
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 22, 785-798 (2006)

785

Short Paper___

Design and Implementation of the OpenMP Programming

Interface on Linux-based SMP Clusters*

TYNG-YEU LIANG, SHIH-HSIEN WANG+, CE-KUEN SHIEH+,

CHING-MIN HUANG AND LIANG-I CHANG

Department of Electrical Engineering
National Kaohsiung University of Applied Sciences

Kaohsiung, 807 Taiwan
+Department of Electrical Engineering

National Cheng Kung University
Tainan, 701 Taiwan

Recently, cluster computing has successfully provided a cost-effective solution for

data-intensive applications. In order to make the programming on clusters easy, many
programming toolkits such as MPICH, PVM, and DSM have been proposed in past re-
searches. However, these programming toolkits are not easy enough for common users
to develop parallel applications. To address this problem, we have successfully imple-
mented the OpenMP programming interface on a software distributed shared memory
system called Teamster. On the other hand, we add a scheduling option called Profiled
Multiprocessor Scheduling (PMS) into the OpenMP directive. When this option is se-
lected in user programs, a load balance mechanism based on the PMS algorithm will be
performed during the execution of the programs. This mechanism can automatically
balance the workload among the execution nodes even when the CPU speed and the
processor number of each node are not identical. In this paper, we will present the design
and implementation of the OpenMP API on Teamster, and discuss the results of per-
formance evaluation in the test bed.

Keywords: Linux-based SMP, OpenMP, software distributed shared memory, Teamster,
profiled multiprocessor scheduling

1. INTRODUCTION

OpenMP [1] is a standard shared memory programming interface which provides a
set of directives such as parallel region, work sharing, and synchronization. Additionally,
OpenMP applies several data scope attribute clauses, e.g. private or shared, in conjunc-
tion with these directives to explicitly direct the shared memory parallelism. When users
wish to parallelize their problems, they need only add the proper directives and clauses at
the front of the program blocks which are to be parallelized. Using the OpenMP compiler,

Received July 4, 2005; accepted April 11, 2006.
Communicated by Yau-Hwang Kuo.
* This work was supported by the freeware project of the National Science Council of Taiwan, R.O.C., under

project No. 93-2218-E-151-004.

admin
打字機文字
DOI:10.1688/JISE.2006.22.4.5

T. Y. LIANG, S. H. WANG, C. K. SHIEH, C. M. HUANG AND L. I. CHANG

786

the sequential programs can be automatically transformed into corresponding C source
codes embedded with the OpenMP run time functions. These source codes can then be
compiled by the GCC compiler to form multithreaded execution files by linking with the
OpenMP run time library. Consequently, the OpenMP interface provides users with a
straightforward interface for developing multithreaded programs on SMP machines.

In recent years, computational clusters [2] have emerged as a cost-effective ap-
proach for high performance supercomputing. Such systems unify individual resources
located on LAN to form a single computational resource. From the point of user view, a
computational cluster is regarded as a virtual main frame with a numerous number of
processors while it is cheaper and more expandable and reliable than real main frames.
Consequently, computational clusters have been exploited in many data-intensive re-
searches such as bioinformatics, high physical energy, weather forecast, brain analysis
and astronomy physics etc.

However, even though computational clusters offer many advantages, the growth of
cluster-computing applications is still relatively slow. The principal reason for this ap-
pears to be that the existing programming toolkits such as MPICH [3] and PVM [4] are
rather complicated since they require programmers to use explicit function invocations to
perform data communication or work distribution functions. In contrast, software distrib-
uted shared memory (DSM) [5-9] systems allow users to make use of shared variables
rather than message passing to write parallel programs in a distributed environment.
When processes or threads access the same shared variables on different nodes, data con-
sistency is automatically maintained by the DSM library. As a result, users can concen-
trate their efforts exclusively on developing their program algorithms, free of the need to
consider data communication aspects. However, due to performance considerations, most
modern DSM systems adopt weaker consistency protocols such as released [10], entry
[11] or scope [12]. As a consequence, users must be aware of the particular consistency
protocol used in their chosen DSM system and must establish appropriate data synchro-
nization points within their programs if the application is to be executed as intended. For
overcoming this consistency protocol problem, enabling the OpenMP programming in-
terface on software DSM systems has emerged as a promising means. OpenMP programs
not only minimize the programming complexity on computational clusters, but also ex-
tend the range of feasible cluster-computing applications since OpenMP programs de-
veloped on SMPs can be seamlessly applied to computer clusters.

As discussed above, we have previously developed a user-friendly software DSM
system known as Teamster [13] for Linux-based SMP clusters. To further minimize the
programming load of cluster users, the objective of this study is to enable the OpenMP
programming interface on Teamster. Accordingly, this study develops an OpenMP com-
piler and a distributed OpenMP run time library for Teamster based on the Omni com-
piler and its run time library, respectively. In addition, a user-level thread library referred
to as distributed Portable thread is introduced to minimize the parallelization overhead
and to support thread migration for application adaptation and resource reallocation. Ad-
ditionally, this study proposes a loop scheduling algorithm designated Profiled Multi-
processor Scheduling (PMS) to resolve the load balancing problem for OpenMP pro-
grams. The efficiencies of the implemented OpenMP compiler and run time library are
investigated, and the effectiveness of the PMS algorithm has been evaluated in this study.
The experimental results reveal that the overhead of the run time library is very small and

IMPLEMENTATION OF OPENMP ON LINUX-BASED SMP CLUSTERS

787

demonstrate that the PMS algorithm is more effective than others in attaining a load bal-
ance.

The remainder of this paper is organized as follows. Section 2 provides an overview
of Teamster and the Omni compiler. Sections 3 and 4 discuss the design considerations
and implementation, respectively, of the OpenMP interface on Teamster. Section 5 pre-
sents the results of performance evaluation. Section 6 provides an overview of related
studies. Finally, section 7 presents the conclusions of this study and our future work.

2. BACKGROUND

The aim of this study is to enable the OpenMP programming interface on Teamster
for cluster computing. In order to simplify our work, the Omni compiler and the OMP
run time library are adopted as the basis for the current implementation.

2.1 Teamster

Teamster [14] is a user-level DSM system built on Linux-Red hat 9.0 operating sys-
tem. Its hardware platform is a cluster grouped by a set of Intel 80 × 86 PCs or SMP ma-
chines connected with Fast Ethernet network. This system supports transparency to users
in data-distribution. Teamster constructs a single and global address space. With this
global shared space, programmers can declare and allocate shared data by using the same
user interface as using in shared-memory systems while they need to use additional an-
notations in the other DSM systems such as tmk_alloc and tmk_distribute calls in Tread-
Marks [15]. Moreover, Teamster supports multiple memory consistency protocols, i.e.
sequential and eager-update released in the shared address space to make a compromise
between transparency and minimization in data-consistency communication.

2.2 Omni Compiler

The Omni compiler [16] is one part of the RWCP Omni compiler developed to al-
low researchers to build a code transformer. In this study, the Omni compiler is used for
transforming of OpenMP programs into multi-threaded programs. Basically speaking, the
OpenMP programs are initially translated into X-object codes. These codes are then
transformed into corresponding C source codes by means of the Exc Java toolkit. The C
source codes are then compiled into executable binary code by using the GCC compiler
and linking to the OMP runtime library, which is implemented using a kernel-level
POSIX thread.

3. CONSIDERATIONS

Source code compatibility and program performance are two main considerations
while implementing the OpenMP interface on Teamster. When source compatibility is
maintained, users can execute their applications directly on a computer cluster once the
source codes have been recompiled. However, to prevent performance degradation, the

T. Y. LIANG, S. H. WANG, C. K. SHIEH, C. M. HUANG AND L. I. CHANG

788

program parallelization costs must be minimized. Furthermore, it is impossible to guar-
antee that the computational power of the processors in a cluster is identical. Therefore,
achieving a dynamic load balance is essential if an acceptable program performance is to
be obtained from the cluster.

3.1 Source Compatibility

To maintain source compatibility, three problems must be addressed. The first prob-
lem is that of the memory allocation of the global variables. In SMPs, the global vari-
ables declared in the user programs are shared between threads even when they are not
assigned with an initial value by the programmer. However, Teamster allocates any
global variables without an initial value into the private space. Consequently, these vari-
ables can not be shared among threads located on different nodes. The second problem is
that of the memory allocation function. In SMPs, users can call the malloc() function to
allocate a block of shared memory for data communication between threads. However, in
Teamster, this function allocates memory at the private space. Therefore, to allow users
to allocate memory at the shared memory address, the memory allocation function must
be modified or replaced. The third problem is that of the OMP library functions. For
example, the function omp_get_num_threads is used to return the total number of threads
in a program. In Teamster, this function must be modified to sum the numbers of threads
allocated at all of the execution nodes and to return this summed value. This implies that
it is necessary to develop an OMP library specifically for Teamster.

3.2 Program Performance

The original OMP run time library is implemented using the kernel-level Pthread.
However, to minimize the cost of program parallelization and to support thread migration
and resource reallocation, this study uses a user-level thread to implement the OMP li-
brary. For the sake of compatibility, this study chooses GNU Pth [17], which is a port-
able thread package supporting UNIX-compatible systems. However, this thread package
does not support distributed systems and therefore a distributed Pth library must be de-
veloped specifically for Teamster.

Many solutions have been proposed for achieving a load balance in SMPs and
DSMs, respectively. Basically, the methods proposed for SMPs are based on loop sched-
uling [18], while those for DSM systems are based on thread migration [19-21]. Recently,
Sakae [22] proposed a loop partition algorithm known as profiled scheduling to address
the load balance problem in loop applications. The basic principal of this algorithm is to
assign the same number of iterations to program threads for execution and to then profile
the execution times of the individual threads. Based on the profiled thread execution
times, the execution time of each node is estimated using Eq. (1) and the number of itera-
tions assigned to each node determined by Eq. (2). After loop re-partitioning, the threads
located at the same node evenly share the iterations distributed to their execution node.

,x

yx
y S

x
x

T

T
N

∈=
∑

 (1)

IMPLEMENTATION OF OPENMP ON LINUX-BASED SMP CLUSTERS

789

where Tx is the execution time of node x, Sx is the set of threads located at node x, Tyx is
the execution time of thread y at node x, and Nx is the number of threads located at node
x.

1

1/
,

1/

x
x n

x
x

T
W I

T
=

= ×

∑

 (2)

where Wx is the number of iterations distributed to node x, n is the number of execution
nodes, and I is the total number of iterations in the loop structure.

Compared to the methods proposed for DSM systems, the cost of the profiled
scheduling algorithm described above is reduced since thread migration in not necessary.
However, the profiled scheduling algorithm may misestimate the execution time of an
execution node if the number of threads assigned to that node exceeds the number of
processors at that node. Therefore, Eq. (1) should ideally be modified to consider both
the number of threads and the number of processors at the node if a profiled scheduling
algorithm is to be employed.

4. IMPLEMENTATION

In accordance with the considerations discussed above, the present implementation
task involves modifying the Omni compiler, developing a distributed OMP library (OM-
PLIB), constructing a user-level distributed Pth thread library (PTHLIB), and designing a
load balance mechanism.

4.1 Modification of Omni Compiler

By tracking the compiling process, it is found that the Omni compiler uses Ident
objects and XobjectsDef objects as descriptors of the data variables in the user programs.
The Ident object is used to describe the type, name and address of a variable. If a variable
is not initialized, the XobjectsDef field will be filled with a NULL value; otherwise the
field will be filled with an initial value. Accordingly, this study modifies the Omni com-
piler to automatically assign an initial value to the XobjectsDef fields of any variables
whose initial value are NULL. As a result, all of the variables in the transformed C
source codes will be initialized and then be allocated by Teamster at the shared memory
space.

As described earlier, it is necessary to modify or replace the memory allocation
function, i.e. malloc(), when enabling OpenMP on Teamster. Teamster provides the pRe-
lease_new() function for memory allocation. In order to achieve source compatibility, the
macro #define malloc pRelease_new is designed in the head file, i.e, omp.h. Since all
original OpenMP programs must include this head file, the malloc() function can be
automatically replaced by the pRelease_new() function without the need to modify the
source code.

T. Y. LIANG, S. H. WANG, C. K. SHIEH, C. M. HUANG AND L. I. CHANG

790

4.2 Distributed OMPLIB

This study develops a distributed version of the OMP library for Teamster. For ex-
ample, the parallel directive is mapped to the _ompc_do_parallel() function. When this
parallel directive is placed in front of a program block, the block will be replaced by the
_ompc_do_parallel() function once the OpenMP program has been transformed by the
Omni compiler. The replaced program block is packed into a working function. The
name of the working function is the parameter of the _ompc_do_parallel() function.
When the _ompc_do_parallel() function is performed during the execution of the pro-
gram, the function will fork a number of threads to execute the same working function by
assigning a different working data set. To parallelize the OpenMP program on a cluster,
the _ompc_do_parallel() function is modified to broadcast the name of the working func-
tion to the other nodes. Each node then forks a number of threads and binds these threads
with the working function to process the work of the parallel region in accordance with
the received function name.

4.3 Distributed PTHLIB

The distributed Pth library consists mainly of the thread management and thread
synchronization functions. In the present implementation, five scheduling queues, i.e.
new, ready, waiting, suspend and dead, are created for each processor at a node. Threads
forked in a parallel region are evenly distributed to the ready queues of the processors
and each thread scheduler then fetches the threads from its ready queue for execution. If
the ready queue is empty, the scheduler fetches threads from other queues at the same
node. In addition, the global thread scheduler, which manages all of the program threads,
uses a data structure known as LoadMap to store the information relating to the threads,
e.g. the thread state, the returned value, the identifier of the execution node, and the ad-
dress of thread control block. When the master thread of a user program intends to join a
slave thread, the identifier of that slave thread is sent to the global scheduler. If the state
of the slave thread is THREAD_TERMINATED, the return value of the slave thread is
sent back to the main thread, which then continues its work. Otherwise, the main thread
is blocked, the state of the slave thread is marked as THREAD_JOIN, and the location of
the main thread and the TCB address of the main thread are stored. Once the slave thread
has finished its work, its identifier is sent to the global scheduler and its return value is
sent to the main thread, which then resumes its work. However, if the state of the slave
thread is not marked as THREAD_JOIN, the global scheduler simply updates its state as
THREAD_TERMINATED and stores the return value in LoadMap.

The lock and barrier of the distributed Pth library are mapped to the distributed-
queue lock and the hierarchical barrier, respectively, in Teamster. Significantly, to mini-
mize the synchronization overhead, when a lock is released, a thread whose node/ cluster
allocation is the same as that of the lock has a higher priority to get the access right of the
lock than a thread whose node/cluster allocation is different from that of the lock.

4.4 Load Balance Mechanism

This study develops a novel loop scheduling algorithm called Profiled Multiproces-

IMPLEMENTATION OF OPENMP ON LINUX-BASED SMP CLUSTERS

791

sor Scheduling (PMS) to address the load balance problem for user applications executed
in a cluster environment. PMS is similar to the profiled scheduling algorithm proposed
by Sakae, but uses Eq. (3) to estimate the execution time of each node. Since this equa-
tion considers both the number of processors at each node and the number of threads at
each node, it overcomes the potential for estimation error in Sakae’s profiled scheduling
algorithm.

,x

yx
y S x

x
x x

T
N

T
N P

∈  
= ×  

 

∑
 (3)

where Px is the number of processors at node x.
This study implements a load balance mechanism based on the PMS algorithm into

Teamster. When a thread commences work on an iteration, the thread scheduler records
the start time of the thread. When the thread arrives at the end of the iteration, e.g. at a
barrier, the thread scheduler records the arrival time and calculates the elapsed time be-
tween the start time and the arrival time. The calculation results from each node are then
sent to the root node, which estimates the execution time of each node using Eq. (3) and
then calculates and broadcasts a new loop partition pattern. Through this broadcast, each
node is informed of the number of iterations it must work for and evenly distributes these
iterations across its local threads for parallel execution by adjusting the start and end it-
eration variables of the working function bound to each thread.

5. PERFORMANCE

This study implements the SOR, N-body and EP applications to evaluate the per-
formance of the modified Omni compiler, the distributed OMP library, the distributed
Pth thread library, and the PMS loop scheduling algorithm. The parameters of these test
applications are shown in Table 1 and the experimental environment is shown in Table 2.

Table 1. Program parameters.

Application Problem size CPU demand Memory demand

SOR
7168 × 7168
250 iterations

811.450 sec 392 MB

N-body
8192 particles

200 loops
1084.904 sec 320 KB

EP Class C 1759.850 sec 1 MB

5.1 System Overhead

Table 3 summarizes the estimated overheads of the distributed Pth library and the
distributed OMP library. It can be seen that the costs of thread management and syn-
chronization, and those of loop parallelization, are very small. In other words, the
parallelization cost of the user applications is effectively reduced.

T. Y. LIANG, S. H. WANG, C. K. SHIEH, C. M. HUANG AND L. I. CHANG

792

Table 2. Experimental environment.

 Cluster I Cluster II

Node id Node(0, 1, 2, 3) Node(4, 5)

CPU
Pentium III Xeon

500Mhz * 4
Pentium III Xeon

700Mhz * 4
Memory 512 MB SDRAM

Network Fast Ethernet (100Mps)

Software Fedora Core(2.6.8-1.52 smp) and gcc 3.3.3

Table 3. System overheads.

Thread creation 41.12 us Lock acquire 0.02393 ms

Thread joining 0.01101 ms Lock release 0.03093 ms

Thread migration 1.55043 ms Barrier arrive 0.03670 ms

Thread context switch 0. 01163 ms

5.2 Application Performance

The Pthread and OpenMP interfaces are both used to implement the test applica-
tions in order to evaluate the effectiveness of the modified Omni compiler. The applica-
tions were all run in Cluster I. Table 4 shows that the performances of the test applica-
tions implemented by OpenMP are very similar to those of the same applications imple-
mented by Pthread. This implies that the modified OpenMP compiler provides an effec-
tive translation of the OpenMP programs. Furthermore, the results confirm the efficiency
of both the OMP library and the Pth library.

Table 4. Comparison between OpenMP and D-Pth.

 D-Pth OpenMP

SOR N = 1 N = 2 N = 4 N = 1 N = 2 N = 4
Exec. Time (sec) 811.450 428.744 253.385 811.393 428.519 253.506

Speed up 1 1.893 3.202 1 1.893 3.201
N-Body N = 1 N = 2 N = 4 N = 1 N = 2 N = 4

Exec. Time (sec) 1084.904 545.320 280.611 1082.898 544.918 281.926
Speed up 1 1.989 3.866 1 1.987 3.841

EP N = 1 N = 2 N = 4 N = 1 N = 2 N = 4
Exec. Time (sec) 1759.850 881.439 442.048 1760.953 882.428 443.563

Speed up 1 1.997 3.970 1 1.996 3.970

Table 5. Comparison between SMP and computer cluster.

 N-Body (Exec. Time) SOR (Exec. Time)
n = 1; p = 4 1118.463 sec 828.255 sec
n = 4; p = 1 1158.513 sec 775.027 sec

IMPLEMENTATION OF OPENMP ON LINUX-BASED SMP CLUSTERS

793

The test applications were also executed on a four-processor node and a cluster of
four single-processor nodes, respectively. As shown in Table 5, the performance of the
N-body application running on the four-processor cluster is poorer than when it is run on
the shared memory multiprocessor. The reason for this is that the N-body application
involves heavy data sharing and the cost of maintaining data consistency over a computer
network is far greater than maintaining data consistency via a system bus. However, the
performance degradation is less than 1% and is therefore acceptable. By contrast, in the
SOR application, data sharing occurs only at the boundaries of the data matrixes. How-
ever, the memory demands are very high. Accordingly, when this application is executed
on an SMP machine, a large number of page swapping operations must be performed
since the memory resources of the machine are insufficient to meet the memory demands
of the application. Consequently, the cost of memory accesses is dramatically increased
and the performance of the SOR application is seriously degraded. However, this situa-
tion is improved when the SOR application is executed on the computer cluster. Since
the work of the application is evenly distributed across the four different nodes in the
cluster, each node must satisfy only one quarter of the total memory demands of the SOR
application. Consequently, the number of page swapping operations is significantly re-
duced and hence the performance of the SOR application is greatly improved. This ad-
vantage of DSM systems is attractive for users to port their applications on a computer
cluster.

5.3 Load Balance

To evaluate the performance of the loop scheduling algorithm in achieving a load
balance, two different thread mapping patterns were used to run the test applications. In
the first mapping pattern, a single thread was assigned to each processor, while in the
second, two threads were assigned to the first processor of the first node and a single
thread was assigned to each of the other processors. The applications were executed us-
ing two nodes at Cluster I and two nodes at Cluster II. In the performance evaluation
experiments, the work of the test applications was initially distributed evenly to the pro-
gram threads using a static scheduling approach. After profiling the information neces-
sary for load balancing, two different scheduling algorithms, i.e. profiled and PMS, were
applied to re-partition the work of the test applications to the program threads.

Fig. 1 shows that the profiled scheduling algorithm and the PMS algorithm both
successfully minimize the load imbalance overheads of the two test applications irre-
spective of the thread mapping pattern applied. It is also observed that the proposed PMS
algorithm is as effective as the profiled algorithm when the first thread mapping pattern
is employed. This is because the program threads are mapped to the processors with a
one-to-one pattern and therefore the profiled algorithm can estimate the execution time
of a node as precisely as the PMS scheduling algorithm. However, it can be seen that the
PMS algorithm is more effective than the profiled algorithm when the second thread
mapping pattern is applied. The reason for this is that the PMS algorithm considers both
the number of threads and the number of processors when estimating the node execu-
tion time. Therefore, it obtains more precise estimates of the node execution time and
achieves a better load balance and hence an improved application performance as a
result.

T. Y. LIANG, S. H. WANG, C. K. SHIEH, C. M. HUANG AND L. I. CHANG

794

 600

500

400

300

200

100

0
Case 1 Case 2

thread mapping

E
xe

cu
tio

n
T

im
e

(s
ec

)

 Static
Profiled
PMS

 Static
Profiled
PMS

Case 1 Case 2
thread mapping

900

800

700

600

500

400

300

200

100

0

E
xe

cu
tio

n
T

im
e

(s
ec

)

(a) N-body. (b) EP.

Fig. 1. Effectiveness of load balancing.

6. RELATED WORK

Several past studies have also investigated the implementation of the OpenMP in-
terface on software DSM systems such as TreadMarks [23], SCASH [24], JIAJIA [25],
and COMPaS [26]. The implementation of TreadMarks is similar to that of the present
study. However, TreadMarks does not provide complete source compatibility for
OpenMP programs written on the SMP platform. SCASH uses the Exec Java toolkit to
translate OpenMP programs into multithreading programs. In addition to its support of
the OpenMP interface, SCASH also provides a set of extended OpenMP directives for
co-allocating shared data in the same data pages to minimize data consistency mainte-
nance costs. However, that makes the programs incompatible since these directives are
not standards of OpenMP. JIAJIA implements a compiler known as AutoPar to analyze
the correctness of parallel programs and automatically adjusts the computation granular-
ity to achieve a compromise between the performance benefits of parallelism and the
parallelization cost. Finally, COMPaS maintains data consistency by using the Omni
compiler to insert message passing calls into the source programs rather than by using
the DSM library as in other DSM schemes.

Compared with the approaches discussed above, the approach developed in this
study provides complete source compatibility for applications developed on SMPs. In
addition, previous studies generally implemented the OMP library based on the ker-
nel-level Pthread, whereas in this study, the OMP library is implemented using a
user-level distributed POSIX thread library. Finally, load balancing in DSM schemes is
traditionally achieved by using a thread migration approach. However, this study em-
ploys a loop re-partitioning approach to achieve load balance in order to minimize the
overheads of load balancing.

7. CONCLUSIONS AND FUTURE WORK

This study has successfully implemented the OpenMP programming interface on
Teamster for Linux-based SMP clusters. The proposed approach significantly reduces the
complexity of programming on a cluster environment. Since source compatibility is

IMPLEMENTATION OF OPENMP ON LINUX-BASED SMP CLUSTERS

795

maintained in the current implementation, users can seamlessly apply their OpenMP pro-
grams developed on SMPs to a cluster environment. As a result, the range of feasible
cluster-computing applications is significantly increased. This study has also proposed a
novel loop scheduling algorithm, referred to as PMS, to address the problem of load bal-
ancing for user applications executed on a cluster environment. The experimental results
have shown that the proposed scheduling algorithm provides a greater application per-
formance improvement than other algorithms such as static and profiled scheduling. The
experimental results have also shown that DSM is beneficial in minimizing the number
of page replacements, particularly when the user applications require sizeable memory
resources to cache the necessary data. In other words, DSM provides an attractive choice
for users seeking to use clusters rather than SMPs to reduce the execution time of their
applications.

In a future study, the current authors intend to develop an grid-enabled software
DSM systems by integrating the Globus toolkits [27] in order for enabling the OpenMP
programming interface on computational grids [28-30]. Additionally, the authors will
investigate the feasibility of developing a web-based OpenMP program development
environment to allow users to write their applications, and execute and monitor their pro-
grams on a grid environment, from any location and using any device.

ACKNOWLEDGMENT

We appreciate the support of National Science Council, and High Performance Par-
allel and Distributed System Lab. at the Department of Electrical Engineering of Na-
tional Cheng Kung University in Taiwan.

REFERENCES

1. M. Sato, “OpenMP: parallel programming API for shared memory multiprocessors
and on-chip multiprocessors,” in Proceedings of 15th International Symposium on
System Synthesis, 2002, pp. 109-111.

2. R. Buyya, High Performance Cluster Computing: Architectures and Systems, Pren-
tice Hall PTR, New Jersey, 1999.

3. W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable im-
plementation of the MPI message passing interface standard,” Parallel Computing,
Vol. 22, 1996, pp. 789-828.

4. V. Sunderam, “PVM: a framework for parallel distributed computing,” Concurrency:
Practice and Experience, Vol. 2, 1990, pp. 315-339.

5. K. Li, “IVY: a shared virtual memory system for parallel computing,” in Proceed-
ings of the International Conference on Parallel Processing, Vol. 2, 1988, pp.
94-101,

6. J. B. Carter, J. K. Bennett, and W. Zwaenepoel, “Implementation and performance of
Munin,” in Proceedings of 13th ACM Symposium on Operating System Principles,
1991, pp. 152-164.

7. E. Speight and J. K. Bennett, “Brazos: a third generation DSM system,” in Proceed-
ings of the USENIX Windows NT Workshop, 1997, pp. 95-106.

T. Y. LIANG, S. H. WANG, C. K. SHIEH, C. M. HUANG AND L. I. CHANG

796

8. R. Friedman, M. Goldin, A. Itzkovitz, and A. Schuster, “Millipede: easy parallel pro-
gramming in available distributed environments,” Software − Practice and Experi-
ence, Vol. 27, 1997, pp. 929-965.

9. W. Hu, W. Shi, and Z. Tang, “JIAJIA: an SVM system based on a new cache coher-
ence, protocol,” in Proceedings of the High Performance Computing and Network-
ing, 1999, pp. 463-472.

10. P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy release consistency for software
distributed shared memory,” in Proceedings of 19th Symposium on Computer Archi-
tecture, 1992, pp. 13-21.

11. B. N. Bershad and M. J. Zekauskas, “Midway: shared memory parallel programming
with entry consistency for distributed memory multiprocessors,” Technical Report,
No. CMU-CS-91-170, School of Computer Science, Carnegie Mellon University,
Pittsburgh, 1991.

12. L. Iftode, J. Singh, and L. Li, “Scope consistency: a bridge between release consis-
tency and entry consistency,” in Proceedings of 8th Annual ACM Symposium on
Parallel Algorithms and Architectures, 1996, pp. 277-287.

13. J. B. Chang and C. K. Shieh, “Teamster: a transparent distributed shared memory for
cluster symmetric multiprocessors,” in Proceedings of 1st International Symposium
on Cluster Computing and the Grid, 2001, pp. 508-513.

14. J. B. Chang, T. Y. Liang, and C. K. Shieh, “Teamster: a transparent distributed shared
memory for clustered symmetric multiprocessors,” accepted for publication in the
Special Issue of the Journal of Supercomputing, September 6, 2003.

15. C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W.
Zwaenepoel, “TreadMarks: shared memory computing on networks of worksta-
tions,” IEEE Computer, Vol. 29, 1996, pp. 18-28.

16. K. Kusano, S. Satoh, and M. Sato, “Performance evaluation of the omni OpenMP
compiler,” in Proceedings of 3rd International Symposium on High Performance
Computing, 2000, pp. 403-414.

17. R. S. Engelschall, GNU Pth − The GNU Portable Threads, http://www.gnu.org/soft-
ware/pth, 2005.

18. E. P. Markatos and T. J. LeBlanc, “Using processor affinity in loop scheduling on
shared-memory multiprocessors,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 5, 1994, pp. 379-400.

19. A. Schuster and L. Shalev, “Using remote access histories for thread scheduling in
distributed shared memory systems,” in Proceedings of 12th International Sympo-
sium on Distributed Computing, 1998, pp. 347-362.

20. T. Y. Liang , C. K. Shieh, and D. C. Liu. “Scheduling loop applications in software
distributed shared memory systems,” IEICE Transactions on Information and Sys-
tems, Vol. E83-D, 2000, pp. 1721-1730.

21. K. Thitikamol and P. Keleher, “Thread migration and communication minimization
in DSM systems,” in Proceedings of the IEEE, Vol. 87, 1999, pp. 487-497.

22. Y. Sakae, S. Matsuoka, M. Sato, and H. Harada. “Preliminary evaluation of dynamic
load balancing using loop re-partitioning on omni/SCASH,” in Proceedings of 3rd
IEE/ACM International Symposium on Cluster Computing and the Grid, Distributed
Shared Memory on Clusters Workshop, 2003, pp. 463-470.

23. C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W.

IMPLEMENTATION OF OPENMP ON LINUX-BASED SMP CLUSTERS

797

Zwaenepoel, “TreadMarks: shared memory computing on networks of worksta-
tions,” IEEE Computer, Vol. 29, 1996, pp. 18-28.

24. Y. Ojima, M. Sato, H. Harada, and Y. Ishikawa, “Performance of cluster-enabled
OpenMP for the SCASH software distributed shared memory system,” in Proceed-
ings of 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid,
2003, pp. 450-456.

25. F. Zhang, G. Chen, and Z. Zhang, “OpenMP on networks of workstations for soft-
ware DSMs,” Journal of Computer Science and Technology, Vol. 17 , 2002, pp.
90-100.

26. Y. Tanaka, M. Matsuda, M. Ando, K. Kazuto, and M. Sato, “COMPaS: a pentium pro
PC-based SMP cluster and its experience,” IPPS Workshop on Personal Computer
Based Networks of Workstations, LNCS 1388, 1998, pp. 486-497.

27. I. Foster and C. Kesselman “Globus: a metacomputing infrastructure toolkit,” Inter-
national Journal of Supercomputer Applications, Vol. 11, 1997, pp. 115-128.

28. I. Foster and C. Kesselman, The Grid: Blueprint for a Future Computing Infrastruc-
ture, Morgan Kaufmann, San Francisco, CA, 1999.

29. M. Baker, R. Buyya, and D. Laforenza, “Grids and grid technologies for wide-area
distributed computing,” International Journal of Software: Practice and Experience,
Vol. 32, 2002, pp. 1437-1466.

30. F. Berman, G. Fox, and A. J G Hey, Grid Computing: Making the Global Infrastruc-
ture a Reality, John Wiley & Sons, New York, 2003.

Tyng-Yeu Liang (梁廷宇) is currently an assistant professor who teaches and
studies at Department of Electrical Engineering, National Kaohsiung University of Ap-
plied Sciences in Taiwan. He received his B.S., M.S. and Ph.D. degrees from National
Cheng Kung University in 1992, 1994, and 2000. His study is interested in cluster and
grid computing, image processing and multimedia.

Shih-Hsien Wang (王釋賢) is a soldier in the army of the R.O.C. He just got his
Master degree from the Electrical Engineering Department of National Cheng Kung
University in July 2005. His study is focused on cluster and grid computing. He plans to
be a software engineering after he finish his duty of being a soldier.

Ce-Kuen Shieh (謝錫堃) currently is a professor at the Electrical Engineering
Department of National Cheng Kung University in Taiwan. He is also the chief of
computation center at National Cheng Kung University. He recived his Ph.D degree from
the Department of Electical Engierring of National Cheng Kung University in 1988. He
was the chariman of the Electrical Engineering Department of National Cheng Kung
University from 2002 to 2005. His reserch interest is focused on computer network, and
parallel and distributed system.

T. Y. LIANG, S. H. WANG, C. K. SHIEH, C. M. HUANG AND L. I. CHANG

798

Ching-Min Huang (黃竟閩) was born in Kaohsiung, Taiwan. He received the B.S.
of E.E. degree from Da-Yeh University, Changhua, in 2004. He is currently studying for
his Master degree at Departement of Electrical Engieneering of National Kaohsiung
University of Applied Sciences. His research interests include parallel processing and
image processing.

Liang-I Chang (張良毅) was born in Changhua, Taiwan. He received the B.E. de-

gree from the Department of Computer Science, Shu-Te University, Taiwan, in 2004. He
currently study for get his Master degree at the Electrical Engineering Departement of
National Kaohsiung University of Applied Sciences. His research interests focus on par-
allel processing and data mining.

