service would always be identified as a prefetchable service. Experiments were conducted
50 times per second under the three conditions to obtain the rendering time; i.e., the delay
(in seconds) between the moment the service request was issued and the moment the ser-
vice response was displayed in the page. The rendering time is the sum of the service re-
sponse time and the time required to display the service results. The TTL (time to live) was
set to 30 seconds. The experiment results are presented in Figs. 8-10 for the 4G network,
3G network, and no network access, respectively.

Fig. 8. Rendering time under the 4G condition. Fig. 9. Rendering time under the 3G condition.

Fig. 10. Rendering time without network access.

Our experiment results demonstrate that the proposed prefetch mechanism (WP solu-
tion) is able to trigger the pre-invocations for the CreditCardRecord service every 30 sec-
onds, thereby allowing further browsing. In contrast, the WOP solution was required to
invoke a service for each service request. The CreditCardRecords service had a long re-
sponse time (LRT), and prefetch was conducted for either a 4G/Wiki network or 3G net-
work in accordance with the rules specified in Table 1. Under these conditions, the results
under 4G (Fig. 8) were very similar to those obtained under 3G (Fig. 9). When there was
no network access (Fig. 10), the WP solution continued to provide service results for the
previous invocation, whereas the WOP solution showed an error message. Our experiment
results demonstrate the efficacy of MASA in reducing latency (by 93%~98%) and partially
maintaining the availability of applications even when there is no network access. In other
words, for any RESTful service, as long as its responses are cached, its service client (a
MAS) is able to read cached data to maintain the availability even in the condition of no
network access.

0

1000

2000

3000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49re
n
d
er
in
g
ti
m
e
(m

s)

Credit Card MAS in 4G

with prefetch without prefetch

0

1000

2000

3000

4000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49re
n
d
er
in
g
ti
m
e
(m

s)

Credit Card MAS in 3G

with prefetch without prefetch

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

re
n
d
er
in
g
tu
m
e
(m

s)

Credit Card MAS without Network Access

with prefetch

SHANG-PIN MA, CHI-CHIA LI, SHIN-JIE LEE, HSI-MIN CHEN, WEN-TIN LEE

136

5.4 Limitations of MASA

Although MASA could provide numerous important features to help users build ca-
che-enabled composite Mobile Apps, there are three limitations when using the proposed
MASA:

1. Component designers are expected to be familiar with HTML, CSS, JavaScript, and
JSON, as well as the MAS APIs to develop MAS components.

2. Although an App designer does not need to write code, he (she) must know the cached
data that each MAS component accesses, and has the ability to compose MAS compo-
nents based on the publish/subscribe behaviors of each MAS component.

3. Since the Broadcast mechanism does not consider authentication and authorization,
malicious MAS components may steal sensitive data offered by other MAS compo-
nents. The security issue is not in the scope of this paper, but will be taken into accounts
in the future.

6. CONCLUSIONS

This paper introduces a novel framework (MASA) for the use in the composition and
assembly of mobile components with the support of context-aware service caching and
prefetch. The MASA framework has three main features: (1) A programming model for
building MAS components based on mobile web techniques to produce cross-platform
Mobile Apps; (2) the ability to invoke, cache, and prefetch RESTful services efficiently
and thereby enhance the user experience under various network conditions; and (3) a new-
ly-devised Broadcast mechanism to enable the exchange of data among MAS components
to facilitate the integration of MAS components. The proposed prefetch mechanism was
also shown to reduce response times considerably in various contexts.

The future plans of this research are two-fold: (1) MASA will combine MASA with
PWA (Progressive Web Apps [20]), a new web technology that offers the functionality of
working offline and push notifications, to enhance the features of the relational and con-
text-aware service prefetch on PWA Apps; (2) MASA will support better authentication
and authorization to block possibly malicious programs.

REFERENCES

1. R. Jabangwe, H. Edison, and A. N. Duc, “Software engineering process models for
mobile app development: A systematic literature review,” Journal of Systems and Soft-
ware, Vol. 145, 2018, pp. 98-111.

2. B. König-Ries, “Challenges in mobile application development,” IT-Information Tech-
nology, Vol. 51, 2009, pp. 69-71.

3. S.-P. Ma, Y.-S. Ma, and W.-T. Lee, “State-driven and brick-based mobile mashup,”
in Proceedings of IEEE International Conference on Mobile Services, 2015, pp. 190-
196.

4. Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile cloud com-
puting: taxonomy and open challenges,” IEEE Communications Surveys & Tutorials,

CACHE-ENABLED AND CONTEXT-AWARE APPROACH TO BUILDING APPS 137

Vol. 16, 2014, pp. 369-392.
5. D. D. Terry and V. Ramasubramanian, “Caching xml web services for mobility,”

Queue, Vol. 1, 2003, pp. 70-78.
6. S.-P. Ma, W.-T. Lee, P.-C. Chen, and C.-C. Li, “Framework for enhancing mobile

availability of RESTful services  A connectivity-aware and risk-driven approach,”
Mobile Networks and Applications, Vol. 21, 2016, pp. 337-351.

7. R. Francese, M. Risi, and G. Tortora, “Management, sharing and reuse of service-
based mobile applications,” in Proceedings of the 2nd ACM International Conference
on Mobile Software Engineering and Systems, 2015, pp. 105-108.

8. C. Bouras, A. Papazois, and N. Stasinos, “Cross-platform mobile applications with
web technologies,” International Journal of Computing and Digital Systems, Vol. 4,
2015, pp. 153-163.

9. H. Heitkötter, S. Hanschke, and T. A. Majchrzak, “Evaluating cross-platform develop-
ment approaches for mobile applications, in Web information systems and technolo-
gies,” in Proceedings of International Conference on Web Information Systems and
Technologies, 2012, pp. 120-138.

10. J. Fernandez, A. Fernandez, and J. Pazos, “Optimizing web services performance us-
ing caching,” in Proceedings of International Conference on Next Generation Web
Services Practices, 2005, pp. 6-11.

11. A. Papageorgiou, M. Schatke, S. Schulte, and R. Steinmetz, “Enhancing the caching
of web service responses on wireless clients,” in Proceedings of IEEE International
Conference on Web Services, 2011, pp. 9-16.

12. X. Liu and R. Deters, “An efficient dual caching strategy for web service-enabled
PDAs,” in Proceedings of ACM Symposium on Applied Computing, 2007, pp. 788-
794.

13. A. Liyanaarachchi and S. Weerawarana, “An end-to-end caching protocol for web ser-
vices,” in Proceedings of International Conference on Advances in ICT for Emerging
Regions, 2012, pp. 96-102.

14. J. Spillner, A. Utlik, T. Springer, and A. Schill, “RAFT-REST  A client-side frame-
work for reliable, adaptive and fault-tolerant RESTful service consumption,” in Pro-
ceedings of European Conference on Service-Oriented and Cloud Computing, 2013,
pp. 104-118.

15. I. Ollite and N. Mohamudally, “Performance analysis of a 2-tier caching proxy system
for mobile RESTful services,” in Proceedings of IEEE International Conference on
Computer as a Tool, 2015, pp. 1-7.

16. T. Nestler, L. Dannecker, and A. Pursche, “User-centric composition of service front-
ends at the presentation layer,” in Proceedings of Service-Oriented Computing Service
Wave Workshops, 2010, pp. 520-529.

17. S.-P. Ma, P.-Z. Chen, Y.-S. Ma, and J.-S. Jiang, “Building mobile apps by ordinary
users: A service-brick-based approach,” Journal of Information Science and Engineer-
ing, Vol. 34, 2018, pp. 611-629.

18. M. Mikowski and J. Powell, Single Page Web Applications: JavaScript End-to-End,
Manning Publications Co., NY, 2013.

19. J. Friesen, Extracting JSON Values with JsonPath, in Java XML and JSON, 2016,
Apress, Berkeley, CA, pp. 223-239.

20. Progressive Web Apps, https://developers.google.com/web/progressive-web-apps/.

SHANG-PIN MA, CHI-CHIA LI, SHIN-JIE LEE, HSI-MIN CHEN, WEN-TIN LEE

138

Shang-Pin Ma (馬尚彬) received his Ph.D. degree in Computer
Science and Information Engineering from National Central Univer-
sity, Taiwan, in 2007. He is currently a Professor in the Department
of Computer Science and Engineering at National Taiwan Ocean
University. His research interests include service-oriented computing,
software engineering, mobile computing, and semantic web.

Chi-Chia Li (李啟嘉) received his Bachelor (2014) and Mas-
ter’s (2016) degrees from the Department of Computer Science and
Engineering, National Taiwan Ocean University, Taiwan. His re-
search interests include software engineering, service computing,
and mobile application architecture.

Shin-Jie Lee (李信杰) is an Associate Professor in Computer
and Network Center at National Cheng Kung University (NCKU) in
Taiwan and holds joint appointments from Department of Computer
Science and Information Engineering at NCKU. His current research
interests include software engineering and service-oriented compu-
ting. He received his Ph.D. degree in Computer Science and Infor-
mation Engineering from National Central University in Taiwan in
2007.

Hsi-Min Chen (陳錫民) received the B.S. and Ph.D. degrees in
Computer Science and Information Engineering from National Cen-
tral University, Taiwan, in 2000 and 2010, respectively. He is cur-
rently an Associate Professor with the Department of Information
Engineering and Computer Science, Feng Chia University, Taiwan.
His research interests include software engineering, object-oriented
technology, service computing, and distributed computing.

Wen-Tin Lee (李文廷) received his Ph.D. degree in Computer
Science and Information Engineering from National Central Univer-
sity, Taiwan, in 2008. Lee is currently an Associative Professor in
the Department of Software Engineering and Management at Na-
tional Kaohsiung Normal University. His research interests include
software engineering, service-oriented computing and software pro-
cess management.

